Compare commits

..

3 commits

Author SHA1 Message Date
hathach
2e20d45a26
only add virtual to superclass function 2020-02-26 10:54:19 +07:00
hathach
87459557b2
clang format 2020-02-21 11:09:08 +07:00
hathach
0475fc7ad0
added abstract class Adafruit_AHRS_FusionInterface 2020-02-21 10:20:58 +07:00
22 changed files with 153 additions and 472 deletions

View file

@ -7,11 +7,11 @@ jobs:
runs-on: ubuntu-latest
steps:
- uses: actions/setup-python@v4
- uses: actions/setup-python@v1
with:
python-version: '3.x'
- uses: actions/checkout@v3
- uses: actions/checkout@v3
- uses: actions/checkout@v2
- uses: actions/checkout@v2
with:
repository: adafruit/ci-arduino
path: ci

2
.gitignore vendored
View file

@ -1,3 +1 @@
serialconfig.txt
.pio
html

View file

@ -2,12 +2,8 @@
Adafruit_LIS3MDL lis3mdl;
// Can change this to be LSM6DSOX or whatever ya like
// For (older) Feather Sense with LSM6DS33, use this:
#include <Adafruit_LSM6DS33.h>
Adafruit_LSM6DS33 lsm6ds;
// For (newer) Feather Sense with LSM6DS3TR-C, use this:
// #include <Adafruit_LSM6DS3TRC.h>
// Adafruit_LSM6DS3TRC lsm6ds;
bool init_sensors(void) {
if (!lsm6ds.begin_I2C() || !lis3mdl.begin_I2C()) {

View file

@ -13,7 +13,7 @@
Adafruit_Sensor *accelerometer, *gyroscope, *magnetometer;
// uncomment one combo 9-DoF!
#include "LSM6DS_LIS3MDL.h" // see the the LSM6DS_LIS3MDL file in this project to change board to LSM6DS33, LSM6DS3U, LSM6DSOX, etc
#include "LSM6DS_LIS3MDL.h" // can adjust to LSM6DS33, LSM6DS3U, LSM6DSOX...
//#include "LSM9DS.h" // LSM9DS1 or LSM9DS0
//#include "NXP_FXOS_FXAS.h" // NXP 9-DoF breakout

View file

@ -2,12 +2,8 @@
Adafruit_LIS3MDL lis3mdl;
// Can change this to be LSM6DS33 or whatever ya like
// For (older) Feather Sense with LSM6DS33, use this:
#include <Adafruit_LSM6DS33.h>
Adafruit_LSM6DS33 lsm6ds;
// For (newer) Feather Sense with LSM6DS3TR-C, use this:
// #include <Adafruit_LSM6DS3TRC.h>
// Adafruit_LSM6DS3TRC lsm6ds;
bool init_sensors(void) {
if (!lsm6ds.begin_I2C() || !lis3mdl.begin_I2C()) {

View file

@ -15,7 +15,7 @@
Adafruit_Sensor *accelerometer, *gyroscope, *magnetometer;
// uncomment one combo 9-DoF!
#include "LSM6DS_LIS3MDL.h" // see the the LSM6DS_LIS3MDL file in this project to change board to LSM6DS33, LSM6DS3U, LSM6DSOX, etc
#include "LSM6DS_LIS3MDL.h" // can adjust to LSM6DS33, LSM6DS3U, LSM6DSOX...
//#include "LSM9DS.h" // LSM9DS1 or LSM9DS0
//#include "NXP_FXOS_FXAS.h" // NXP 9-DoF breakout

View file

@ -1,13 +1,12 @@
#include <Wire.h>
#include <Adafruit_Sensor.h>
#include <Adafruit_LSM303_Accel.h>
#include <Adafruit_LSM303DLH_Mag.h>
#include <Adafruit_LSM303_U.h>
#include <Adafruit_BMP085_U.h>
#include <Adafruit_Simple_AHRS.h>
// Create sensor instances.
Adafruit_LSM303_Accel_Unified accel(30301);
Adafruit_LSM303DLH_Mag_Unified mag(30302);
Adafruit_LSM303_Mag_Unified mag(30302);
Adafruit_BMP085_Unified bmp(18001);
// Create simple AHRS algorithm using the above sensors.

