Add code for the guide
This commit is contained in:
parent
7d71ee6a5c
commit
1d587e529f
1 changed files with 148 additions and 0 deletions
148
RGB_Matrix_Slot_Machine/code.py
Normal file
148
RGB_Matrix_Slot_Machine/code.py
Normal file
|
|
@ -0,0 +1,148 @@
|
|||
import random
|
||||
import time
|
||||
|
||||
import adafruit_imageload.bmp
|
||||
import audioio
|
||||
import audiomp3
|
||||
import board
|
||||
import displayio
|
||||
import digitalio
|
||||
import framebufferio
|
||||
import rgbmatrix
|
||||
|
||||
displayio.release_displays()
|
||||
|
||||
matrix = rgbmatrix.RGBMatrix(
|
||||
width=64, height=32, bit_depth=4,
|
||||
rgb_pins=[board.D6, board.D5, board.D9, board.D11, board.D10, board.D12],
|
||||
addr_pins=[board.A5, board.A4, board.A3, board.A2],
|
||||
clock_pin=board.D13, latch_pin=board.D0, output_enable_pin=board.D1)
|
||||
display = framebufferio.FramebufferDisplay(matrix, auto_refresh=False)
|
||||
|
||||
# Each wheel can be in one of three states:
|
||||
STOPPED, RUNNING, BRAKING = range(3)
|
||||
|
||||
# Return a duplicate of the input list in a random (shuffled) order.
|
||||
def shuffled(seq):
|
||||
return sorted(seq, key=lambda _: random.random())
|
||||
|
||||
# The Wheel class manages the state of one wheel. "pos" is a position in
|
||||
# floating point coordinates, with one 1 pixel being 1 position.
|
||||
# The wheel also has a velocity (in positions
|
||||
# per tick) and a state (one of the above constants)
|
||||
class Wheel(displayio.TileGrid):
|
||||
def __init__(self, bitmap, palette):
|
||||
# Portions of up to 3 tiles are visible.
|
||||
super().__init__(bitmap=bitmap, pixel_shader=palette,
|
||||
width=1, height=3, tile_width=20, tile_height=24)
|
||||
self.order = shuffled(range(20))
|
||||
self.state = STOPPED
|
||||
self.pos = 0
|
||||
self.vel = 0
|
||||
self.termvel = 2
|
||||
self.y = 0
|
||||
self.x = 0
|
||||
self.stop_time = time.monotonic_ns()
|
||||
self.step()
|
||||
|
||||
def step(self):
|
||||
# Update each wheel for one time step
|
||||
if self.state == RUNNING:
|
||||
# Slowly lose speed when running, but go at least terminal velocity
|
||||
self.vel = max(self.vel * .99, self.termvel)
|
||||
if time.monotonic_ns() > self.stop_time:
|
||||
self.state = BRAKING
|
||||
elif self.state == BRAKING:
|
||||
# More quickly lose speed when baking, down to speed 0.4
|
||||
self.vel = max(self.vel * .85, 0.4)
|
||||
|
||||
# Advance the wheel according to the velocity, and wrap it around
|
||||
# after 24*20 positions
|
||||
self.pos = (self.pos + self.vel) % (20*24)
|
||||
|
||||
# Compute the rounded Y coordinate
|
||||
yy = round(self.pos)
|
||||
# Compute the offset of the tile (tiles are 24 pixels tall)
|
||||
yyy = yy % 24
|
||||
# Find out which tile is the top tile
|
||||
off = yy // 24
|
||||
|
||||
# If we're braking and a tile is close to midscreen,
|
||||
# then stop and make sure that tile is exactly centered
|
||||
if self.state == BRAKING and self.vel <= 2 and yyy < 8:
|
||||
self.pos = off * 24
|
||||
self.vel = 0
|
||||
yyy = 0
|
||||
self.state = STOPPED
|
||||
|
||||
# Move the displayed tiles to the correct height and make sure the
|
||||
# correct tiles are displayed.
|
||||
self.y = yyy - 20
|
||||
for i in range(3):
|
||||
self[i] = self.order[(19 - i + off) % 20]
|
||||
|
||||
# Set the wheel running again, using a slight bit of randomness.
|
||||
# The 'i' value makes sure the first wheel brakes first, the second
|
||||
# brakes second, and the third brakes third.
|
||||
def kick(self, i):
|
||||
self.state = RUNNING
|
||||
self.vel = random.uniform(8, 10)
|
||||
self.termvel = random.uniform(1.8, 4.2)
|
||||
self.stop_time = time.monotonic_ns() + 3000000000 + i * 350000000
|
||||
|
||||
|
||||
# This bitmap contains the emoji we're going to use. It is assumed
|
||||
# to contain 20 icons, each 20x24 pixels. This fits nicely on the 64x32
|
||||
# RGB matrix display.
|
||||
the_bitmap, the_palette = adafruit_imageload.load(
|
||||
"/emoji.bmp",
|
||||
bitmap=displayio.Bitmap,
|
||||
palette=displayio.Palette)
|
||||
|
||||
# Our fruit machine has 3 wheels, let's create them with a correct horizontal
|
||||
# (x) offset and arbitrary vertical (y) offset.
|
||||
g = displayio.Group(max_size=3)
|
||||
wheels = []
|
||||
for idx in range(3):
|
||||
wheel = Wheel(the_bitmap, the_palette)
|
||||
wheel.x = idx * 22
|
||||
wheel.y = -20
|
||||
g.append(wheel)
|
||||
wheels.append(wheel)
|
||||
display.show(g)
|
||||
|
||||
# We want a digital input to trigger the fruit machine
|
||||
button = digitalio.DigitalInOut(board.A1)
|
||||
button.switch_to_input(pull=digitalio.Pull.UP)
|
||||
|
||||
# Enable the speaker
|
||||
enable = digitalio.DigitalInOut(board.D4)
|
||||
enable.switch_to_output(True)
|
||||
|
||||
mp3file = open("/triangles-loop.mp3", "rb")
|
||||
sample = audiomp3.MP3Decoder(mp3file)
|
||||
|
||||
# Play the sample (just loop it for now)
|
||||
speaker = audioio.AudioOut(board.A0)
|
||||
speaker.play(sample, loop=True)
|
||||
|
||||
# Here's the main loop
|
||||
while True:
|
||||
# Refresh the dislpay (doing this manually ensures the wheels move
|
||||
# together, not at different times)
|
||||
display.refresh(minimum_frames_per_second=0, target_frames_per_second=60)
|
||||
|
||||
all_stopped = all(si.state == STOPPED for si in wheels)
|
||||
if all_stopped:
|
||||
# Once everything comes to a stop, wait until the lever is pulled and
|
||||
# start everything over again. Maybe you want to check if the
|
||||
# combination is a "winner" and add a light show or something.
|
||||
|
||||
while button.value:
|
||||
pass
|
||||
for idx, si in enumerate(wheels):
|
||||
si.kick(idx)
|
||||
|
||||
# Otherwise, let the wheels keep spinning...
|
||||
for idx, si in enumerate(wheels):
|
||||
si.step()
|
||||
Loading…
Reference in a new issue