adding rp2350 video synth code

adding Feather RP2350 with HSTX to DVI video synth code. three modes: bar graph animation, bouncing circles, party parrot synthwave. a rotary encoder changes modes. 3 potentiometers control the animations. pdm mic is used for audio fft visualizations. button on rotary encoder toggles the pots on/off. if off, then default values are used for the animations
This commit is contained in:
Liz 2024-11-19 09:10:30 -05:00
parent 815e584be9
commit e4369d29a0
2 changed files with 568 additions and 0 deletions

View file

@ -0,0 +1,568 @@
# SPDX-FileCopyrightText: 2024 Liz Clark for Adafruit Industries
#
# SPDX-License-Identifier: MIT
# FFT calculations based on Phil B.'s Audio Spectrum Light Show Code
# https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/main/
# Feather_Sense_Audio_Visualizer_13x9_RGB_LED_Matrix/audio_spectrum_lightshow/code.py
import gc
from array import array
from math import log
from random import randint
import board
from audiobusio import PDMIn
import displayio
import picodvi
import framebufferio
import vectorio
from rainbowio import colorwheel
import adafruit_imageload
from adafruit_display_shapes.line import Line
from adafruit_ticks import ticks_ms, ticks_add, ticks_diff
from adafruit_seesaw import seesaw, rotaryio, digitalio
from analogio import AnalogIn
import simpleio
from ulab import numpy as np
try:
from ulab.utils import spectrogram
except ImportError:
from ulab.scipy.signal import spectrogram
# ------ POTENTIOMETER SETUP ------
pot1 = AnalogIn(board.A1)
pot2 = AnalogIn(board.A2)
pot3 = AnalogIn(board.A3)
read_pots = True
# ------ POTENTIOMETER MODE VALUES ------
mode0_values = [0, 0, 0]
mode1_values = [0, 0, 0]
mode2_values = [0, 0, 0]
mode_vals = [mode0_values, mode1_values, mode2_values]
# ------ POTENTIOMETER READ FUNCTION ------
def val(pin):
return pin.value
# ------ SEESAW ENCODER ------
i2c = board.STEMMA_I2C()
seesaw = seesaw.Seesaw(i2c, addr=0x36)
seesaw_product = (seesaw.get_version() >> 16) & 0xFFFF
print("Found product {}".format(seesaw_product))
if seesaw_product != 4991:
print("Wrong firmware loaded? Expected 4991")
seesaw.pin_mode(24, seesaw.INPUT_PULLUP)
button = digitalio.DigitalIO(seesaw, 24)
button_held = False
encoder = rotaryio.IncrementalEncoder(seesaw)
last_position = 0
# ------ SHARED VARIABLES ------
fft_size = 512
low_bin = 15
high_bin = 75
low_band = (15, 75)
mid_band = (100, 120)
spectrum_size = fft_size // 2
spectrum_bits = log(spectrum_size, 2)
mode = 0
new_mode = True
states = {}
# ------ PICODVI SETUP ------
displayio.release_displays()
fb = picodvi.Framebuffer(320, 240, clk_dp=board.CKP, clk_dn=board.CKN,
red_dp=board.D0P, red_dn=board.D0N,
green_dp=board.D1P, green_dn=board.D1N,
blue_dp=board.D2P, blue_dn=board.D2N,
color_depth=8)
display = framebufferio.FramebufferDisplay(fb, auto_refresh=False)
# ------ PDM MIC ------
mic = PDMIn(board.D5, board.D6, sample_rate=44100, bit_depth=16)
rec_buf = array("H", [0] * fft_size)
# pylint: disable=too-many-locals, global-statement, too-many-statements, global-variable-not-assigned
# ------ INITIALIZE BAR GRAPH ANIMATION ------
def initialize_bars():
# based on Phil B.'s Audio Spectrum Light Show Code
# https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/main/
# Feather_Sense_Audio_Visualizer_13x9_RGB_LED_Matrix/audio_spectrum_lightshow/code.py
global states
spectrum_group = displayio.Group()
display.root_group = spectrum_group
low_frac = log(low_bin, 2) / spectrum_bits
frac_range = log(high_bin, 2) / spectrum_bits - low_frac
num_columns = 16
column_width = display.width // num_columns
