update benchmark.py

This commit is contained in:
Zoltán Vörös 2020-04-22 07:53:55 +02:00 committed by GitHub
parent c9d76f0f54
commit 9f00af2e36
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -1,11 +1,21 @@
import time
import utime
import math
import ulab
import ulab.numerical
def timeit(f, *args, **kwargs):
func_name = str(f).split(' ')[1]
def new_func(*args, **kwargs):
t = utime.ticks_us()
result = f(*args, **kwargs)
print('execution time: ', utime.ticks_diff(utime.ticks_us(), t), ' us')
return result
return new_func
def mean(values):
return sum(values) / len(values)
@timeit
def normalized_rms(values):
minbuf = int(mean(values))
samples_sum = sum(
@ -15,6 +25,7 @@ def normalized_rms(values):
return math.sqrt(samples_sum / len(values))
@timeit
def normalized_rms_ulab(values):
minbuf = ulab.numerical.mean(values)
values = values - minbuf
@ -22,19 +33,29 @@ def normalized_rms_ulab(values):
return math.sqrt(samples_sum / len(values))
@timeit
def normalized_std_ulab(values):
return ulab.numerical.std(values)
@timeit
def normalized_std_ulab_iterable(values):
return ulab.numerical.std(values)
# Instead of using sensor data, we generate some data
# The amplitude is 5000 so the rms should be around 5000/1.414 = 3536
nums_list = [int(8000 + math.sin(i) * 5000) for i in range(100)]
nums_array = ulab.array(nums_list)
def timeit(s, f, n=100):
t0 = time.monotonic_ns()
for _ in range(n):
x = f()
t1 = time.monotonic_ns()
r = (t1 - t0) * 1e-6 / n
print("%-20s : %8.3fms [result=%f]" % (s, r, x))
print("Computing the RMS value of 100 numbers")
timeit("traditional", lambda: normalized_rms(nums_list))
timeit("ulab", lambda: normalized_rms_ulab(nums_array))
print('in python')
normalized_rms(nums_list)
print('\nin ulab, with some implementation in python')
normalized_rms_ulab(nums_array)
print('\nin ulab only, with ndarray')
normalized_std_ulab(nums_array)
print('\nin ulab only, with list')
normalized_std_ulab_iterable(nums_list)