# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries # SPDX-License-Identifier: MIT # Simple GPS module demonstration. # Will print NMEA sentences received from the GPS, great for testing connection # Uses the GPS to send some commands, then reads directly from the GPS import time import board import busio import adafruit_gps # Create a serial connection for the GPS connection using default speed and # a slightly higher timeout (GPS modules typically update once a second). # These are the defaults you should use for the GPS FeatherWing. # For other boards set RX = GPS module TX, and TX = GPS module RX pins. uart = busio.UART(board.TX, board.RX, baudrate=9600, timeout=10) # for a computer, use the pyserial library for uart access # import serial # uart = serial.Serial("/dev/ttyUSB0", baudrate=9600, timeout=10) # If using I2C, we'll create an I2C interface to talk to using default pins # i2c = board.I2C() # uses board.SCL and board.SDA # i2c = board.STEMMA_I2C() # For using the built-in STEMMA QT connector on a microcontroller # Create a GPS module instance. gps = adafruit_gps.GPS(uart) # Use UART/pyserial # gps = adafruit_gps.GPS_GtopI2C(i2c) # Use I2C interface # Initialize the GPS module by changing what data it sends and at what rate. # These are NMEA extensions for PMTK_314_SET_NMEA_OUTPUT and # PMTK_220_SET_NMEA_UPDATERATE but you can send anything from here to adjust # the GPS module behavior: # https://cdn-shop.adafruit.com/datasheets/PMTK_A11.pdf # Turn on the basic GGA and RMC info (what you typically want) gps.send_command(b"PMTK314,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0") # Turn on just minimum info (RMC only, location): # gps.send_command(b'PMTK314,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0') # Turn off everything: # gps.send_command(b'PMTK314,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0') # Tuen on everything (not all of it is parsed!) # gps.send_command(b'PMTK314,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0') # Set update rate to once a second (1hz) which is what you typically want. gps.send_command(b"PMTK220,1000") # Or decrease to once every two seconds by doubling the millisecond value. # Be sure to also increase your UART timeout above! # gps.send_command(b'PMTK220,2000') # You can also speed up the rate, but don't go too fast or else you can lose # data during parsing. This would be twice a second (2hz, 500ms delay): # gps.send_command(b'PMTK220,500') # Main loop runs forever printing data as it comes in timestamp = time.monotonic() while True: data = gps.read(32) # read up to 32 bytes # print(data) # this is a bytearray type if data is not None: # convert bytearray to string data_string = "".join([chr(b) for b in data]) print(data_string, end="") if time.monotonic() - timestamp > 5: # every 5 seconds... gps.send_command(b"PMTK605") # request firmware version timestamp = time.monotonic()