column_table = []
moving_avg_buffer = [display.height] * num_columns
smoothing_factor = 0.5
height_multiplier = 5
dynamic_level = 10
noise_floor = 3.1
for column in range(num_columns):
lower = low_frac + frac_range * (column / num_columns * 0.95)
upper = low_frac + frac_range * ((column + 1) / num_columns)
mid = (lower + upper) * 0.5
half_width = (upper - lower) * 0.5
first_bin = int(2 ** (spectrum_bits * lower) + 1e-4)
last_bin = int(2 ** (spectrum_bits * upper) + 1e-4)
bin_weights = []
for bin_index in range(first_bin, last_bin + 1):
bin_center = log(bin_index + 0.5, 2) / spectrum_bits
dist = abs(bin_center - mid) / half_width
if dist < 1.0:
dist = 1.0 - dist
bin_weights.append(((3.0 - (dist * 2.0)) * dist) * dist)
total = sum(bin_weights)
bin_weights = [
(weight / total) * (0.8 + idx / num_columns * 1.4)
for idx, weight in enumerate(bin_weights)
]
column_table.append(
[
first_bin - low_bin,
bin_weights,
colorwheel(225 * column / num_columns),
display.height,
0.0,
]
)
bar_pal = displayio.Palette(1)
bar_pal[0] = colorwheel(225 * column / num_columns)
rect = vectorio.Rectangle(
pixel_shader=bar_pal,
width=column_width,
height=1,
x=column * column_width,
y=display.height,
)
spectrum_group.append(rect)
peak_palette = displayio.Palette(1)
peak_palette[0] = 0x808080
for column in range(num_columns):
column_table[column].append(display.height)
column_table[column].append(0.0)
peak_dot = vectorio.Rectangle(
pixel_shader=peak_palette,
width=column_width,
height=5,
x=column * column_width,
y=display.height,
)
spectrum_group.append(peak_dot)
states = {
"spectrum_group": spectrum_group,
"column_table": column_table,
"moving_avg_buffer": moving_avg_buffer,
"smoothing_factor": smoothing_factor,
"height_multiplier": height_multiplier,
"dynamic_level": dynamic_level,
"noise_floor": noise_floor,
"num_columns": num_columns,
"column_width": column_width,
"peak_pal": peak_palette,
}
# ------ BAR GRAPH ANIMATION ------
def bars(pos, read):
global states
if read:
states["peak_pal"][0] = colorwheel(pos[0])
states["noise_floor"] = pos[1]
states["smoothing_factor"] = pos[2]
spectrum_group = states["spectrum_group"]
column_table = states["column_table"]
moving_avg_buffer = states["moving_avg_buffer"]
smoothing_factor = states["smoothing_factor"]
height_multiplier = states["height_multiplier"]
dynamic_level = states["dynamic_level"]
noise_floor = states["noise_floor"]
num_columns = states["num_columns"]
mic.record(rec_buf, fft_size)
samples = np.array(rec_buf)
spectrum = spectrogram(samples)[low_bin : high_bin + 1]
spectrum = np.log(spectrum + 1e-7)
spectrum = np.maximum(spectrum - noise_floor, 0)
lower = max(np.min(spectrum), 4)
upper = min(max(np.max(spectrum), lower + 12), 20)
if upper > dynamic_level:
dynamic_level = upper * 0.7 + dynamic_level * 0.3
else:
dynamic_level = dynamic_level * 0.5 + lower * 0.5
states["dynamic_level"] = dynamic_level
max_height = display.height
data = (spectrum - lower) * (max_height / (dynamic_level - lower)) * height_multiplier
for column, element in enumerate(column_table):
first_bin = element[0]
column_top = display.height + 1
for bin_offset, weight in enumerate(element[1]):
if first_bin + bin_offset < len(data):
column_top -= data[first_bin + bin_offset] * weight
column_top = max(0, int(column_top))
moving_avg_buffer[column] = (
moving_avg_buffer[column] * (1 - smoothing_factor) +
column_top * smoothing_factor
)
smoothed_top = int(moving_avg_buffer[column])
rect = spectrum_group[column]
rect.height = display.height - smoothed_top
rect.y = smoothed_top
if smoothed_top < element[3]:
element[3] = smoothed_top - 1
