Now with more examples!

This commit is contained in:
Ladyada 2012-02-01 15:33:19 -05:00
parent 3dab651676
commit 18d7144b47
8 changed files with 1470 additions and 60 deletions

744
PN532.cpp
View file

@ -1,13 +1,53 @@
#include "PN532.h"
/**************************************************************************/
/*!
@file PN532.cpp
@author Adafruit Industries
@license BSD (see license.txt)
SPI Driver for NXP's PN532 NFC/13.56MHz RFID Transceiver
@section HISTORY
//#define PN532DEBUG 1
v1.2 - Added writeGPIO()
- Added readGPIO()
v1.1 - Changed readPassiveTargetID() to handle multiple UID sizes
- Added the following helper functions for text display
static void PrintHex(const byte * data, const uint32_t numBytes)
static void PrintHexChar(const byte * pbtData, const uint32_t numBytes)
- Added the following Mifare Classic functions:
bool mifareclassic_IsFirstBlock (uint32_t uiBlock)
bool mifareclassic_IsTrailerBlock (uint32_t uiBlock)
uint8_t mifareclassic_AuthenticateBlock (uint8_t * uid, uint8_t uidLen, uint32_t blockNumber, uint8_t keyNumber, uint8_t * keyData)
uint8_t mifareclassic_ReadDataBlock (uint8_t blockNumber, uint8_t * data)
uint8_t mifareclassic_WriteDataBlock (uint8_t blockNumber, uint8_t * data)
- Added the following Mifare Ultalight functions:
uint8_t mifareultralight_ReadPage (uint8_t page, uint8_t * buffer)
*/
/**************************************************************************/
#include <WProgram.h>
#include "PN532.h"
byte pn532ack[] = {0x00, 0x00, 0xFF, 0x00, 0xFF, 0x00};
byte pn532response_firmwarevers[] = {0x00, 0xFF, 0x06, 0xFA, 0xD5, 0x03};
// Uncomment these lines to enable debug output for PN532(SPI) and/or MIFARE related code
// #define PN532DEBUG
// #define MIFAREDEBUG
#define PN532_PACKBUFFSIZ 64
byte pn532_packetbuffer[PN532_PACKBUFFSIZ];
/**************************************************************************/
/*!
@brief Instantiates a new PN532 class
@param clk SPI clock pin (SCK)
@param miso SPI MISO pin
@param mosi SPI MOSI pin
@param ss SPI chip select pin (CS/SSEL)
*/
/**************************************************************************/
PN532::PN532(uint8_t clk, uint8_t miso, uint8_t mosi, uint8_t ss) {
_clk = clk;
_miso = miso;
@ -20,28 +60,103 @@ PN532::PN532(uint8_t clk, uint8_t miso, uint8_t mosi, uint8_t ss) {
pinMode(_miso, INPUT);
}
/**************************************************************************/
/*!
@brief Setups the HW
*/
/**************************************************************************/
void PN532::begin() {
digitalWrite(_ss, LOW);
delay(1000);
// not exactly sure why but we have to send a dummy command to get synced up
pn532_packetbuffer[0] = PN532_FIRMWAREVERSION;
pn532_packetbuffer[0] = PN532_COMMAND_GETFIRMWAREVERSION;
sendCommandCheckAck(pn532_packetbuffer, 1);
// ignore response!
}
/**************************************************************************/
/*!
@brief Prints a hexadecimal value in plain characters
@param data Pointer to the byte data
@param numBytes Data length in bytes
*/
/**************************************************************************/
void PN532::PrintHex(const byte * data, const uint32_t numBytes)
{
uint32_t szPos;
for (szPos=0; szPos < numBytes; szPos++)
{
Serial.print("0x");
// Append leading 0 for small values
if (data[szPos] <= 0xF)
Serial.print("0");
Serial.print(data[szPos], HEX);
if ((numBytes > 1) && (szPos != numBytes - 1))
{
Serial.print(" ");
}
}
Serial.println("");
}
/**************************************************************************/
/*!
@brief Prints a hexadecimal value in plain characters, along with
the char equivalents in the following format
00 00 00 00 00 00 ......
@param data Pointer to the byte data
@param numBytes Data length in bytes
*/
/**************************************************************************/
void PN532::PrintHexChar(const byte * data, const uint32_t numBytes)
{
uint32_t szPos;
for (szPos=0; szPos < numBytes; szPos++)
{
// Append leading 0 for small values
if (data[szPos] <= 0xF)
Serial.print("0");
Serial.print(data[szPos], HEX);
if ((numBytes > 1) && (szPos != numBytes - 1))
{
Serial.print(" ");
}
}
Serial.print(" ");
for (szPos=0; szPos < numBytes; szPos++)
{
if (data[szPos] <= 0x1F)
Serial.print(".");
else
Serial.print(data[szPos]);
}
Serial.println("");
}
/**************************************************************************/
/*!
@brief Checks the firmware version of the PN5xx chip
@returns The chip's firmware version and ID
*/
/**************************************************************************/
uint32_t PN532::getFirmwareVersion(void) {
uint32_t response;
pn532_packetbuffer[0] = PN532_FIRMWAREVERSION;
pn532_packetbuffer[0] = PN532_COMMAND_GETFIRMWAREVERSION;
if (! sendCommandCheckAck(pn532_packetbuffer, 1))
return 0;
// read data packet
readspidata(pn532_packetbuffer, 12);
// check some basic stuff
if (0 != strncmp((char *)pn532_packetbuffer, (char *)pn532response_firmwarevers, 6)) {
return 0;
@ -59,6 +174,18 @@ uint32_t PN532::getFirmwareVersion(void) {
}
/**************************************************************************/
/*!
@brief Sends a command and waits a specified period for the ACK
@param cmd Pointer to the command buffer
@param cmdlen The size of the command in bytes
@param timeout timeout before giving up
@returns 1 if everything is OK, 0 if timeout occured before an
ACK was recieved
*/
/**************************************************************************/
// default timeout of one second
boolean PN532::sendCommandCheckAck(uint8_t *cmd, uint8_t cmdlen, uint16_t timeout) {
uint16_t timer = 0;
@ -95,8 +222,124 @@ boolean PN532::sendCommandCheckAck(uint8_t *cmd, uint8_t cmdlen, uint16_t timeou
return true; // ack'd command
}
/**************************************************************************/
/*!
Writes an 8-bit value that sets the state of the PN532's GPIO pins
@warning This function is provided exclusively for board testing and
is dangerous since it will throw an error if any pin other
than the ones marked "Can be used as GPIO" are modified! All
pins that can not be used as GPIO should ALWAYS be left high
(value = 1) or the system will become unstable and a HW reset
will be required to recover the PN532.
pinState[0] = P30 Can be used as GPIO
pinState[1] = P31 Can be used as GPIO
pinState[2] = P32 *** RESERVED (Must be 1!) ***
pinState[3] = P33 Can be used as GPIO
pinState[4] = P34 *** RESERVED (Must be 1!) ***
pinState[5] = P35 Can be used as GPIO
@returns 1 if everything executed properly, 0 for an error
*/
/**************************************************************************/
boolean PN532::writeGPIO(uint8_t pinstate) {
