# SPDX-FileCopyrightText: 2020 Jeff Epler for Adafruit Industries # # SPDX-License-Identifier: MIT import random import time import board import displayio import framebufferio import rgbmatrix displayio.release_displays() # Conway's "Game of Life" is played on a grid with simple rules, based # on the number of filled neighbors each cell has and whether the cell itself # is filled. # * If the cell is filled, and 2 or 3 neighbors are filled, the cell stays # filled # * If the cell is empty, and exactly 3 neighbors are filled, a new cell # becomes filled # * Otherwise, the cell becomes or remains empty # # The complicated way that the "m1" (minus 1) and "p1" (plus one) offsets are # calculated is due to the way the grid "wraps around", with the left and right # sides being connected, as well as the top and bottom sides being connected. # # This function has been somewhat optimized, so that when it indexes the bitmap # a single number [x + width * y] is used instead of indexing with [x, y]. # This makes the animation run faster with some loss of clarity. More # optimizations are probably possible. def apply_life_rule(old, new): width = old.width height = old.height for y in range(height): yyy = y * width ym1 = ((y + height - 1) % height) * width yp1 = ((y + 1) % height) * width xm1 = width - 1 for x in range(width): xp1 = (x + 1) % width neighbors = ( old[xm1 + ym1] + old[xm1 + yyy] + old[xm1 + yp1] + old[x + ym1] + old[x + yp1] + old[xp1 + ym1] + old[xp1 + yyy] + old[xp1 + yp1]) new[x+yyy] = neighbors == 3 or (neighbors == 2 and old[x+yyy]) xm1 = x # Fill 'fraction' out of all the cells. def randomize(output, fraction=0.33): for i in range(output.height * output.width): output[i] = random.random() < fraction # Fill the grid with a tribute to John Conway def conway(output): # based on xkcd's tribute to John Conway (1937-2020) https://xkcd.com/2293/ conway_data = [ b' +++ ', b' + + ', b' + + ', b' + ', b'+ +++ ', b' + + + ', b' + + ', b' + + ', b' + + ', ] for i in range(output.height * output.width): output[i] = 0 for i, si in enumerate(conway_data): y = output.height - len(conway_data) - 2 + i for j, cj in enumerate(si): output[(output.width - 8)//2 + j, y] = cj & 1 # bit_depth=1 is used here because we only use primary colors, and it makes # the animation run a bit faster because RGBMatrix isn't taking over the CPU # as often. matrix = rgbmatrix.RGBMatrix( width=64, height=32, bit_depth=1, rgb_pins=[board.D6, board.D5, board.D9, board.D11, board.D10, board.D12], addr_pins=[board.A5, board.A4, board.A3, board.A2], clock_pin=board.D13, latch_pin=board.D0, output_enable_pin=board.D1) display = framebufferio.FramebufferDisplay(matrix, auto_refresh=False) SCALE = 1 b1 = displayio.Bitmap(display.width//SCALE, display.height//SCALE, 2) b2 = displayio.Bitmap(display.width//SCALE, display.height//SCALE, 2) palette = displayio.Palette(2) tg1 = displayio.TileGrid(b1, pixel_shader=palette) tg2 = displayio.TileGrid(b2, pixel_shader=palette) g1 = displayio.Group(scale=SCALE) g1.append(tg1) display.show(g1) g2 = displayio.Group(scale=SCALE) g2.append(tg2) # First time, show the Conway tribute palette[1] = 0xffffff conway(b1) display.auto_refresh = True time.sleep(3) n = 40 while True: # run 2*n generations. # For the Conway tribute on 64x32, 80 frames is appropriate. For random # values, 400 frames seems like a good number. Working in this way, with # two bitmaps, reduces copying data and makes the animation a bit faster for _ in range(n): display.show(g1) apply_life_rule(b1, b2) display.show(g2) apply_life_rule(b2, b1) # After 2*n generations, fill the board with random values and # start over with a new color. randomize(b1) # Pick a random color out of 6 primary colors or white. palette[1] = ( (0x0000ff if random.random() > .33 else 0) | (0x00ff00 if random.random() > .33 else 0) | (0xff0000 if random.random() > .33 else 0)) or 0xffffff n = 200