Adafruit_CircuitPython_turtle/adafruit_turtle.py
2019-06-17 22:41:53 -04:00

267 lines
8.2 KiB
Python

# Based on turtle.py, a Tkinter based turtle graphics module for Python
# Version 1.1b - 4. 5. 2009
# Copyright (C) 2006 - 2010 Gregor Lingl
# email: glingl@aon.at
#
# This software is provided 'as-is', without any express or implied
# warranty. In no event will the authors be held liable for any damages
# arising from the use of this software.
#
# Permission is granted to anyone to use this software for any purpose,
# including commercial applications, and to alter it and redistribute it
# freely, subject to the following restrictions:
#
# 1. The origin of this software must not be misrepresented; you must not
# claim that you wrote the original software. If you use this software
# in a product, an acknowledgment in the product documentation would be
# appreciated but is not required.
# 2. Altered source versions must be plainly marked as such, and must not be
# misrepresented as being the original software.
# 3. This notice may not be removed or altered from any source distribution.
import displayio
import board
import gc
import math
import time
class Color:
WHITE = 0xFFFFFF
BLACK = 0x0000
RED = 0xFF0000
GREEN = 0x00FF00
BLUE = 0x0000FF
colors = (WHITE, BLACK, RED, GREEN, BLUE)
class Vec2D(tuple):
"""A 2 dimensional vector class, used as a helper class
for implementing turtle graphics.
May be useful for turtle graphics programs also.
Derived from tuple, so a vector is a tuple!
Provides (for a, b vectors, k number):
a+b vector addition
a-b vector subtraction
a*b inner product
k*a and a*k multiplication with scalar
|a| absolute value of a
a.rotate(angle) rotation
"""
def __init__(cls, x, y):
super().__init__((x, y))
def __add__(self, other):
return Vec2D(self[0]+other[0], self[1]+other[1])
def __mul__(self, other):
if isinstance(other, Vec2D):
return self[0]*other[0]+self[1]*other[1]
return Vec2D(self[0]*other, self[1]*other)
def __rmul__(self, other):
if isinstance(other, int) or isinstance(other, float):
return Vec2D(self[0]*other, self[1]*other)
def __sub__(self, other):
return Vec2D(self[0]-other[0], self[1]-other[1])
def __neg__(self):
return Vec2D(-self[0], -self[1])
def __abs__(self):
return (self[0]**2 + self[1]**2)**0.5
def rotate(self, angle):
"""rotate self counterclockwise by angle
"""
perp = Vec2D(-self[1], self[0])
angle = angle * math.pi / 180.0
c, s = math.cos(angle), math.sin(angle)
return Vec2D(self[0]*c+perp[0]*s, self[1]*c+perp[1]*s)
def __getnewargs__(self):
return (self[0], self[1])
def __repr__(self):
return "(%.2f,%.2f)" % self
class turtle:
def __init__(self, display=board.DISPLAY):
self._display = display
self._w = self._display.width
self._h = self._display.height
self._x = self._w//2
self._y = self._h//2
self._speed = 6
self._heading = 90
self._logomode = False
self._splash = displayio.Group(max_size=3)
self._bg_bitmap = displayio.Bitmap(self._w, self._h, 1)
self._bg_palette = displayio.Palette(1)
self._bg_palette[0] = Color.BLACK
self._bg_sprite = displayio.TileGrid(self._bg_bitmap,
pixel_shader=self._bg_palette,
x=0, y=0)
self._splash.append(self._bg_sprite)
self._fg_bitmap = displayio.Bitmap(self._w, self._h, 5)
self._fg_palette = displayio.Palette(len(Color.colors)+1)
self._fg_palette.make_transparent(0)
for i,c in enumerate(Color.colors):
self._fg_palette[i+1] = c
self._fg_sprite = displayio.TileGrid(self._fg_bitmap,
pixel_shader=self._fg_palette,
x=0, y=0)
self._splash.append(self._fg_sprite)
self._turtle_bitmap = displayio.Bitmap(9, 9, 2)
self._turtle_palette = displayio.Palette(2)
self._turtle_palette.make_transparent(0)
self._turtle_palette[1] = Color.WHITE
for i in range(4):
self._turtle_bitmap[4-i, i] = 1
self._turtle_bitmap[i, 4+i] = 1
self._turtle_bitmap[4+i, 7-i] = 1
self._turtle_bitmap[4+i, i] = 1
self._turtle_sprite = displayio.TileGrid(self._turtle_bitmap,
pixel_shader=self._turtle_palette,
x=-100, y=-100)
self._drawturtle()
self._splash.append(self._turtle_sprite)
self._penstate = False
self._pencolor = None
self.pencolor(Color.WHITE)
self._display.show(self._splash)
self._display.refresh_soon()
gc.collect()
self._display.wait_for_frame()
def _drawturtle(self):
self._turtle_sprite.x = self._x - 4
self._turtle_sprite.y = self._y - 4
#print("pos (%d, %d)" % (self._x, self._y))
# Turtle motion
def forward(self, distance):
p = self.pos()
x1 = p[0] + math.sin(math.radians(self._heading))*distance
y1 = p[1] + math.cos(math.radians(self._heading))*distance
self.goto(x1, y1)
def backward(self, distance):
self.forward(-distance)
def goto(self, x1, y1):
x1 += self._w//2
y1 = self._h//2 - y1
x0 = self._x
y0 = self._y
print("* GoTo from", x0, y0, "to", x1, y1)
if not self.isdown():
self._x = x1 # woot, we just skip ahead
self._y = y1
self._drawturtle()
return
steep = abs(y1 - y0) > abs(x1 - x0)
rev = False
dx = x1 - x0
if steep:
x0, y0 = y0, x0
x1, y1 = y1, x1
dx = x1 - x0
if x0 > x1:
rev = True
dx = x0 - x1
dy = abs(y1 - y0)
err = dx / 2
ystep = -1
if y0 < y1:
ystep = 1
while (not rev and x0 <= x1) or (rev and x1 <= x0):
if steep:
self._fg_bitmap[y0, x0] = self._pencolor
self._x = y0
self._y = x0
self._drawturtle()
time.sleep(0.003)
else:
self._fg_bitmap[x0, y0] = self._pencolor
self._x = x0
self._y = y0
self._drawturtle()
time.sleep(0.003)
err -= dy
if err < 0:
y0 += ystep
err += dx
if rev:
x0 -= 1
else:
x0 += 1
def mode(self, mode=None):
if mode == "standard":
self._logomode = False
elif mode == "logo":
self._logomode = True
elif mode is None:
if self._logomode:
return "logo"
else:
return "standard"
else:
raise RuntimeError("Mode must be 'logo' or 'standard!'")
def _turn(self, angle):
if self._logomode:
self._heading -= angle
else:
self._heading += angle
self._heading %= 360 # wrap around
def left(self, angle):
self._turn(-angle)
def lt(self, angle):
self.left(angle)
def right(self, angle):
self._turn(angle)
def rt(self, angle):
self.right(angle)
def heading(self):
return self._heading
def pencolor(self, c):
if not c in Color.colors:
raise RuntimeError("Color must be one of the 'color' class items")
#print(self._fg_palette[0])
self._pencolor = 1 + Color.colors.index(c)
# Tell turtle's state
def pos(self):
return Vec2D(self._x - self._w//2, self._h//2 - self._y)
def position(self):
return self.pos()
# Pen control
def pendown(self):
self._penstate = True
def pd(self):
self.pendown()
def down(self):
self.pendown()
def isdown(self):
return self._penstate
def penup(self):
self._penstate = False
def pu(self):
self.penup()
def up(self):
self.penup()