View file

@ -1,12 +1,11 @@
#include <Wire.h>
#include <Adafruit_Sensor.h>
#include <Adafruit_LSM303_Accel.h>
#include <Adafruit_LSM303DLH_Mag.h>
#include <Adafruit_LSM303_U.h>
#include <Adafruit_Simple_AHRS.h>
// Create sensor instances.
Adafruit_LSM303_Accel_Unified accel(30301);
Adafruit_LSM303DLH_Mag_Unified mag(30302);
Adafruit_LSM303_Mag_Unified mag(30302);
// Create simple AHRS algorithm using the above sensors.
Adafruit_Simple_AHRS ahrs(&accel, &mag);

View file

@ -1,5 +1,5 @@
name=Adafruit AHRS
version=2.4.0
version=2.1.0
author=Adafruit
maintainer=Adafruit <info@adafruit.com>
sentence=AHRS (Altitude and Heading Reference System) for various Adafruit motion sensors
@ -7,4 +7,4 @@ paragraph=Includes motion calibration example sketches, as well as calibration o
category=Sensors
url=https://github.com/adafruit/Adafruit_AHRS
architectures=*
depends=Adafruit Unified Sensor, Adafruit LSM6DS, Adafruit LIS3MDL, Adafruit FXOS8700, Adafruit FXAS21002C, Adafruit LSM9DS1 Library, Adafruit LSM9DS0 Library, Adafruit BMP085 Unified, Adafruit BluefruitLE nRF51, SdFat - Adafruit Fork, ArduinoJson, Adafruit SPIFlash, Adafruit Sensor Calibration, Adafruit LSM303 Accel, Adafruit LSM303DLH Mag
depends=Adafruit Unified Sensor, Adafruit LSM6DS, Adafruit LIS3MDL, Adafruit FXOS8700, Adafruit FXAS21002C, Adafruit LSM9DS1 Library, Adafruit LSM9DS0 Library, Adafruit LSM303DLHC, Adafruit BMP085 Unified, Adafruit BluefruitLE nRF51, SdFat - Adafruit Fork, ArduinoJson, Adafruit SPIFlash, Adafruit Sensor Calibration

View file

@ -1,21 +1,3 @@
/*!
* @file Adafruit_AHRS
*
* @mainpage Adafruit AHRS
*
* @section intro_sec Introduction
*
* This library lets you take an accelerometer, gyroscope and magnetometer
* and combine the data to create orientation data.
*
* Options are Mahony (lowest memory/computation),
* Madgwick (fair memory/computation), and NXP fusion/Kalman (highest).
*
* While in theory these can run on an Arduino UNO/Atmega328P we really
* recommend a SAMD21 or better. Having single-instruction floating point
* multiply and plenty of RAM will help a lot!
*/
#ifndef __ADAFRUIT_AHRS_H_
#define __ADAFRUIT_AHRS_H_

View file

@ -1,8 +1,4 @@
/*!
* @file Adafruit_AHRS_FusionInterface.h
*
* @section license License
*
/*
* The MIT License (MIT)
*
* Copyright (c) 2020 Ha Thach (tinyusb.org) for Adafruit Industries
@ -29,77 +25,17 @@
#ifndef ADAFRUIT_AHRS_FUSIONINTERFACE_H_
#define ADAFRUIT_AHRS_FUSIONINTERFACE_H_
/*!
* @brief The common interface for the fusion algorithms.
*/
// Interface for Fusion Algorithm
class Adafruit_AHRS_FusionInterface {
public:
/**************************************************************************/
/*!
* @brief Initializes the sensor fusion filter.
*
* @param sampleFrequency The sensor sample rate in herz(samples per second).
*/
/**************************************************************************/
virtual void begin(float sampleFrequency) = 0;
/**************************************************************************/
/*!
* @brief Updates the filter with new gyroscope, accelerometer, and
* magnetometer data.
*
* @param gx The gyroscope x axis. In DPS.
* @param gy The gyroscope y axis. In DPS.
* @param gz The gyroscope z axis. In DPS.
* @param ax The accelerometer x axis. In g.
* @param ay The accelerometer y axis. In g.
* @param az The accelerometer z axis. In g.
* @param mx The magnetometer x axis. In uT.
* @param my The magnetometer y axis. In uT.
* @param mz The magnetometer z axis. In uT.
*/
/**************************************************************************/
virtual void update(float gx, float gy, float gz, float ax, float ay,
float az, float mx, float my, float mz) = 0;
/**************************************************************************/
/*!
* @brief Gets the current roll of the sensors.
*
* @return The current sensor roll.
*/
/**************************************************************************/
virtual float getRoll() = 0;
/**************************************************************************/
/*!
* @brief Gets the current pitch of the sensors.
*
* @return The current sensor pitch.
*/
/**************************************************************************/
virtual float getPitch() = 0;
/**************************************************************************/
/*!
* @brief Gets the current yaw of the sensors.
*
* @return The current sensor yaw.
*/
/**************************************************************************/
virtual float getYaw() = 0;
virtual void getQuaternion(float *w, float *x, float *y, float *z) = 0;
virtual void setQuaternion(float w, float x, float y, float z) = 0;
/**************************************************************************/
/*!
* @brief Gets the current gravity vector of the sensor.
*
* @param x A float pointer to write the gravity vector x component to. In g.
* @param y A float pointer to write the gravity vector y component to. In g.
* @param z A float pointer to write the gravity vector z component to. In g.
*/
virtual void getGravityVector(float *x, float *y, float *z) = 0;
};
#endif /* ADAFRUIT_AHRS_FUSIONINTERFACE_H_ */