element[4] = 0
else:
element[3] += element[4]
element[4] += 0.2
peak_position = max(0, int(element[3]))
peak_dot = spectrum_group[num_columns + column]
peak_dot.y = peak_position
display.refresh()
# ------ INITIALIZE CIRCLE ANIMATION ------
def initialize_circles():
global states
spectrum_group = displayio.Group()
display.root_group = spectrum_group
palette = displayio.Palette(1)
palette[0] = 0xFFFFFF
center_palette = displayio.Palette(1)
center_palette[0] = 0xFF0000
center_circle = (
vectorio.Circle(pixel_shader=center_palette, radius=5,
x=display.width // 2, y=display.height // 2)
)
spectrum_group.append(center_circle)
num_circles = 16
smoothing_factor = 0.5
decay_factor = 0.2
circles = []
directions = []
smoothed_radii = [5] * num_circles
for i in range(num_circles):
radius = 5
x_pos = randint(radius, display.width - radius)
y_pos = randint(radius, display.height - radius)
dx = randint(-2, 2) or 1
dy = randint(-2, 2) or 1
color_index = (255 * i) // num_circles
circle_palette = displayio.Palette(1)
circle_palette[0] = colorwheel(color_index)
circle = vectorio.Circle(pixel_shader=circle_palette, radius=radius, x=x_pos, y=y_pos)
spectrum_group.append(circle)
circles.append(circle)
directions.append([dx, dy])
states = {
"spectrum_group": spectrum_group,
"center_circle": center_circle,
"center_radius_smoothed": 5,
"circles": circles,
"directions": directions,
"smoothed_radii": smoothed_radii,
"smoothing_factor": smoothing_factor,
"decay_factor": decay_factor,
"dynamic_level": 15,
"noise_floor": 3.1,
"max_radius": 100,
"num_circles": num_circles,
"center_palette": center_palette,
"speed": 1,
}
# ------ BOUNCING CIRCLES ANIMATION ------
def bouncing_circles(pos, read):
global states
if read:
states["center_palette"][0] = colorwheel(pos[0])
states["noise_floor"] = pos[1]
states["smoothing_factor"] = pos[2]
states["decay_factor"] = pos[2] - 0.3
mic.record(rec_buf, fft_size)
samples = np.array(rec_buf)
spectrum = spectrogram(samples)[low_bin : high_bin + 1]
spectrum = np.log(spectrum + 1e-7)
spectrum = np.maximum(spectrum - states["noise_floor"], 0)
lower = max(np.min(spectrum), 4)
upper = min(max(np.max(spectrum), lower + 12), 20)
if upper > states["dynamic_level"]:
states["dynamic_level"] = upper * 0.7 + states["dynamic_level"] * 0.3
else:
states["dynamic_level"] = states["dynamic_level"] * 0.5 + lower * 0.5
overall_amplitude = np.sum(spectrum)
max_center_radius = 50
target_center_radius = (
int((overall_amplitude / (states["dynamic_level"] * states["num_circles"])) * max_center_radius)
)
if target_center_radius < states["center_radius_smoothed"]:
states["center_radius_smoothed"] = (
states["center_radius_smoothed"] * (1 - states["decay_factor"]) +
target_center_radius * states["decay_factor"]
)
else:
states["center_radius_smoothed"] = (
states["center_radius_smoothed"] * (1 - states["smoothing_factor"]) +
target_center_radius * states["smoothing_factor"]
)
states["center_circle"].radius = int(states["center_radius_smoothed"])
data = (spectrum - lower) * (states["max_radius"] / (states["dynamic_level"] - lower))
for i, circle in enumerate(states["circles"]):
target_radius = max(2, int(data[i]))
if target_radius < states["smoothed_radii"][i]:
states["smoothed_radii"][i] = (
states["smoothed_radii"][i] * (1 - states["decay_factor"]) +
target_radius * states["decay_factor"]
)
else:
states["smoothed_radii"][i] = (
states["smoothed_radii"][i] * (1 - states["smoothing_factor"]) +
target_radius * states["smoothing_factor"]
)
circle.radius = int(states["smoothed_radii"][i])
dx, dy = states["directions"][i]
circle.x += dx