uint8_t errorbit;
// Make sure pinstate does not try to toggle P32 or P34
pinstate |= (1 << PN532_GPIO_P32) | (1 << PN532_GPIO_P34);
// Fill command buffer
pn532_packetbuffer[0] = PN532_COMMAND_WRITEGPIO;
pn532_packetbuffer[1] = PN532_GPIO_VALIDATIONBIT | pinstate; // P3 Pins
pn532_packetbuffer[2] = 0x00; // P7 GPIO Pins (not used ... taken by SPI)
#ifdef PN532DEBUG
Serial.print("Writing P3 GPIO: "); Serial.println(pn532_packetbuffer[1], HEX);
#endif
// Send the WRITEGPIO command (0x0E)
if (! sendCommandCheckAck(pn532_packetbuffer, 3))
return 0x0;
// Read response packet (00 FF PLEN PLENCHECKSUM D5 CMD+1(0x0F) DATACHECKSUM 00)
readspidata(pn532_packetbuffer, 8);
#ifdef PN532DEBUG
Serial.print("Received: ");
PrintHex(pn532_packetbuffer, 8);
Serial.println("");
#endif
return (pn532_packetbuffer[5] == 0x0F);
}
/**************************************************************************/
/*!
Reads the state of the PN532's GPIO pins
@returns An 8-bit value containing the pin state where:
pinState[0] = P30
pinState[1] = P31
pinState[2] = P32
pinState[3] = P33
pinState[4] = P34
pinState[5] = P35
*/
/**************************************************************************/
uint8_t PN532::readGPIO(void) {
pn532_packetbuffer[0] = PN532_COMMAND_READGPIO;
// Send the READGPIO command (0x0C)
if (! sendCommandCheckAck(pn532_packetbuffer, 1))
return 0x0;
// Read response packet (00 FF PLEN PLENCHECKSUM D5 CMD+1(0x0D) P3 P7 IO1 DATACHECKSUM 00)
readspidata(pn532_packetbuffer, 11);
/* READGPIO response should be in the following format:
byte Description
------------- ------------------------------------------
b0..5 Frame header and preamble
b6 P3 GPIO Pins
b7 P7 GPIO Pins (not used ... taken by SPI)
b8 Interface Mode Pins (not used ... bus select pins)
b9..10 checksum */
#ifdef PN532DEBUG
Serial.print("Received: ");
PrintHex(pn532_packetbuffer, 11);
Serial.println("");
Serial.print("P3 GPIO: 0x"); Serial.println(pn532_packetbuffer[6], HEX);
Serial.print("P7 GPIO: 0x"); Serial.println(pn532_packetbuffer[7], HEX);
Serial.print("IO GPIO: 0x"); Serial.println(pn532_packetbuffer[8], HEX);
// Note: You can use the IO GPIO value to detect the serial bus being used
switch(pn532_packetbuffer[8])
{
case 0x00: // Using UART
Serial.println("Using UART (IO = 0x00)");
break;
case 0x01: // Using I2C
Serial.println("Using I2C (IO = 0x01)");
break;
case 0x02: // Using SPI
Serial.println("Using SPI (IO = 0x02)");
break;
}
#endif
return pn532_packetbuffer[6];
}
/**************************************************************************/
/*!
@brief Configures the SAM (Secure Access Module)
*/
/**************************************************************************/
boolean PN532::SAMConfig(void) {
pn532_packetbuffer[0] = PN532_SAMCONFIGURATION;
pn532_packetbuffer[0] = PN532_COMMAND_SAMCONFIGURATION;
pn532_packetbuffer[1] = 0x01; // normal mode;
pn532_packetbuffer[2] = 0x14; // timeout 50ms * 20 = 1 second
pn532_packetbuffer[3] = 0x01; // use IRQ pin!
@ -110,11 +353,23 @@ boolean PN532::SAMConfig(void) {
return (pn532_packetbuffer[5] == 0x15);
}
/***** ISO14443A Commands ******/
uint32_t PN532::readPassiveTargetID(uint8_t cardbaudrate) {
uint32_t cid;
pn532_packetbuffer[0] = PN532_INLISTPASSIVETARGET;
/**************************************************************************/
/*!
Waits for an ISO14443A target to enter the field
@param cardBaudRate Baud rate of the card
@param uid Pointer to the array that will be populated
with the card's UID (up to 7 bytes)
@param uidLength Pointer to the variable that will hold the
length of the card's UID.
@returns 1 if everything executed properly, 0 for an error
*/
/**************************************************************************/
boolean PN532::readPassiveTargetID(uint8_t cardbaudrate, uint8_t * uid, uint8_t * uidLength) {
pn532_packetbuffer[0] = PN532_COMMAND_INLISTPASSIVETARGET;
pn532_packetbuffer[1] = 1; // max 1 cards at once (we can set this to 2 later)
pn532_packetbuffer[2] = cardbaudrate;
@ -124,31 +379,444 @@ uint32_t PN532::readPassiveTargetID(uint8_t cardbaudrate) {
// read data packet
readspidata(pn532_packetbuffer, 20);
// check some basic stuff
/* ISO14443A card response should be in the following format:
Serial.print("Found "); Serial.print(pn532_packetbuffer[7], DEC); Serial.println(" tags");
byte Description
------------- ------------------------------------------
b0..6 Frame header and preamble
b7 Tags Found
b8 Tag Number (only one used in this example)
b9..10 SENS_RES
b11 SEL_RES
b12 NFCID Length
b13..NFCIDLen NFCID */
#ifdef MIFAREDEBUG
Serial.print("Found "); Serial.print(pn532_packetbuffer[7], DEC); Serial.println(" tags");
#endif
if (pn532_packetbuffer[7] != 1)
return 0;
uint16_t sens_res = pn532_packetbuffer[9];
sens_res <<= 8;
sens_res |= pn532_packetbuffer[10];
Serial.print("Sens Response: 0x"); Serial.println(sens_res, HEX);
Serial.print("Sel Response: 0x"); Serial.println(pn532_packetbuffer[11], HEX);
cid = 0;
for (uint8_t i=0; i< pn532_packetbuffer[12]; i++) {
cid <<= 8;
cid |= pn532_packetbuffer[13+i];
Serial.print(" 0x"); Serial.print(pn532_packetbuffer[13+i], HEX);
#ifdef MIFAREDEBUG
Serial.print("ATQA: 0x"); Serial.println(sens_res, HEX);
Serial.print("SAK: 0x"); Serial.println(pn532_packetbuffer[11], HEX);
#endif
/* Card appears to be Mifare Classic */
*uidLength = pn532_packetbuffer[12];
#ifdef MIFAREDEBUG
Serial.print("UID:");
#endif
for (uint8_t i=0; i < pn532_packetbuffer[12]; i++)
{
uid[i] = pn532_packetbuffer[13+i];
#ifdef MIFAREDEBUG
Serial.print(" 0x");Serial.print(uid[i], HEX);
#endif
}
Serial.println();
#ifdef MIFAREDEBUG
Serial.println();
#endif
return cid;
return 1;
}
/***** Mifare Classic Functions ******/
/**************************************************************************/
/*!
Indicates whether the specified block number is the first block
in the sector (block 0 relative to the current sector)
*/
/**************************************************************************/
bool PN532::mifareclassic_IsFirstBlock (uint32_t uiBlock)
{
// Test if we are in the small or big sectors
if (uiBlock < 128)
return ((uiBlock) % 4 == 0);
else
return ((uiBlock) % 16 == 0);
}
/**************************************************************************/
/*!
Indicates whether the specified block number is the sector trailer
*/
/**************************************************************************/
bool PN532::mifareclassic_IsTrailerBlock (uint32_t uiBlock)
{
// Test if we are in the small or big sectors
if (uiBlock < 128)
return ((uiBlock + 1) % 4 == 0);
else
return ((uiBlock + 1) % 16 == 0);
}
/**************************************************************************/
/*!