View file

@ -34,21 +34,18 @@
//-------------------------------------------------------------------------------------------
// AHRS algorithm update
Adafruit_Madgwick::Adafruit_Madgwick() : Adafruit_Madgwick(betaDef) {}
Adafruit_Madgwick::Adafruit_Madgwick(float gain) {
beta = gain;
Adafruit_Madgwick::Adafruit_Madgwick() {
beta = betaDef;
q0 = 1.0f;
q1 = 0.0f;
q2 = 0.0f;
q3 = 0.0f;
invSampleFreq = 1.0f / sampleFreqDef;
anglesComputed = false;
anglesComputed = 0;
}
void Adafruit_Madgwick::update(float gx, float gy, float gz, float ax, float ay,
float az, float mx, float my, float mz,
float dt) {
float az, float mx, float my, float mz) {
float recipNorm;
float s0, s1, s2, s3;
float qDot1, qDot2, qDot3, qDot4;
@ -60,7 +57,7 @@ void Adafruit_Madgwick::update(float gx, float gy, float gz, float ax, float ay,
// Use IMU algorithm if magnetometer measurement invalid (avoids NaN in
// magnetometer normalisation)
if ((mx == 0.0f) && (my == 0.0f) && (mz == 0.0f)) {
updateIMU(gx, gy, gz, ax, ay, az, dt);
updateIMU(gx, gy, gz, ax, ay, az);
return;
}
@ -170,10 +167,10 @@ void Adafruit_Madgwick::update(float gx, float gy, float gz, float ax, float ay,
}
// Integrate rate of change of quaternion to yield quaternion
q0 += qDot1 * dt;
q1 += qDot2 * dt;
q2 += qDot3 * dt;
q3 += qDot4 * dt;
q0 += qDot1 * invSampleFreq;
q1 += qDot2 * invSampleFreq;
q2 += qDot3 * invSampleFreq;
q3 += qDot4 * invSampleFreq;
// Normalise quaternion
recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
@ -188,7 +185,7 @@ void Adafruit_Madgwick::update(float gx, float gy, float gz, float ax, float ay,
// IMU algorithm update
void Adafruit_Madgwick::updateIMU(float gx, float gy, float gz, float ax,
float ay, float az, float dt) {
float ay, float az) {
float recipNorm;
float s0, s1, s2, s3;
float qDot1, qDot2, qDot3, qDot4;
@ -253,10 +250,10 @@ void Adafruit_Madgwick::updateIMU(float gx, float gy, float gz, float ax,
}
// Integrate rate of change of quaternion to yield quaternion
q0 += qDot1 * dt;
q1 += qDot2 * dt;
q2 += qDot3 * dt;
q3 += qDot4 * dt;
q0 += qDot1 * invSampleFreq;
q1 += qDot2 * invSampleFreq;
q2 += qDot3 * invSampleFreq;
q3 += qDot4 * invSampleFreq;
// Normalise quaternion
recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
@ -267,29 +264,19 @@ void Adafruit_Madgwick::updateIMU(float gx, float gy, float gz, float ax,
anglesComputed = 0;
}
void Adafruit_Madgwick::update(float gx, float gy, float gz, float ax, float ay,
float az, float mx, float my, float mz) {
update(gx, gy, gz, ax, ay, az, mx, my, mz, invSampleFreq);
}
void Adafruit_Madgwick::updateIMU(float gx, float gy, float gz, float ax,
float ay, float az) {
updateIMU(gx, gy, gz, ax, ay, az, invSampleFreq);
};
//-------------------------------------------------------------------------------------------
// Fast inverse square-root
// See: http://en.wikipedia.org/wiki/Fast_inverse_square_root
float Adafruit_Madgwick::invSqrt(float x) {
float halfx = 0.5f * x;
union {
float f;
long i;
} conv = {x};
conv.i = 0x5f3759df - (conv.i >> 1);
conv.f *= 1.5f - (halfx * conv.f * conv.f);
conv.f *= 1.5f - (halfx * conv.f * conv.f);
return conv.f;
float y = x;
long i = *(long *)&y;
i = 0x5f3759df - (i >> 1);
y = *(float *)&i;
y = y * (1.5f - (halfx * y * y));
y = y * (1.5f - (halfx * y * y));
return y;
}
//-------------------------------------------------------------------------------------------
@ -298,8 +285,5 @@ void Adafruit_Madgwick::computeAngles() {
roll = atan2f(q0 * q1 + q2 * q3, 0.5f - q1 * q1 - q2 * q2);
pitch = asinf(-2.0f * (q1 * q3 - q0 * q2));
yaw = atan2f(q1 * q2 + q0 * q3, 0.5f - q2 * q2 - q3 * q3);
grav[0] = 2.0f * (q1 * q3 - q0 * q2);
grav[1] = 2.0f * (q0 * q1 + q2 * q3);
grav[2] = 2.0f * (q0 * q0 - 0.5f + q3 * q3);
anglesComputed = 1;
}

