149 lines
5.6 KiB
Python
149 lines
5.6 KiB
Python
# Copyright (c) 2014 Adafruit Industries
|
|
# Author: Tony DiCola
|
|
|
|
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
# of this software and associated documentation files (the "Software"), to deal
|
|
# in the Software without restriction, including without limitation the rights
|
|
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
# copies of the Software, and to permit persons to whom the Software is
|
|
# furnished to do so, subject to the following conditions:
|
|
|
|
# The above copyright notice and this permission notice shall be included in all
|
|
# copies or substantial portions of the Software.
|
|
|
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
# SOFTWARE.
|
|
from collections import namedtuple
|
|
# Handle python 2 and 3 (where map functions like itertools.imap)
|
|
try:
|
|
from itertools import imap as map
|
|
except ImportError:
|
|
# Ignore import error on python 3 since map already behaves as expected.
|
|
pass
|
|
|
|
|
|
# List of fields/properties that are present on a data object from IO.
|
|
DATA_FIELDS = [ 'created_epoch',
|
|
'created_at',
|
|
'updated_at',
|
|
'value',
|
|
'completed_at',
|
|
'feed_id',
|
|
'expiration',
|
|
'position',
|
|
'id',
|
|
'lat',
|
|
'lon',
|
|
'ele']
|
|
|
|
FEED_FIELDS = [ 'name',
|
|
'key',
|
|
'id',
|
|
'description',
|
|
'unit_type',
|
|
'unit_symbol',
|
|
'history',
|
|
'visibility',
|
|
'license',
|
|
'status_notify',
|
|
'status_timeout']
|
|
|
|
GROUP_FIELDS = [ 'description',
|
|
'source_keys',
|
|
'id',
|
|
'source',
|
|
'key',
|
|
'feeds',
|
|
'properties',
|
|
'name' ]
|
|
|
|
DASHBOARD_FIELDS = [ 'name',
|
|
'key',
|
|
'description',
|
|
'show_header',
|
|
'color_mode',
|
|
'block_borders',
|
|
'header_image_url',
|
|
'blocks' ]
|
|
|
|
BLOCK_FIELDS = [ 'name',
|
|
'id',
|
|
'visual_type',
|
|
'properties',
|
|
'block_feeds' ]
|
|
|
|
LAYOUT_FIELDS = ['xl',
|
|
'lg',
|
|
'md',
|
|
'sm',
|
|
'xs' ]
|
|
|
|
# These are very simple data model classes that are based on namedtuple. This is
|
|
# to keep the classes simple and prevent any confusion around updating data
|
|
# locally and forgetting to send those updates back up to the IO service (since
|
|
# tuples are immutable you can't change them!). Depending on how people use the
|
|
# client it might be prudent to revisit this decision and consider making these
|
|
# full fledged classes that are mutable.
|
|
Data = namedtuple('Data', DATA_FIELDS)
|
|
Feed = namedtuple('Feed', FEED_FIELDS)
|
|
Group = namedtuple('Group', GROUP_FIELDS)
|
|
Dashboard = namedtuple('Dashboard', DASHBOARD_FIELDS)
|
|
Block = namedtuple('Block', BLOCK_FIELDS)
|
|
Layout = namedtuple('Layout', LAYOUT_FIELDS)
|
|
|
|
# Magic incantation to make all parameters to the initializers optional with a
|
|
# default value of None.
|
|
Group.__new__.__defaults__ = tuple(None for x in GROUP_FIELDS)
|
|
Data.__new__.__defaults__ = tuple(None for x in DATA_FIELDS)
|
|
Layout.__new__.__defaults__ = tuple(None for x in LAYOUT_FIELDS)
|
|
|
|
# explicitly set dashboard values so that 'color_mode' is 'dark'
|
|
Dashboard.__new__.__defaults__ = (None, None, None, False, "dark", True, None, None)
|
|
|
|
# explicitly set block values so 'properties' is a dictionary
|
|
Block.__new__.__defaults__ = (None, None, None, {}, None)
|
|
|
|
# explicitly set feed values
|
|
Feed.__new__.__defaults__ = (None, None, None, None, None, None, 'ON', 'Private', None, None, None)
|
|
|
|
# Define methods to convert from dicts to the data types.
|
|
def _from_dict(cls, data):
|
|
# Convert dict to call to class initializer (to work with the data types
|
|
# base on namedtuple). However be very careful to preserve forwards
|
|
# compatibility by ignoring any attributes in the dict which are unknown
|
|
# by the data type.
|
|
params = {x: data.get(x, None) for x in cls._fields}
|
|
return cls(**params)
|
|
|
|
|
|
def _feed_from_dict(cls, data):
|
|
params = {x: data.get(x, None) for x in cls._fields}
|
|
return cls(**params)
|
|
|
|
|
|
def _group_from_dict(cls, data):
|
|
params = {x: data.get(x, None) for x in cls._fields}
|
|
# Parse the feeds if they're provided and generate feed instances.
|
|
params['feeds'] = tuple(map(Feed.from_dict, data.get('feeds', [])))
|
|
return cls(**params)
|
|
|
|
|
|
def _dashboard_from_dict(cls, data):
|
|
params = {x: data.get(x, None) for x in cls._fields}
|
|
# Parse the blocks if they're provided and generate block instances.
|
|
params['blocks'] = tuple(map(Block.from_dict, data.get('blocks', [])))
|
|
return cls(**params)
|
|
|
|
|
|
# Now add the from_dict class methods defined above to the data types.
|
|
Data.from_dict = classmethod(_from_dict)
|
|
Feed.from_dict = classmethod(_feed_from_dict)
|
|
Group.from_dict = classmethod(_group_from_dict)
|
|
Dashboard.from_dict = classmethod(_dashboard_from_dict)
|
|
Block.from_dict = classmethod(_from_dict)
|
|
Layout.from_dict = classmethod(_from_dict)
|