circle.y += dy
if circle.x - circle.radius <= 0 or circle.x + circle.radius >= display.width:
states["directions"][i][0] *= -1 # Reverse x direction
if circle.y - circle.radius <= 0 or circle.y + circle.radius >= display.height:
states["directions"][i][1] *= -1 # Reverse y direction
display.refresh()
# ------ PARTY PARROT INIT ------
def initialize_party():
global states
spectrum_group = displayio.Group()
display.root_group = spectrum_group
bitmap, palette = adafruit_imageload.load(
"/partyParrotsBig.bmp",
bitmap=displayio.Bitmap,
palette=displayio.Palette
)
parrot_grid = displayio.TileGrid(
bitmap,
pixel_shader=palette,
tile_height=128,
tile_width=132,
x=(display.width - 128) // 2,
y=0
)
spectrum_group.append(parrot_grid)
line_group = displayio.Group()
spectrum_group.append(line_group)
pal_bg = displayio.Palette(1)
pal_bg[0] = 0x0000FF
palette_white = displayio.Palette(1)
palette_white[0] = 0xFFFFFF
pal = displayio.Palette(1)
pal[0] = 0xFF00FF
left_circle = vectorio.Circle(
pixel_shader=pal, radius=5, x=5, y=5
)
right_circle = vectorio.Circle(
pixel_shader=pal, radius=5, x=display.width - 5, y=5
)
spectrum_group.append(left_circle)
spectrum_group.append(right_circle)
ground = vectorio.Rectangle(
pixel_shader=pal_bg,
width=display.width,
height=display.height - 128,
x=0,
y=128
)
line_group.append(ground)
horizon_line = vectorio.Rectangle(
pixel_shader=palette_white,
width=display.width,
height=1,
x=0,
y=128
)
line_group.append(horizon_line)
slanted_lines_coords = [
(0, 136, 34, 128),
(0, 188, 76, 128),
(34, 240, 113, 128),
(117, 240, 148, 128),
(198, 240, 182, 128),
(294, 240, 216, 128),
(320, 176, 255, 128),
(320, 133, 297, 128)
]
for coords in slanted_lines_coords:
line = Line(coords[0], coords[1], coords[2], coords[3], 0xFFFFFF)
line_group.append(line)
horizontal_lines = []
for _ in range(5):
line_rect = vectorio.Rectangle(
pixel_shader=palette_white,
width=display.width,
height=2,
x=0,
y=0
)
line_group.append(line_rect)
horizontal_lines.append(line_rect)
states = {
"pal": pal,
"pal_bg": pal_bg,
"pal_line": palette_white,
"spectrum_group": spectrum_group,
"parrot_grid": parrot_grid,
"line_group": line_group,
"horizontal_lines": horizontal_lines,
"frame_index": 0,
"low_band_threshold": 3.4,
"mid_band_threshold": 3.4,
"smoothing_factor": 0.5,
"last_i": 146,
"dynamic_level": 15,
"decay_factor": 2,
"max_center_radius": 10,
"center_radius_smoothed": 2,
"left_circle": left_circle,
"right_circle": right_circle,
"clock_clock": ticks_ms(),
"clock_time": int(0.01 * 1000),
"i": 152
}
# ------ PARTY PARROT ANIMATION ------
def party_parrot(pos, read):
global states
if read:
states["pal"][0] = colorwheel(pos[0])
states["max_center_radius"] = pos[1]
states["low_band_threshold"] = pos[2]
states["mid_band_threshold"] = pos[2]
left_circle = states["left_circle"]
right_circle = states["right_circle"]
parrot_grid = states["parrot_grid"]
horizontal_lines = states["horizontal_lines"]
frame_index = states["frame_index"]
last_i = states["last_i"]
center_radius_smoothed = states["center_radius_smoothed"]
dynamic_level = states["dynamic_level"]
low_band_threshold = states["low_band_threshold"]
mid_band_threshold = states["mid_band_threshold"]
smoothing_factor = states["smoothing_factor"]
decay_factor = states["decay_factor"]
clock_clock = states["clock_clock"]
palette_blue = states["pal_bg"]
palette_white = states["pal_line"]
i = states["i"]
if i > 128:
last_i = i
i -= 1
else:
i = 152
mic.record(rec_buf, fft_size)
samples = np.array(rec_buf)
spectrum = spectrogram(samples)
spectrum = np.log(spectrum + 1e-7)
spectrum = np.maximum(spectrum - 3.1, 0)
low_band_avg = np.mean(spectrum[low_band[0]:low_band[1] + 1])
mid_band_avg = np.mean(spectrum[mid_band[0]:mid_band[1] + 1])
overall_amplitude = np.sum(spectrum)
target_center_radius = (
int((overall_amplitude / (dynamic_level * 16)) * states["max_center_radius"])
)
if target_center_radius < center_radius_smoothed:
center_radius_smoothed = (
center_radius_smoothed * (1 - decay_factor) + target_center_radius * decay_factor
)
else:
center_radius_smoothed = (
center_radius_smoothed * (1 - smoothing_factor) + target_center_radius * smoothing_factor
)
left_circle.radius = int(center_radius_smoothed)
right_circle.radius = int(center_radius_smoothed)
if low_band_avg >= low_band_threshold * 1.1 or mid_band_avg >= mid_band_threshold * 1.1:
frame_index = (frame_index + 1) % 10
parrot_grid[0] = frame_index
if ticks_diff(ticks_ms(), clock_clock) >= states["clock_time"]:
for idx, offset in enumerate([0, 25, 50, 75, 100]):
horizontal_lines[idx].y = last_i + offset
horizontal_lines[idx].pixel_shader = palette_blue
for idx, offset in enumerate([0, 25, 50, 75, 100]):
horizontal_lines[idx].y = i + offset
horizontal_lines[idx].pixel_shader = palette_white
clock_clock = ticks_add(clock_clock, states["clock_time"])
display.refresh()
states["frame_index"] = frame_index
states["last_i"] = last_i
states["i"] = i
states["center_radius_smoothed"] = center_radius_smoothed
# ------ THE LOOP ------
while True:
# read encoder - if value != then change mode
position = -encoder.position
if position != last_position:
if position > last_position:
mode = (mode + 1) % 3
else:
mode = (mode - 1) % 3
new_mode = True
last_position = position
# encode button - switch between reading potentiometer
# to control animations or using default values
if not button.value and not button_held:
button_held = True
read_pots = not read_pots
print("Button pressed")
if button.value and button_held:
button_held = False
print("Button released")
# if a new mode is selected, run init function
if new_mode:
new_mode = False
print(f"switching modes! {mode}")
del states
gc.collect()
display.refresh()
if mode == 0:
initialize_bars()
if mode == 1:
initialize_circles()
if mode == 2:
initialize_party()
# mode 0 - bar graph visualizer
if mode == 0:
bars(mode0_values, read_pots)
# pot 1 - control color of bouncing dot
color = simpleio.map_range(val(pot1), 0, 65535, 0, 255)
mode_vals[0][0] = color
# pot 2 - raise/lower noise floor
noise = simpleio.map_range(val(pot2), 0, 65535, 2.5, 4.5)
mode_vals[0][1] = noise
# pot 3 - smooth bar animation
smooth = simpleio.map_range(val(pot3), 0, 65535, 0.5, 0.05)
mode_vals[0][2] = smooth
# mode 1 - bouncing circles visualizer
if mode == 1:
bouncing_circles(mode1_values, read_pots)
# pot 1 - control color of center circle
color = simpleio.map_range(val(pot1), 0, 65535, 0, 255)
mode_vals[1][0] = color
# pot 2 - raise/lower noise floor
noise = simpleio.map_range(val(pot2), 0, 65535, 2.5, 4.5)
mode_vals[1][1] = noise
# pot 3 - smooth circle size change
smooth = simpleio.map_range(val(pot3), 0, 65535, 0.8, 0.4)
mode_vals[1][2] = smooth
# mode 2 - party parrot synth wave
if mode == 2:
party_parrot(mode2_values, read_pots)
# pot 1 - control color of side circles
color = simpleio.map_range(val(pot1), 0, 65535, 0, 255)
mode_vals[2][0] = color
# pot 2 - mid & low end noise floor aka parrot sensitivity
dynamic = simpleio.map_range(val(pot2), 0, 65535, 3.0, 6.0)
mode_vals[2][1] = dynamic
# pot 3 - size of side circles
rad = simpleio.map_range(val(pot3), 0, 65535, 2, 12)
mode_vals[2][2] = rad

Binary file not shown.

After

Width:  |  Height:  |  Size: 166 KiB