View file

@ -31,30 +31,24 @@ private:
float q2;
float q3; // quaternion of sensor frame relative to auxiliary frame
float invSampleFreq;
float roll, pitch, yaw;
float grav[3];
bool anglesComputed = false;
float roll;
float pitch;
float yaw;
char anglesComputed;
void computeAngles();
//-------------------------------------------------------------------------------------------
// Function declarations
public:
Adafruit_Madgwick();
Adafruit_Madgwick(float gain);
Adafruit_Madgwick(void);
void begin(float sampleFrequency) { invSampleFreq = 1.0f / sampleFrequency; }
void update(float gx, float gy, float gz, float ax, float ay, float az,
float mx, float my, float mz);
void updateIMU(float gx, float gy, float gz, float ax, float ay, float az);
void update(float gx, float gy, float gz, float ax, float ay, float az,
float mx, float my, float mz, float dt);
void updateIMU(float gx, float gy, float gz, float ax, float ay, float az,
float dt);
// float getPitch(){return atan2f(2.0f * q2 * q3 - 2.0f * q0 * q1, 2.0f * q0 *
// q0 + 2.0f * q3 * q3 - 1.0f);}; float getRoll(){return -1.0f * asinf(2.0f *
// q1 * q3 + 2.0f * q0 * q2);}; float getYaw(){return atan2f(2.0f * q1 * q2
// - 2.0f * q0 * q3, 2.0f * q0 * q0 + 2.0f * q1 * q1 - 1.0f);};
float getBeta() { return beta; }
void setBeta(float beta) { this->beta = beta; }
float getRoll() {
if (!anglesComputed)
computeAngles();
@ -91,18 +85,5 @@ public:
*y = q2;
*z = q3;
}
void setQuaternion(float w, float x, float y, float z) {
q0 = w;
q1 = x;
q2 = y;
q3 = z;
}
void getGravityVector(float *x, float *y, float *z) {
if (!anglesComputed)
computeAngles();
*x = grav[0];
*y = grav[1];
*z = grav[2];
}
};
#endif