Tries to authenticate a block of memory on a MIFARE card using the
INDATAEXCHANGE command. See section 7.3.8 of the PN532 User Manual
for more information on sending MIFARE and other commands.
@param uid Pointer to a byte array containing the card UID
@param uidLen The length (in bytes) of the card's UID (Should
be 4 for MIFARE Classic)
@param blockNumber The block number to authenticate. (0..63 for
1KB cards, and 0..255 for 4KB cards).
@param keyNumber Which key type to use during authentication
(0 = MIFARE_CMD_AUTH_A, 1 = MIFARE_CMD_AUTH_B)
@param keyData Pointer to a byte array containing the 6 byte
key value
@returns 1 if everything executed properly, 0 for an error
*/
/**************************************************************************/
uint8_t PN532::mifareclassic_AuthenticateBlock (uint8_t * uid, uint8_t uidLen, uint32_t blockNumber, uint8_t keyNumber, uint8_t * keyData)
{
uint8_t len;
uint8_t i;
// Hang on to the key and uid data
memcpy (_key, keyData, 6);
memcpy (_uid, uid, uidLen);
_uidLen = uidLen;
#ifdef MIFAREDEBUG
Serial.print("Trying to authenticate card ");
PN532::PrintHex(_uid, _uidLen);
Serial.print("Using authentication KEY ");Serial.print(keyNumber ? 'B' : 'A');Serial.print(": ");
PN532::PrintHex(_key, 6);
#endif
// Prepare the authentication command //
pn532_packetbuffer[0] = PN532_COMMAND_INDATAEXCHANGE; /* Data Exchange Header */
pn532_packetbuffer[1] = 1; /* Max card numbers */
pn532_packetbuffer[2] = (keyNumber) ? MIFARE_CMD_AUTH_A : MIFARE_CMD_AUTH_B;
pn532_packetbuffer[3] = blockNumber; /* Block Number (1K = 0..63, 4K = 0..255 */
memcpy (pn532_packetbuffer+4, _key, 6);
for (i = 0; i < _uidLen; i++)
{
pn532_packetbuffer[10+i] = _uid[i]; /* 4 byte card ID */
}
if (! sendCommandCheckAck(pn532_packetbuffer, 10+_uidLen))
return 0;
// Read the response packet
readspidata(pn532_packetbuffer, 12);
// ToDo: How to check if the response is valid and we are authenticated???
// #ifdef PN532DEBUG
// Serial.println("Authentification failed%s");
// #endif
// return 0;
return 1;
}
/**************************************************************************/
/*!
Tries to read an entire 16-byte data block at the specified block
address.
@param blockNumber The block number to authenticate. (0..63 for
1KB cards, and 0..255 for 4KB cards).
@param data Pointer to the byte array that will hold the
retrieved data (if any)
@returns 1 if everything executed properly, 0 for an error
*/
/**************************************************************************/
uint8_t PN532::mifareclassic_ReadDataBlock (uint8_t blockNumber, uint8_t * data)
{
#ifdef MIFAREDEBUG
Serial.print("Trying to read 16 bytes from block ");Serial.println(blockNumber);
#endif
/* Prepare the command */
pn532_packetbuffer[0] = PN532_COMMAND_INDATAEXCHANGE;
pn532_packetbuffer[1] = 1; /* Card number */
pn532_packetbuffer[2] = MIFARE_CMD_READ; /* Mifare Read command = 0x30 */
pn532_packetbuffer[3] = blockNumber; /* Block Number (0..63 for 1K, 0..255 for 4K) */
/* Send the command */
if (! sendCommandCheckAck(pn532_packetbuffer, 4))
{
#ifdef MIFAREDEBUG
Serial.println("Failed to receive ACK for read command");
#endif
return 0;
}
/* Read the response packet */
readspidata(pn532_packetbuffer, 26);
/* If byte 8 isn't 0x00 we probably have an error */
if (pn532_packetbuffer[7] != 0x00)
{
//#ifdef MIFAREDEBUG
Serial.println("Unexpected response");
PN532::PrintHexChar(pn532_packetbuffer, 26);
//#endif
return 0;
}
/* Copy the 16 data bytes to the output buffer */
/* Block content starts at byte 9 of a valid response */
memcpy (data, pn532_packetbuffer+8, 16);
/* Display data for debug if requested */
#ifdef MIFAREDEBUG
Serial.print("Block ");
Serial.println(blockNumber);
PN532::PrintHexChar(data, 16);
#endif
return 1;
}
/**************************************************************************/
/*!
Tries to write an entire 16-byte data block at the specified block
address.
@param blockNumber The block number to authenticate. (0..63 for
1KB cards, and 0..255 for 4KB cards).
@param data The byte array that contains the data to write.
@returns 1 if everything executed properly, 0 for an error
*/
/**************************************************************************/
uint8_t PN532::mifareclassic_WriteDataBlock (uint8_t blockNumber, uint8_t * data)
{
#ifdef MIFAREDEBUG
Serial.print("Trying to write 16 bytes to block ");Serial.println(blockNumber);
#endif
/* Prepare the first command */
pn532_packetbuffer[0] = PN532_COMMAND_INDATAEXCHANGE;
pn532_packetbuffer[1] = 1; /* Card number */
pn532_packetbuffer[2] = MIFARE_CMD_WRITE; /* Mifare Write command = 0xA0 */
pn532_packetbuffer[3] = blockNumber; /* Block Number (0..63 for 1K, 0..255 for 4K) */
memcpy (pn532_packetbuffer+4, data, 16); /* Data Payload */
/* Send the command */
if (! sendCommandCheckAck(pn532_packetbuffer, 20))
{
#ifdef MIFAREDEBUG
Serial.println("Failed to receive ACK for write command");
#endif
return 0;
}
delay(10);
/* Read the response packet */
readspidata(pn532_packetbuffer, 26);
return 1;
}
/**************************************************************************/
/*!
Formats a Mifare Classic card to store NDEF Records
@returns 1 if everything executed properly, 0 for an error
*/
/**************************************************************************/
uint8_t PN532::mifareclassic_FormatNDEF (void)
{
uint8_t sectorbuffer1[16] = {0x14, 0x01, 0x03, 0xE1, 0x03, 0xE1, 0x03, 0xE1, 0x03, 0xE1, 0x03, 0xE1, 0x03, 0xE1, 0x03, 0xE1};
uint8_t sectorbuffer2[16] = {0x03, 0xE1, 0x03, 0xE1, 0x03, 0xE1, 0x03, 0xE1, 0x03, 0xE1, 0x03, 0xE1, 0x03, 0xE1, 0x03, 0xE1};
uint8_t sectorbuffer3[16] = {0xA0, 0xA1, 0xA2, 0xA3, 0xA4, 0xA5, 0x78, 0x77, 0x88, 0xC1, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
// Write block 1 and 2 to the card
if (!(mifareclassic_WriteDataBlock (1, sectorbuffer1)))
return 0;
if (!(mifareclassic_WriteDataBlock (2, sectorbuffer2)))
return 0;
// Write key A and access rights card
if (!(mifareclassic_WriteDataBlock (3, sectorbuffer3)))
return 0;
// Seems that everything was OK (?!)
return 1;
}
/**************************************************************************/
/*!
Writes an NDEF URI Record to the specified sector (1..15)
Note that this function assumes that the Mifare Classic card is
already formatted to work as an "NFC Forum Tag" and uses a MAD1
file system. You can use the NXP TagWriter app on Android to
properly format cards for this.
@param sectorNumber The sector that the URI record should be written
to (can be 1..15 for a 1K card)
@param uriIdentifier The uri identifier code (0 = none, 0x01 =
"http://www.", etc.)
@param url The uri text to write (max 38 characters).
