Adafruit_Learning_System_Gu.../CircuitPython_RGBMatrix/life.py
2021-07-21 23:06:02 +01:00

120 lines
4.2 KiB
Python

import random
import time
import board
import displayio
import framebufferio
import rgbmatrix
displayio.release_displays()
# Conway's "Game of Life" is played on a grid with simple rules, based
# on the number of filled neighbors each cell has and whether the cell itself
# is filled.
# * If the cell is filled, and 2 or 3 neighbors are filled, the cell stays
# filled
# * If the cell is empty, and exactly 3 neighbors are filled, a new cell
# becomes filled
# * Otherwise, the cell becomes or remains empty
#
# The complicated way that the "m1" (minus 1) and "p1" (plus one) offsets are
# calculated is due to the way the grid "wraps around", with the left and right
# sides being connected, as well as the top and bottom sides being connected.
#
# This function has been somewhat optimized, so that when it indexes the bitmap
# a single number [x + width * y] is used instead of indexing with [x, y].
# This makes the animation run faster with some loss of clarity. More
# optimizations are probably possible.
def apply_life_rule(old, new):
width = old.width
height = old.height
for y in range(height):
yyy = y * width
ym1 = ((y + height - 1) % height) * width
yp1 = ((y + 1) % height) * width
xm1 = width - 1
for x in range(width):
xp1 = (x + 1) % width
neighbors = (
old[xm1 + ym1] + old[xm1 + yyy] + old[xm1 + yp1] +
old[x + ym1] + old[x + yp1] +
old[xp1 + ym1] + old[xp1 + yyy] + old[xp1 + yp1])
new[x+yyy] = neighbors == 3 or (neighbors == 2 and old[x+yyy])
xm1 = x
# Fill 'fraction' out of all the cells.
def randomize(output, fraction=0.33):
for i in range(output.height * output.width):
output[i] = random.random() < fraction
# Fill the grid with a tribute to John Conway
def conway(output):
# based on xkcd's tribute to John Conway (1937-2020) https://xkcd.com/2293/
conway_data = [
b' +++ ',
b' + + ',
b' + + ',
b' + ',
b'+ +++ ',
b' + + + ',
b' + + ',
b' + + ',
b' + + ',
]
for i in range(output.height * output.width):
output[i] = 0
for i, si in enumerate(conway_data):
y = output.height - len(conway_data) - 2 + i
for j, cj in enumerate(si):
output[(output.width - 8)//2 + j, y] = cj & 1
# bit_depth=1 is used here because we only use primary colors, and it makes
# the animation run a bit faster because RGBMatrix isn't taking over the CPU
# as often.
matrix = rgbmatrix.RGBMatrix(
width=64, height=32, bit_depth=1,
rgb_pins=[board.D6, board.D5, board.D9, board.D11, board.D10, board.D12],
addr_pins=[board.A5, board.A4, board.A3, board.A2],
clock_pin=board.D13, latch_pin=board.D0, output_enable_pin=board.D1)
display = framebufferio.FramebufferDisplay(matrix, auto_refresh=False)
SCALE = 1
b1 = displayio.Bitmap(display.width//SCALE, display.height//SCALE, 2)
b2 = displayio.Bitmap(display.width//SCALE, display.height//SCALE, 2)
palette = displayio.Palette(2)
tg1 = displayio.TileGrid(b1, pixel_shader=palette)
tg2 = displayio.TileGrid(b2, pixel_shader=palette)
g1 = displayio.Group(scale=SCALE)
g1.append(tg1)
display.show(g1)
g2 = displayio.Group(scale=SCALE)
g2.append(tg2)
# First time, show the Conway tribute
palette[1] = 0xffffff
conway(b1)
display.auto_refresh = True
time.sleep(3)
n = 40
while True:
# run 2*n generations.
# For the Conway tribute on 64x32, 80 frames is appropriate. For random
# values, 400 frames seems like a good number. Working in this way, with
# two bitmaps, reduces copying data and makes the animation a bit faster
for _ in range(n):
display.show(g1)
apply_life_rule(b1, b2)
display.show(g2)
apply_life_rule(b2, b1)
# After 2*n generations, fill the board with random values and
# start over with a new color.
randomize(b1)
# Pick a random color out of 6 primary colors or white.
palette[1] = (
(0x0000ff if random.random() > .33 else 0) |
(0x00ff00 if random.random() > .33 else 0) |
(0xff0000 if random.random() > .33 else 0)) or 0xffffff
n = 200