View file

@ -37,11 +37,9 @@
//-------------------------------------------------------------------------------------------
// AHRS algorithm update
Adafruit_Mahony::Adafruit_Mahony() : Adafruit_Mahony(twoKpDef, twoKiDef) {}
Adafruit_Mahony::Adafruit_Mahony(float prop_gain, float int_gain) {
twoKp = prop_gain; // 2 * proportional gain (Kp)
twoKi = int_gain; // 2 * integral gain (Ki)
Adafruit_Mahony::Adafruit_Mahony() {
twoKp = twoKpDef; // 2 * proportional gain (Kp)
twoKi = twoKiDef; // 2 * integral gain (Ki)
q0 = 1.0f;
q1 = 0.0f;
q2 = 0.0f;
@ -49,12 +47,12 @@ Adafruit_Mahony::Adafruit_Mahony(float prop_gain, float int_gain) {
integralFBx = 0.0f;
integralFBy = 0.0f;
integralFBz = 0.0f;
anglesComputed = false;
anglesComputed = 0;
invSampleFreq = 1.0f / DEFAULT_SAMPLE_FREQ;
}
void Adafruit_Mahony::update(float gx, float gy, float gz, float ax, float ay,
float az, float mx, float my, float mz, float dt) {
float az, float mx, float my, float mz) {
float recipNorm;
float q0q0, q0q1, q0q2, q0q3, q1q1, q1q2, q1q3, q2q2, q2q3, q3q3;
float hx, hy, bx, bz;
@ -128,9 +126,9 @@ void Adafruit_Mahony::update(float gx, float gy, float gz, float ax, float ay,
// Compute and apply integral feedback if enabled
if (twoKi > 0.0f) {
// integral error scaled by Ki
integralFBx += twoKi * halfex * dt;
integralFBy += twoKi * halfey * dt;
integralFBz += twoKi * halfez * dt;
integralFBx += twoKi * halfex * invSampleFreq;
integralFBy += twoKi * halfey * invSampleFreq;
integralFBz += twoKi * halfez * invSampleFreq;
gx += integralFBx; // apply integral feedback
gy += integralFBy;
gz += integralFBz;
@ -147,9 +145,9 @@ void Adafruit_Mahony::update(float gx, float gy, float gz, float ax, float ay,
}
// Integrate rate of change of quaternion
gx *= (0.5f * dt); // pre-multiply common factors
gy *= (0.5f * dt);
gz *= (0.5f * dt);
gx *= (0.5f * invSampleFreq); // pre-multiply common factors
gy *= (0.5f * invSampleFreq);
gz *= (0.5f * invSampleFreq);
qa = q0;
qb = q1;
qc = q2;
@ -171,7 +169,7 @@ void Adafruit_Mahony::update(float gx, float gy, float gz, float ax, float ay,
// IMU algorithm update
void Adafruit_Mahony::updateIMU(float gx, float gy, float gz, float ax,
float ay, float az, float dt) {
float ay, float az) {
float recipNorm;
float halfvx, halfvy, halfvz;
float halfex, halfey, halfez;
@ -206,9 +204,9 @@ void Adafruit_Mahony::updateIMU(float gx, float gy, float gz, float ax,
// Compute and apply integral feedback if enabled
if (twoKi > 0.0f) {
// integral error scaled by Ki
integralFBx += twoKi * halfex * dt;
integralFBy += twoKi * halfey * dt;
integralFBz += twoKi * halfez * dt;
integralFBx += twoKi * halfex * invSampleFreq;
integralFBy += twoKi * halfey * invSampleFreq;
integralFBz += twoKi * halfez * invSampleFreq;
gx += integralFBx; // apply integral feedback
gy += integralFBy;
gz += integralFBz;
@ -225,9 +223,9 @@ void Adafruit_Mahony::updateIMU(float gx, float gy, float gz, float ax,
}
// Integrate rate of change of quaternion
gx *= (0.5f * dt); // pre-multiply common factors
gy *= (0.5f * dt);
gz *= (0.5f * dt);
gx *= (0.5f * invSampleFreq); // pre-multiply common factors
gy *= (0.5f * invSampleFreq);
gz *= (0.5f * invSampleFreq);
qa = q0;
qb = q1;
qc = q2;
@ -245,30 +243,19 @@ void Adafruit_Mahony::updateIMU(float gx, float gy, float gz, float ax,
anglesComputed = 0;
}
void Adafruit_Mahony::update(float gx, float gy, float gz, float ax, float ay,
float az, float mx, float my, float mz) {
update(gx, gy, gz, ax, ay, az, mx, my, mz, invSampleFreq);
}
void Adafruit_Mahony::updateIMU(float gx, float gy, float gz, float ax,
float ay, float az) {
updateIMU(gx, gy, gz, ax, ay, az, invSampleFreq);
};
//-------------------------------------------------------------------------------------------
// Fast inverse square-root
// See: http://en.wikipedia.org/wiki/Fast_inverse_square_root
float Adafruit_Mahony::invSqrt(float x) {
float halfx = 0.5f * x;
union {
float f;
long i;
} conv = {x};
conv.i = 0x5f3759df - (conv.i >> 1);
conv.f *= 1.5f - (halfx * conv.f * conv.f);
conv.f *= 1.5f - (halfx * conv.f * conv.f);
return conv.f;
float y = x;
long i = *(long *)&y;
i = 0x5f3759df - (i >> 1);
y = *(float *)&i;
y = y * (1.5f - (halfx * y * y));
y = y * (1.5f - (halfx * y * y));
return y;
}
//-------------------------------------------------------------------------------------------
@ -277,9 +264,6 @@ void Adafruit_Mahony::computeAngles() {
roll = atan2f(q0 * q1 + q2 * q3, 0.5f - q1 * q1 - q2 * q2);
pitch = asinf(-2.0f * (q1 * q3 - q0 * q2));
yaw = atan2f(q1 * q2 + q0 * q3, 0.5f - q2 * q2 - q3 * q3);
grav[0] = 2.0f * (q1 * q3 - q0 * q2);
grav[1] = 2.0f * (q0 * q1 + q2 * q3);
grav[2] = 2.0f * (q0 * q0 - 0.5f + q3 * q3);
anglesComputed = 1;
}