@returns 1 if everything executed properly, 0 for an error
*/
/**************************************************************************/
uint8_t PN532::mifareclassic_WriteNDEFURI (uint8_t sectorNumber, uint8_t uriIdentifier, const char * url)
{
// Figure out how long the string is
uint8_t len = strlen(url);
// Make sure we're within a 1K limit for the sector number
if ((sectorNumber < 1) || (sectorNumber > 15))
return 0;
// Make sure the URI payload is between 1 and 38 chars
if ((len < 1) || (len > 38))
return 0;
// Setup the sector buffer (w/pre-formatted TLV wrapper and NDEF message)
uint8_t sectorbuffer1[16] = {0x00, 0x00, 0x03, len+5, 0xD1, 0x01, len+1, 0x55, uriIdentifier, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
uint8_t sectorbuffer2[16] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
uint8_t sectorbuffer3[16] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
uint8_t sectorbuffer4[16] = {0xD3, 0xF7, 0xD3, 0xF7, 0xD3, 0xF7, 0x7F, 0x07, 0x88, 0x40, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
if (len <= 6)
{
// Unlikely we'll get a url this short, but why not ...
memcpy (sectorbuffer1+9, url, len);
sectorbuffer1[len+9] = 0xFE;
}
else if (len == 7)
{
// 0xFE needs to be wrapped around to next block
memcpy (sectorbuffer1+9, url, len);
sectorbuffer2[0] = 0xFE;
}
else if ((len > 7) || (len <= 22))
{
// Url fits in two blocks
memcpy (sectorbuffer1+9, url, 7);
memcpy (sectorbuffer2, url+7, len-7);
sectorbuffer2[len-7] = 0xFE;
}
else if (len == 23)
{
// 0xFE needs to be wrapped around to final block
memcpy (sectorbuffer1+9, url, 7);
memcpy (sectorbuffer2, url+7, len-7);
sectorbuffer3[0] = 0xFE;
}
else
{
// Url fits in three blocks
memcpy (sectorbuffer1+9, url, 7);
memcpy (sectorbuffer2, url+7, 16);
memcpy (sectorbuffer3, url+23, len-24);
sectorbuffer3[len-22] = 0xFE;
}
// Now write all three blocks back to the card
if (!(mifareclassic_WriteDataBlock (sectorNumber*4, sectorbuffer1)))
return 0;
if (!(mifareclassic_WriteDataBlock ((sectorNumber*4)+1, sectorbuffer2)))
return 0;
if (!(mifareclassic_WriteDataBlock ((sectorNumber*4)+2, sectorbuffer3)))
return 0;
if (!(mifareclassic_WriteDataBlock ((sectorNumber*4)+3, sectorbuffer4)))
return 0;
// Seems that everything was OK (?!)
return 1;
}
/***** Mifare Ultralight Functions ******/
/**************************************************************************/
/*!
Tries to read an entire 4-byte page at the specified address.
@param page The page number (0..63 in most cases)
@param buffer Pointer to the byte array that will hold the
retrieved data (if any)
*/
/**************************************************************************/
uint8_t PN532::mifareultralight_ReadPage (uint8_t page, uint8_t * buffer)
{
if (page >= 64)
{
#ifdef MIFAREDEBUG
Serial.println("Page value out of range");
#endif
return 0;
}
#ifdef MIFAREDEBUG
Serial.print("Reading page ");Serial.println(page);
#endif
/* Prepare the command */
pn532_packetbuffer[0] = PN532_COMMAND_INDATAEXCHANGE;
pn532_packetbuffer[1] = 1; /* Card number */
pn532_packetbuffer[2] = MIFARE_CMD_READ; /* Mifare Read command = 0x30 */
pn532_packetbuffer[3] = page; /* Page Number (0..63 in most cases) */
/* Send the command */
if (! sendCommandCheckAck(pn532_packetbuffer, 4))
{
#ifdef MIFAREDEBUG
Serial.println("Failed to receive ACK for write command");
#endif
return 0;
}
/* Read the response packet */
readspidata(pn532_packetbuffer, 26);
#ifdef MIFAREDEBUG
Serial.println("Received: ");
PN532::PrintHexChar(pn532_packetbuffer, 26);
#endif
/* If byte 8 isn't 0x00 we probably have an error */
if (pn532_packetbuffer[7] == 0x00)
{
/* Copy the 4 data bytes to the output buffer */
/* Block content starts at byte 9 of a valid response */
/* Note that the command actually reads 16 byte or 4 */
/* pages at a time ... we simply discard the last 12 */
/* bytes */
memcpy (buffer, pn532_packetbuffer+8, 4);
}
else
{
#ifdef MIFAREDEBUG
Serial.println("Unexpected response reading block: ");
PN532::PrintHexChar(pn532_packetbuffer, 26);
#endif
return 0;
}
/* Display data for debug if requested */
#ifdef MIFAREDEBUG
Serial.print("Page ");Serial.print(page);Serial.println(":");
PN532::PrintHexChar(buffer, 4);
#endif
// Return OK signal
return 1;
}
/************** high level SPI */
/**************************************************************************/
/*!
@brief Tries to read the SPI ACK signal
*/
/**************************************************************************/
boolean PN532::spi_readack() {
uint8_t ackbuff[6];
@ -159,6 +827,11 @@ boolean PN532::spi_readack() {
/************** mid level SPI */
/**************************************************************************/
/*!
@brief Reads the SPI status register (to know if the PN532 is ready)
*/
/**************************************************************************/
uint8_t PN532::readspistatus(void) {
digitalWrite(_ss, LOW);
delay(2);
@ -170,6 +843,14 @@ uint8_t PN532::readspistatus(void) {
return x;
}
/**************************************************************************/
/*!
@brief Reads n bytes of data from the PN532 via SPI
@param buff Pointer to the buffer where data will be written
@param n Number of bytes to be read
*/
/**************************************************************************/
void PN532::readspidata(uint8_t* buff, uint8_t n) {
digitalWrite(_ss, LOW);
delay(2);
@ -194,6 +875,15 @@ void PN532::readspidata(uint8_t* buff, uint8_t n) {
digitalWrite(_ss, HIGH);
}
/**************************************************************************/
/*!
@brief Writes a command to the PN532, automatically inserting the
preamble and required frame details (checksum, len, etc.)
@param cmd Pointer to the command buffer
@param cmdlen Command length in bytes
*/
/**************************************************************************/
void PN532::spiwritecommand(uint8_t* cmd, uint8_t cmdlen) {
uint8_t checksum;
@ -247,6 +937,13 @@ void PN532::spiwritecommand(uint8_t* cmd, uint8_t cmdlen) {
}
/************** low level SPI */
/**************************************************************************/
/*!
@brief Low-level SPI write wrapper
@param c 8-bit command to write to the SPI bus
*/
/**************************************************************************/
void PN532::spiwrite(uint8_t c) {
int8_t i;
digitalWrite(_clk, HIGH);
@ -262,6 +959,13 @@ void PN532::spiwrite(uint8_t c) {
}
}
/**************************************************************************/
/*!
@brief Low-level SPI read wrapper
@returns The 8-bit value that was read from the SPI bus
*/
/**************************************************************************/
uint8_t PN532::spiread(void) {
int8_t i, x;
x = 0;