View file

@ -29,8 +29,7 @@ private:
integralFBz; // integral error terms scaled by Ki
float invSampleFreq;
float roll, pitch, yaw;
float grav[3];
bool anglesComputed = false;
char anglesComputed;
static float invSqrt(float x);
void computeAngles();
@ -39,19 +38,10 @@ private:
public:
Adafruit_Mahony();
Adafruit_Mahony(float prop_gain, float int_gain);
void begin(float sampleFrequency) { invSampleFreq = 1.0f / sampleFrequency; }
void update(float gx, float gy, float gz, float ax, float ay, float az,
float mx, float my, float mz);
void updateIMU(float gx, float gy, float gz, float ax, float ay, float az);
void update(float gx, float gy, float gz, float ax, float ay, float az,
float mx, float my, float mz, float dt);
void updateIMU(float gx, float gy, float gz, float ax, float ay, float az,
float dt);
float getKp() { return twoKp / 2.0f; }
void setKp(float Kp) { twoKp = 2.0f * Kp; }
float getKi() { return twoKi / 2.0f; }
void setKi(float Ki) { twoKi = 2.0f * Ki; }
float getRoll() {
if (!anglesComputed)
computeAngles();
@ -88,19 +78,6 @@ public:
*y = q2;
*z = q3;
}
void setQuaternion(float w, float x, float y, float z) {
q0 = w;
q1 = x;
q2 = y;
q3 = z;
}
void getGravityVector(float *x, float *y, float *z) {
if (!anglesComputed)
computeAngles();
*x = grav[0];
*y = grav[1];
*z = grav[2];
}
};
#endif

View file

@ -1,39 +1,34 @@
/*!
* @file Adafruit_AHRS_NXPFusion.cpp
*
* @section license License
*
* Copyright (c) 2014, Freescale Semiconductor, Inc.
* All rights reserved.
* vim: set ts=4:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Freescale Semiconductor, Inc. nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL FREESCALE SEMICONDUCTOR, INC. BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* This is the file that contains the fusion routines. It is STRONGLY
* RECOMMENDED that the casual developer NOT TOUCH THIS FILE. The mathematics
* behind this file is extremely complex, and it will be very easy (almost
* inevitable) that you screw it up.
*/
// Copyright (c) 2014, Freescale Semiconductor, Inc.
// All rights reserved.
// vim: set ts=4:
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of Freescale Semiconductor, Inc. nor the
// names of its contributors may be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL FREESCALE SEMICONDUCTOR, INC. BE LIABLE FOR
// ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// This is the file that contains the fusion routines. It is STRONGLY
// RECOMMENDED that the casual developer NOT TOUCH THIS FILE. The mathematics
// behind this file is extremely complex, and it will be very easy (almost
// inevitable) that you screw it up.
//
#include "Adafruit_AHRS_NXPFusion.h"
@ -116,12 +111,8 @@ void fmatrixAeqInvA(float *A[], int8_t iColInd[], int8_t iRowInd[],
void fmatrixAeqRenormRotA(float A[][3]);
}
/**************************************************************************/
/*!
* @brief Initializes the 9DOF Kalman filter.
*/
/**************************************************************************/
void Adafruit_NXPSensorFusion::begin(float sampleFrequency) {
// initialize the 9DOF Kalman filter
void Adafruit_NXPSensorFusion::begin(float sampleRate) {
int8_t i, j;
// reset the flag denoting that a first 9DOF orientation lock has been
@ -130,7 +121,7 @@ void Adafruit_NXPSensorFusion::begin(float sampleFrequency) {
// compute and store useful product terms to save floating point calculations
// later
Fastdeltat = 1.0f / sampleFrequency;
Fastdeltat = 1.0f / sampleRate;
deltat = Fastdeltat;
deltatsq = deltat * deltat;
casq = FCA_9DOF_GBY_KALMAN * FCA_9DOF_GBY_KALMAN;
@ -195,12 +186,11 @@ void Adafruit_NXPSensorFusion::begin(float sampleFrequency) {
resetflag = 0;
}
/**************************************************************************/
/*!
* @brief Updates the filter with new gyroscope, accelerometer, and magnetometer
* data.
*/
/**************************************************************************/
// 9DOF orientation function implemented using a 12 element Kalman filter
// void fRun_9DOF_GBY_KALMAN(SV_9DOF_GBY_KALMAN_t *SV,
// const AccelSensor_t *Accel, const MagSensor_t *Mag, const GyroSensor_t *Gyro,
// const MagCalibration_t *MagCal)
void Adafruit_NXPSensorFusion::update(float gx, float gy, float gz, float ax,
float ay, float az, float mx, float my,
float mz) {
@ -248,7 +238,7 @@ void Adafruit_NXPSensorFusion::update(float gx, float gy, float gz, float ax,
// initial orientation lock to accelerometer and magnetometer eCompass
// orientation
// *********************************************************************************
if (fabsf(mx) <= 50.0f && fabsf(my) <= 50.0f && fabsf(mz) <= 50.0f) {
if (fabsf(mx) >= 20.0f && fabsf(mx) >= 20.0f && fabsf(mx) >= 20.0f) {
ValidMagCal = 1;
} else {
ValidMagCal = 0;
@ -312,7 +302,7 @@ void Adafruit_NXPSensorFusion::update(float gx, float gy, float gz, float ax,
// (with magnitude 1g) NED gravity is along positive z axis
gSeGyMi[i] = RMi[i][Z];
// compute the a priori acceleration (a-) (g, sensor frame) from decayed a
// compute a priori acceleration (a-) (g, sensor frame) from decayed a
// posteriori estimate (g, sensor frame)
aSeMi[i] = FCA_9DOF_GBY_KALMAN * aSePl[i];

View file

@ -1,81 +1,40 @@
/*!
* @file Adafruit_AHRS_NXPFusion.h
*
* @section license License
*
* This is a modification of
* https://github.com/memsindustrygroup/Open-Source-Sensor-Fusion/blob/master/Sources/tasks.h
* by PJRC / Paul Stoffregen https://github.com/PaulStoffregen/NXPMotionSense
*
* Copyright (c) 2014, Freescale Semiconductor, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Freescale Semiconductor, Inc. nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL FREESCALE SEMICONDUCTOR, INC. BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __Adafruit_Nxp_Fusion_h_
#define __Adafruit_Nxp_Fusion_h_
#include "Adafruit_AHRS_FusionInterface.h"
#include <Arduino.h>
/*!
* @brief Kalman/NXP Fusion algorithm.
*/
// This is a modification of
// https://github.com/memsindustrygroup/Open-Source-Sensor-Fusion/blob/master/Sources/tasks.h
// by PJRC / Paul Stoffregen https://github.com/PaulStoffregen/NXPMotionSense
// Copyright (c) 2014, Freescale Semiconductor, Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of Freescale Semiconductor, Inc. nor the
// names of its contributors may be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL FREESCALE SEMICONDUCTOR, INC. BE LIABLE FOR
// ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// changed class name to avoid collision
class Adafruit_NXPSensorFusion : public Adafruit_AHRS_FusionInterface {
public:
/**************************************************************************/
/*!
* @brief Initializes the 9DOF Kalman filter.
*
* @param sampleFrequency The sensor sample rate in herz(samples per second).
*/
/**************************************************************************/
void begin(float sampleFrequency = 100.0f);
/**************************************************************************/
/*!
* @brief Updates the filter with new gyroscope, accelerometer, and
* magnetometer data. For roll, pitch, and yaw the accelerometer values can be
* either m/s^2 or g, but for linear acceleration they have to be in g.
*
* 9DOF orientation function implemented using a 12 element Kalman filter
*
* void fRun_9DOF_GBY_KALMAN(SV_9DOF_GBY_KALMAN_t *SV,
* const AccelSensor_t *Accel, const MagSensor_t *Mag,
* const GyroSensor_t *Gyro, const MagCalibration_t *MagCal)
*
* @param gx The gyroscope x axis. In DPS.
* @param gy The gyroscope y axis. In DPS.
* @param gz The gyroscope z axis. In DPS.
* @param ax The accelerometer x axis. In g.
* @param ay The accelerometer y axis. In g.
* @param az The accelerometer z axis. In g.
* @param mx The magnetometer x axis. In uT.
* @param my The magnetometer y axis. In uT.
* @param mz The magnetometer z axis. In uT.
*/
/**************************************************************************/
void begin(float sampleRate = 100.0f);
void update(float gx, float gy, float gz, float ax, float ay, float az,
float mx, float my, float mz);
@ -90,58 +49,6 @@ public:
*z = qPl.q3;
}
void setQuaternion(float w, float x, float y, float z) {
qPl.q0 = w;
qPl.q1 = x;
qPl.q2 = y;
qPl.q3 = z;
}
/**************************************************************************/
/*!
* @brief Get the linear acceleration part of the acceleration value given to
* update.
*
* @param x The pointer to write the linear acceleration x axis to. In g.
* @param y The pointer to write the linear acceleration y axis to. In g.
* @param z The pointer to write the linear acceleration z axis to. In g.
*/
/**************************************************************************/
void getLinearAcceleration(float *x, float *y, float *z) const {
*x = aSePl[0];
*y = aSePl[1];
*z = aSePl[2];
}
/**************************************************************************/
/*!
* @brief Get the gravity vector from the gyroscope values.
*
* @param x A float pointer to write the gravity vector x component to. In g.
* @param y A float pointer to write the gravity vector y component to. In g.
* @param z A float pointer to write the gravity vector z component to. In g.
*/
/**************************************************************************/
void getGravityVector(float *x, float *y, float *z) {
*x = gSeGyMi[0];
*y = gSeGyMi[1];
*z = gSeGyMi[2];
}
/**************************************************************************/
/*!
* @brief Get the geomagnetic vector in global frame.
*
* @param x The pointer to write the geomagnetic vector x axis to. In uT.
* @param y The pointer to write the geomagnetic vector y axis to. In uT.
* @param z The pointer to write the geomagnetic vector z axis to. In uT.
*/
/**************************************************************************/
void getGeomagneticVector(float *x, float *y, float *z) const {
*x = mGl[0];
*y = mGl[1];
*z = mGl[2];
}
typedef struct {
float q0; // w
float q1; // x
@ -213,5 +120,3 @@ private:
FirstOrientationLock; // denotes that 9DOF orientation has locked to 6DOF
int8_t resetflag; // flag to request re-initialization on next pass
};
#endif