171
PN532.h
View file

@ -1,49 +1,162 @@
// PN532 library by adafruit/ladyada
// MIT license
/**************************************************************************/
/*!
@file PN532.h
@author Adafruit Industries
@license BSD (see license.txt)
@section HISTORY
#if ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
v1.1 - Added full command list
- Added 'verbose' mode flag to constructor to toggle debug output
- Changed readPassiveTargetID() to return variable length values
*/
/**************************************************************************/
#define PN532_PREAMBLE 0x00
#define PN532_STARTCODE1 0x00
#define PN532_STARTCODE2 0xFF
#define PN532_POSTAMBLE 0x00
#include <WProgram.h>
#define PN532_HOSTTOPN532 0xD4
#define PN532_PREAMBLE (0x00)
#define PN532_STARTCODE1 (0x00)
#define PN532_STARTCODE2 (0xFF)
#define PN532_POSTAMBLE (0x00)
#define PN532_FIRMWAREVERSION 0x02
#define PN532_GETGENERALSTATUS 0x04
#define PN532_SAMCONFIGURATION 0x14
#define PN532_INLISTPASSIVETARGET 0x4A
#define PN532_WAKEUP 0x55
#define PN532_HOSTTOPN532 (0xD4)
// PN532 Commands
#define PN532_COMMAND_DIAGNOSE (0x00)
#define PN532_COMMAND_GETFIRMWAREVERSION (0x02)
#define PN532_COMMAND_GETGENERALSTATUS (0x04)
#define PN532_COMMAND_READREGISTER (0x06)
#define PN532_COMMAND_WRITEREGISTER (0x08)
#define PN532_COMMAND_READGPIO (0x0C)
#define PN532_COMMAND_WRITEGPIO (0x0E)
#define PN532_COMMAND_SETSERIALBAUDRATE (0x10)
#define PN532_COMMAND_SETPARAMETERS (0x12)
#define PN532_COMMAND_SAMCONFIGURATION (0x14)
#define PN532_COMMAND_POWERDOWN (0x16)
#define PN532_COMMAND_RFCONFIGURATION (0x32)
#define PN532_COMMAND_RFREGULATIONTEST (0x58)
#define PN532_COMMAND_INJUMPFORDEP (0x56)
#define PN532_COMMAND_INJUMPFORPSL (0x46)
#define PN532_COMMAND_INLISTPASSIVETARGET (0x4A)
#define PN532_COMMAND_INATR (0x50)
#define PN532_COMMAND_INPSL (0x4E)
#define PN532_COMMAND_INDATAEXCHANGE (0x40)
#define PN532_COMMAND_INCOMMUNICATETHRU (0x42)
#define PN532_COMMAND_INDESELECT (0x44)
#define PN532_COMMAND_INRELEASE (0x52)
#define PN532_COMMAND_INSELECT (0x54)
#define PN532_COMMAND_INAUTOPOLL (0x60)
#define PN532_COMMAND_TGINITASTARGET (0x8C)
#define PN532_COMMAND_TGSETGENERALBYTES (0x92)
#define PN532_COMMAND_TGGETDATA (0x86)
#define PN532_COMMAND_TGSETDATA (0x8E)
#define PN532_COMMAND_TGSETMETADATA (0x94)
#define PN532_COMMAND_TGGETINITIATORCOMMAND (0x88)
#define PN532_COMMAND_TGRESPONSETOINITIATOR (0x90)
#define PN532_COMMAND_TGGETTARGETSTATUS (0x8A)
#define PN532_SPI_STATREAD 0x02
#define PN532_SPI_DATAWRITE 0x01
#define PN532_SPI_DATAREAD 0x03
#define PN532_SPI_READY 0x01
#define PN532_WAKEUP (0x55)
#define PN532_MIFARE_ISO14443A 0x0
#define PN532_SPI_STATREAD (0x02)
#define PN532_SPI_DATAWRITE (0x01)
#define PN532_SPI_DATAREAD (0x03)
#define PN532_SPI_READY (0x01)
#define PN532_MIFARE_ISO14443A (0x00)
// Mifare Commands
#define MIFARE_CMD_AUTH_A (0x60)
#define MIFARE_CMD_AUTH_B (0x61)
#define MIFARE_CMD_READ (0x30)
#define MIFARE_CMD_WRITE (0xA0)
#define MIFARE_CMD_TRANSFER (0xB0)
#define MIFARE_CMD_DECREMENT (0xC0)
#define MIFARE_CMD_INCREMENT (0xC1)
#define MIFARE_CMD_STORE (0xC2)
// Prefixes for NDEF Records (to identify record type)
#define NDEF_URIPREFIX_NONE (0x00)
#define NDEF_URIPREFIX_HTTP_WWWDOT (0x01)
#define NDEF_URIPREFIX_HTTPS_WWWDOT (0x02)
#define NDEF_URIPREFIX_HTTP (0x03)
#define NDEF_URIPREFIX_HTTPS (0x04)
#define NDEF_URIPREFIX_TEL (0x05)
#define NDEF_URIPREFIX_MAILTO (0x06)
#define NDEF_URIPREFIX_FTP_ANONAT (0x07)
#define NDEF_URIPREFIX_FTP_FTPDOT (0x08)
#define NDEF_URIPREFIX_FTPS (0x09)
#define NDEF_URIPREFIX_SFTP (0x0A)
#define NDEF_URIPREFIX_SMB (0x0B)
#define NDEF_URIPREFIX_NFS (0x0C)
#define NDEF_URIPREFIX_FTP (0x0D)
#define NDEF_URIPREFIX_DAV (0x0E)
#define NDEF_URIPREFIX_NEWS (0x0F)
#define NDEF_URIPREFIX_TELNET (0x10)
#define NDEF_URIPREFIX_IMAP (0x11)
#define NDEF_URIPREFIX_RTSP (0x12)
#define NDEF_URIPREFIX_URN (0x13)
#define NDEF_URIPREFIX_POP (0x14)
#define NDEF_URIPREFIX_SIP (0x15)
#define NDEF_URIPREFIX_SIPS (0x16)
#define NDEF_URIPREFIX_TFTP (0x17)
#define NDEF_URIPREFIX_BTSPP (0x18)
#define NDEF_URIPREFIX_BTL2CAP (0x19)
#define NDEF_URIPREFIX_BTGOEP (0x1A)
#define NDEF_URIPREFIX_TCPOBEX (0x1B)
#define NDEF_URIPREFIX_IRDAOBEX (0x1C)
#define NDEF_URIPREFIX_FILE (0x1D)
#define NDEF_URIPREFIX_URN_EPC_ID (0x1E)
#define NDEF_URIPREFIX_URN_EPC_TAG (0x1F)
#define NDEF_URIPREFIX_URN_EPC_PAT (0x20)
#define NDEF_URIPREFIX_URN_EPC_RAW (0x21)
#define NDEF_URIPREFIX_URN_EPC (0x22)
#define NDEF_URIPREFIX_URN_NFC (0x23)
#define PN532_GPIO_VALIDATIONBIT (0x80)
#define PN532_GPIO_P30 (0)
#define PN532_GPIO_P31 (1)
#define PN532_GPIO_P32 (2)
#define PN532_GPIO_P33 (3)
#define PN532_GPIO_P34 (4)
#define PN532_GPIO_P35 (5)
class PN532{
public:
PN532(uint8_t cs, uint8_t clk, uint8_t mosi, uint8_t miso);
void begin(void);
// Generic PN532 functions
boolean SAMConfig(void);
uint32_t getFirmwareVersion(void);
uint32_t readPassiveTargetID(uint8_t cardbaudrate);
boolean sendCommandCheckAck(uint8_t *cmd, uint8_t cmdlen, uint16_t timeout = 1000);
//
boolean sendCommandCheckAck(uint8_t *cmd, uint8_t cmdlen, uint16_t timeout = 1000);
boolean writeGPIO(uint8_t pinstate);
uint8_t readGPIO(void);
// ISO14443A functions
boolean readPassiveTargetID(uint8_t cardbaudrate, uint8_t * uid, uint8_t * uidLength);
// Mifare Classic functions
bool mifareclassic_IsFirstBlock (uint32_t uiBlock);
bool mifareclassic_IsTrailerBlock (uint32_t uiBlock);
uint8_t mifareclassic_AuthenticateBlock (uint8_t * uid, uint8_t uidLen, uint32_t blockNumber, uint8_t keyNumber, uint8_t * keyData);
uint8_t mifareclassic_ReadDataBlock (uint8_t blockNumber, uint8_t * data);
uint8_t mifareclassic_WriteDataBlock (uint8_t blockNumber, uint8_t * data);
uint8_t mifareclassic_FormatNDEF (void);
uint8_t mifareclassic_WriteNDEFURI (uint8_t sectorNumber, uint8_t uriIdentifier, const char * url);
// Mifare Ultralight functions
uint8_t mifareultralight_ReadPage (uint8_t page, uint8_t * buffer);
// Help functions to display formatted text
static void PrintHex(const byte * data, const uint32_t numBytes);
static void PrintHexChar(const byte * pbtData, const uint32_t numBytes);
private:
uint8_t _ss, _clk, _mosi, _miso;
uint8_t _uid[7]; // ISO14443A uid
uint8_t _uidLen; // uid len
uint8_t _key[6]; // Mifare Classic key
boolean spi_readack();
uint8_t readspistatus(void);

View file

@ -0,0 +1,71 @@
/**************************************************************************/
/*!
@file iso14443a_uid.pde
@author Adafruit Industries
@license BSD (see license.txt)
This example will attempt to connect to an ISO14443A
card or tag and retrieve some basic information about it
that can be used to determine what type of card it is.
Note that you need the baud rate to be 115200 because we need to print
out the data and read from the card at the same time!
*/
/**************************************************************************/
#include <PN532.h>
#define SCK (2)
#define MOSI (3)
#define SS (4)
#define MISO (5)
PN532 nfc(SCK, MISO, MOSI, SS);
void setup(void) {
Serial.begin(115200);
Serial.println("Hello!");
nfc.begin();
uint32_t versiondata = nfc.getFirmwareVersion();
if (! versiondata) {
Serial.print("Didn't find PN53x board");
while (1); // halt
}
// Got ok data, print it out!
Serial.print("Found chip PN5"); Serial.println((versiondata>>24) & 0xFF, HEX);
Serial.print("Firmware ver. "); Serial.print((versiondata>>16) & 0xFF, DEC);
Serial.print('.'); Serial.println((versiondata>>8) & 0xFF, DEC);
// configure board to read RFID tags
nfc.SAMConfig();
Serial.println("Waiting for an ISO14443A card");
}
void loop(void) {
boolean success;
uint8_t uid[] = { 0, 0, 0, 0, 0, 0, 0 }; // Buffer to store the returned UID
uint8_t uidLength; // Length of the UID (4 or 7 bytes depending on ISO14443A card type)
// Wait for an ISO14443A type cards (Mifare, etc.). When one is found
// 'uid' will be populated with the UID, and uidLength will indicate
// if the uid is 4 bytes (Mifare Classic) or 7 bytes (Mifare Ultralight)
success = nfc.readPassiveTargetID(PN532_MIFARE_ISO14443A, &uid[0], &uidLength);
if (success) {
Serial.println("Found a card!");
Serial.print("UID Length: ");Serial.print(uidLength, DEC);Serial.println(" bytes");
Serial.print("UID Value: ");
for (uint8_t i=0; i < uidLength; i++)
{
Serial.print(" 0x");Serial.print(uid[i], HEX);
}
Serial.println("");
// Wait 1 second before continuing
delay(1000);
}
}

View file

@ -0,0 +1,148 @@
/**************************************************************************/
/*!
@file mifareclassic_formatndef.pde
@author Adafruit Industries
@license BSD (see license.txt)
This example attempts to format a Mifare Classic
card for NDEF Records and writes an NDEF URI Record
Note that you need the baud rate to be 115200 because we need to print
out the data and read from the card at the same time!
*/
/**************************************************************************/
#include <PN532.h>
#define SCK (2)
#define MOSI (3)
#define SS (4)
#define MISO (5)
PN532 nfc(SCK, MISO, MOSI, SS);
const char * url = "adafruit.com";
void setup(void) {
Serial.begin(115200);
Serial.println("Looking for PN532...");
nfc.begin();
uint32_t versiondata = nfc.getFirmwareVersion();
if (! versiondata) {
Serial.print("Didn't find PN53x board");
while (1); // halt
}
// Got ok data, print it out!
Serial.print("Found chip PN5"); Serial.println((versiondata>>24) & 0xFF, HEX);
Serial.print("Firmware ver. "); Serial.print((versiondata>>16) & 0xFF, DEC);
Serial.print('.'); Serial.println((versiondata>>8) & 0xFF, DEC);
// configure board to read RFID tags
nfc.SAMConfig();
Serial.println("");
Serial.println("Place your Mifare Classic card on the reader to format with NDEF");
Serial.println("and press any key to continue ...");
// Wait for user input before proceeding
Serial.flush();
while (!Serial.available());
Serial.flush();
}
void loop(void) {
uint8_t success; // Flag to check if there was an error with the PN532
uint8_t uid[] = { 0, 0, 0, 0, 0, 0, 0 }; // Buffer to store the returned UID
uint8_t uidLength; // Length of the UID (4 or 7 bytes depending on ISO14443A card type)
bool authenticated = false; // Flag to indicate if the sector is authenticated
// Use the default key
uint8_t keya[6] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
// Wait for an ISO14443A type card (Mifare, etc.). When one is found
// 'uid' will be populated with the UID, and uidLength will indicate
// if the uid is 4 bytes (Mifare Classic) or 7 bytes (Mifare Ultralight)
success = nfc.readPassiveTargetID(PN532_MIFARE_ISO14443A, uid, &uidLength);
if (success)
{
// Display some basic information about the card
Serial.println("Found an ISO14443A card");
Serial.print(" UID Length: ");Serial.print(uidLength, DEC);Serial.println(" bytes");
Serial.print(" UID Value: ");
nfc.PrintHex(uid, uidLength);
Serial.println("");
// Make sure this is a Mifare Classic card
if (uidLength != 4)
{
Serial.println("Ooops ... this doesn't seem to be a Mifare Classic card!");
return;
}
// We probably have a Mifare Classic card ...
Serial.println("Seems to be a Mifare Classic card (4 byte UID)");
// Try to format the card for NDEF data
success = nfc.mifareclassic_AuthenticateBlock (uid, uidLength, 0, 0, keya);
if (!success)
{
Serial.println("Unable to authenticate block 0 to enable card formatting!");
return;
}
success = nfc.mifareclassic_FormatNDEF();
if (!success)
{
Serial.println("Unable to format the card for NDEF");
return;
}
Serial.println("Card has been formatted for NDEF data using MAD1");
// Try to authenticate block 4 (first block of sector 1) using our key
success = nfc.mifareclassic_AuthenticateBlock (uid, uidLength, 4, 0, keya);
// Make sure the authentification process didn't fail
if (!success)
{
Serial.println("Authentication failed.");
return;
}
// Try to write a URL
Serial.println("Writing URI to sector 1 as an NDEF Message");
// Authenticated seems to have worked
// Try to write an NDEF record to sector 1
// Use 0x01 for the URI Identifier Code to prepend "http://www."
// to the url (and save some space). For information on URI ID Codes
// see http://www.ladyada.net/wiki/private/articlestaging/nfc/ndef
if (strlen(url) > 38)
{
// The length is also checked in the WriteNDEFURI function, but lets
// warn users here just in case they change the value and it's bigger
// than it should be
Serial.println("URI is too long ... must be less than 38 characters long");
return;
}
// URI is within size limits ... write it to the card and report success/failure
success = nfc.mifareclassic_WriteNDEFURI(1, NDEF_URIPREFIX_HTTP_WWWDOT, url);
if (success)
{
Serial.println("NDEF URI Record written to sector 1");
}
else
{
Serial.println("NDEF Record creation failed! :(");
}
}
// Wait a bit before trying again
Serial.println("\n\nDone!");
Serial.flush();
while (!Serial.available());
Serial.flush();
}

View file

@ -0,0 +1,152 @@
/**************************************************************************/
/*!
@file mifareclassic_memdump.pde
@author Adafruit Industries
@license BSD (see license.txt)
This example attempts to dump the contents of a Mifare Classic 1K card
Note that you need the baud rate to be 115200 because we need to print
out the data and read from the card at the same time!
*/
/**************************************************************************/
#include <PN532.h>
#define SCK (2)
#define MOSI (3)
#define SS (4)
#define MISO (5)
PN532 nfc(SCK, MISO, MOSI, SS);
void setup(void) {
Serial.begin(115200);
Serial.println("Looking for PN532...");
nfc.begin();
uint32_t versiondata = nfc.getFirmwareVersion();
if (! versiondata) {
Serial.print("Didn't find PN53x board");
while (1); // halt
}
// Got ok data, print it out!
Serial.print("Found chip PN5"); Serial.println((versiondata>>24) & 0xFF, HEX);
Serial.print("Firmware ver. "); Serial.print((versiondata>>16) & 0xFF, DEC);
Serial.print('.'); Serial.println((versiondata>>8) & 0xFF, DEC);
// configure board to read RFID tags
nfc.SAMConfig();
Serial.println("Waiting for an ISO14443A Card ...");
}
void loop(void) {
uint8_t success; // Flag to check if there was an error with the PN532
uint8_t uid[] = { 0, 0, 0, 0, 0, 0, 0 }; // Buffer to store the returned UID
uint8_t uidLength; // Length of the UID (4 or 7 bytes depending on ISO14443A card type)
uint8_t currentblock; // Counter to keep track of which block we're on
bool authenticated = false; // Flag to indicate if the sector is authenticated
uint8_t data[16]; // Array to store block data during reads
// Use the default KEYA: FF FF FF FF FF FF
uint8_t keya[6] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
uint8_t keyb[6] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
// uint8_t keya[6] = { 0xA0, 0xA1, 0xA2, 0xA3, 0xA4, 0xA5 };
// uint8_t keyb[6] = { 0xD3, 0xF7, 0xD3, 0xF7, 0xD3, 0xF7 };
// Wait for an ISO14443A type cards (Mifare, etc.). When one is found
// 'uid' will be populated with the UID, and uidLength will indicate
// if the uid is 4 bytes (Mifare Classic) or 7 bytes (Mifare Ultralight)
success = nfc.readPassiveTargetID(PN532_MIFARE_ISO14443A, uid, &uidLength);
if (success) {
// Display some basic information about the card
Serial.println("Found an ISO14443A card");
Serial.print(" UID Length: ");Serial.print(uidLength, DEC);Serial.println(" bytes");
Serial.print(" UID Value: ");
nfc.PrintHex(uid, uidLength);
Serial.println("");
if (uidLength == 4)
{
// We probably have a Mifare Classic card ...
Serial.println("Seems to be a Mifare Classic card (4 byte UID)");
// Now we try to go through all 16 sector (each having 4 blocks)
// authenticating each sector, and then dumping the blocks
for (currentblock = 0; currentblock < 64; currentblock++)
{
// Check if this is a new block so that we can reauthenticate
if (nfc.mifareclassic_IsFirstBlock(currentblock)) authenticated = false;
// If the sector hasn't been authenticated, do so first
if (!authenticated)
{
// Starting of a new sector ... try to to authenticate
Serial.print("------------------------Sector ");Serial.print(currentblock/4, DEC);Serial.println("-------------------------");
if (currentblock == 0)
{
success = nfc.mifareclassic_AuthenticateBlock (uid, uidLength, currentblock, 0, keya);
}
else
{
success = nfc.mifareclassic_AuthenticateBlock (uid, uidLength, currentblock, 0, keyb);
}
if (success)
{
authenticated = true;
}
else
{
Serial.println("Authentication error");
}
}
// If we're still not authenticated just skip the block
if (!authenticated)
{
Serial.print("Block ");Serial.print(currentblock, DEC);Serial.println(" unable to authenticate");
}
else
{
// Authenticated ... we should be able to read the block now
// Dump the data into the 'data' array
success = nfc.mifareclassic_ReadDataBlock(currentblock, data);
if (success)
{
// Read successful
Serial.print("Block ");Serial.print(currentblock, DEC);
if (currentblock < 10)
{
Serial.print(" ");
}
else
{
Serial.print(" ");
}
// Dump the raw data
nfc.PrintHexChar(data, 16);
}
else
{
// Oops ... something happened
Serial.print("Block ");Serial.print(currentblock, DEC);
Serial.println(" unable to read this block");
}
}
}
}
else
{
Serial.println("Ooops ... this doesn't seem to be a Mifare Classic card!");
}
}
// Wait a bit before trying again
Serial.println("\n\nSend a character to run the mem dumper again!");
Serial.flush();
while (!Serial.available());
Serial.flush();
}

View file

@ -1,9 +1,33 @@
/**************************************************************************/
/*!
@file readMifare.pde
@author Adafruit Industries
@license BSD (see license.txt)
This example will wait for any ISO14443A card or tag, and
depending on the size of the UID will attempt to read from it.
If the card has a 4-byte UID it is probably a Mifare
Classic card, and the following steps are taken:
- Authenticate block 4 (the first block of Sector 1) using
the default KEYA of 0XFF 0XFF 0XFF 0XFF 0XFF 0XFF
- If authentication succeeds, we can then read any of the
4 blocks in that sector (though only block 4 is read here)
If the card has a 7-byte UID it is probably a Mifare
Ultralight card, and the 4 byte pages can be read directly.
Page 4 is read by default since this is the first 'general-
purpose' page on the tags.
*/
/**************************************************************************/
#include <PN532.h>
#define SCK 2
#define MOSI 3
#define SS 4
#define MISO 5
#define SCK (2)
#define MOSI (3)
#define SS (4)
#define MISO (5)
PN532 nfc(SCK, MISO, MOSI, SS);
@ -22,21 +46,104 @@ void setup(void) {
Serial.print("Found chip PN5"); Serial.println((versiondata>>24) & 0xFF, HEX);
Serial.print("Firmware ver. "); Serial.print((versiondata>>16) & 0xFF, DEC);
Serial.print('.'); Serial.println((versiondata>>8) & 0xFF, DEC);
Serial.print("Supports "); Serial.println(versiondata & 0xFF, HEX);
// configure board to read RFID tags
nfc.SAMConfig();
Serial.println("Waiting for an ISO14443A Card ...");
}
void loop(void) {
uint32_t id;
// look for MiFare type cards
id = nfc.readPassiveTargetID(PN532_MIFARE_ISO14443A);
uint8_t success;
uint8_t uid[] = { 0, 0, 0, 0, 0, 0, 0 }; // Buffer to store the returned UID
uint8_t uidLength; // Length of the UID (4 or 7 bytes depending on ISO14443A card type)
// Wait for an ISO14443A type cards (Mifare, etc.). When one is found
// 'uid' will be populated with the UID, and uidLength will indicate
// if the uid is 4 bytes (Mifare Classic) or 7 bytes (Mifare Ultralight)
success = nfc.readPassiveTargetID(PN532_MIFARE_ISO14443A, uid, &uidLength);
if (id != 0) {
Serial.print("Read card #"); Serial.println(id);
if (success) {
// Display some basic information about the card
Serial.println("Found an ISO14443A card");
Serial.print(" UID Length: ");Serial.print(uidLength, DEC);Serial.println(" bytes");
Serial.print(" UID Value: ");
nfc.PrintHex(uid, uidLength);
Serial.println("");
if (uidLength == 4)
{
// We probably have a Mifare Classic card ...
Serial.println("Seems to be a Mifare Classic card (4 byte UID)");
// Now we need to try to authenticate it for read/write access
// Try with the factory default KeyA: 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF
Serial.println("Trying to authenticate block 4 with default KEYA value");
uint8_t keya[6] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
// Start with block 4 (the first block of sector 1) since sector 0
// contains the manufacturer data and it's probably better just
// to leave it alone unless you know what you're doing
success = nfc.mifareclassic_AuthenticateBlock(uid, uidLength, 4, 0, keya);
if (success)
{
Serial.println("Sector 1 (Blocks 4..7) has been authenticated");
uint8_t data[16];
// If you want to write something to block 4 to test with, uncomment
// the following line and this text should be read back in a minute
// data = { 'a', 'd', 'a', 'f', 'r', 'u', 'i', 't', '.', 'c', 'o', 'm', 0, 0, 0, 0};
// success = nfc.mifareclassic_WriteDataBlock (4, data);
// Try to read the contents of block 4
success = nfc.mifareclassic_ReadDataBlock(4, data);
if (success)
{
// Data seems to have been read ... spit it out
Serial.println("Reading Block 4:");
nfc.PrintHexChar(data, 16);
Serial.println("");
// Wait a bit before reading the card again
delay(1000);
}
else
{
Serial.println("Ooops ... unable to read the requested block. Try another key?");
}
}
else
{
Serial.println("Ooops ... authentication failed: Try another key?");
}
}
if (uidLength == 7)
{
// We probably have a Mifare Ultralight card ...
Serial.println("Seems to be a Mifare Ultralight tag (7 byte UID)");
// Try to read the first general-purpose user page (#4)
Serial.println("Reading page 4");
uint8_t data[32];
success = nfc.mifareultralight_ReadPage (4, data);
if (success)
{
// Data seems to have been read ... spit it out
nfc.PrintHexChar(data, 4);
Serial.println("");
// Wait a bit before reading the card again
delay(1000);
}
else
{
Serial.println("Ooops ... unable to read the requested page!?");
}
}
}
}

View file

@ -0,0 +1,89 @@
/**************************************************************************/
/*!
@file readMifareClassic.pde
@author Adafruit Industries
@license BSD (see license.txt)
This example will wait for any ISO14443A card or tag, and
depending on the size of the UID will attempt to read from it.
If the card has a 4-byte UID it is probably a Mifare
Classic card, and the following steps are taken:
Reads the 4 byte (32 bit) ID of a MiFare Classic card.
Since the classic cards have only 32 bit identifiers you can stick
them in a single variable and use that to compare card ID's as a
number. This doesn't work for ultralight cards that have longer 7
byte IDs!
Note that you need the baud rate to be 115200 because we need to
print out the data and read from the card at the same time!
*/
/**************************************************************************/
#include <PN532.h>
#define SCK (2)
#define MOSI (3)
#define SS (4)
#define MISO (5)
PN532 nfc(SCK, MISO, MOSI, SS);
void setup(void) {
Serial.begin(115200);
Serial.println("Hello!");
nfc.begin();
uint32_t versiondata = nfc.getFirmwareVersion();
if (! versiondata) {
Serial.print("Didn't find PN53x board");
while (1); // halt
}
// Got ok data, print it out!
Serial.print("Found chip PN5"); Serial.println((versiondata>>24) & 0xFF, HEX);
Serial.print("Firmware ver. "); Serial.print((versiondata>>16) & 0xFF, DEC);
Serial.print('.'); Serial.println((versiondata>>8) & 0xFF, DEC);
// configure board to read RFID tags
nfc.SAMConfig();
Serial.println("Waiting for an ISO14443A Card ...");
}
void loop(void) {
uint8_t success;
uint8_t uid[] = { 0, 0, 0, 0, 0, 0, 0 }; // Buffer to store the returned UID
uint8_t uidLength; // Length of the UID (4 or 7 bytes depending on ISO14443A card type)
// Wait for an ISO14443A type cards (Mifare, etc.). When one is found
// 'uid' will be populated with the UID, and uidLength will indicate
// if the uid is 4 bytes (Mifare Classic) or 7 bytes (Mifare Ultralight)
success = nfc.readPassiveTargetID(PN532_MIFARE_ISO14443A, uid, &uidLength);
if (success) {
// Display some basic information about the card
Serial.println("Found an ISO14443A card");
Serial.print(" UID Length: ");Serial.print(uidLength, DEC);Serial.println(" bytes");
Serial.print(" UID Value: ");
nfc.PrintHex(uid, uidLength);
if (uidLength == 4)
{
// We probably have a Mifare Classic card ...
uint32_t cardid = uid[0];
cardid <<= 8;
cardid |= uid[1];
cardid <<= 8;
cardid |= uid[2];
cardid <<= 8;
cardid |= uid[3];
Serial.print("Seems to be a Mifare Classic card #");
Serial.println(cardid);
}
Serial.println("");
}
}

26
license.txt Normal file
View file

@ -0,0 +1,26 @@
Software License Agreement (BSD License)
Copyright (c) 2012, Adafruit Industries
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. Neither the name of the copyright holders nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.