View file

@ -1,32 +1,16 @@
/*!
* @file Adafruit_Simple_AHRS.cpp
*/
#include "Adafruit_Simple_AHRS.h"
/**************************************************************************/
/*!
* @brief Create a simple AHRS from a device with multiple sensors.
*/
/**************************************************************************/
// Create a simple AHRS from an explicit accelerometer and magnetometer sensor.
Adafruit_Simple_AHRS::Adafruit_Simple_AHRS(Adafruit_Sensor *accelerometer,
Adafruit_Sensor *magnetometer)
: _accel(accelerometer), _mag(magnetometer) {}
/**************************************************************************/
/*!
* @brief Create a simple AHRS from a device with multiple sensors.
*/
/**************************************************************************/
// Create a simple AHRS from a device with multiple sensors.
Adafruit_Simple_AHRS::Adafruit_Simple_AHRS(Adafruit_Sensor_Set &sensors)
: _accel(sensors.getSensor(SENSOR_TYPE_ACCELEROMETER)),
_mag(sensors.getSensor(SENSOR_TYPE_MAGNETIC_FIELD)) {}
/**************************************************************************/
/*!
* @brief Compute orientation based on accelerometer and magnetometer data.
*/
/**************************************************************************/
// Compute orientation based on accelerometer and magnetometer data.
bool Adafruit_Simple_AHRS::getOrientation(sensors_vec_t *orientation) {
// Validate input and available sensors.
if (orientation == NULL || _accel == NULL || _mag == NULL)

View file

@ -1,45 +1,15 @@
/*!
* @file Adafruit_Simple_AHRS.cpp
*/
#ifndef __ADAFRUIT_SIMPLE_AHRS_H__
#define __ADAFRUIT_SIMPLE_AHRS_H__
#include "Adafruit_Sensor_Set.h"
#include <Adafruit_Sensor.h>
/*!
* @brief Simple sensor fusion AHRS using an accelerometer and magnetometer.
*/
// Simple sensor fusion AHRS using an accelerometer and magnetometer.
class Adafruit_Simple_AHRS {
public:
/**************************************************************************/
/*!
* @brief Create a simple AHRS from a device with multiple sensors.
*
* @param accelerometer The accelerometer to use for this sensor fusion.
* @param magnetometer The magnetometer to use for this sensor fusion.
*/
/**************************************************************************/
Adafruit_Simple_AHRS(Adafruit_Sensor *accelerometer,
Adafruit_Sensor *magnetometer);
/**************************************************************************/
/*!
* @brief Create a simple AHRS from a device with multiple sensors.
*
* @param sensors A set of sensors containing the accelerometer and
* magnetometer for this sensor fusion.
*/
/**************************************************************************/
Adafruit_Simple_AHRS(Adafruit_Sensor_Set &sensors);
/**************************************************************************/
/*!
* @brief Compute orientation based on accelerometer and magnetometer data.
*
* @return Whether the orientation was computed.
*/
/**************************************************************************/
bool getOrientation(sensors_vec_t *orientation);
private: