/*! * @file Adafruit_MLX90632.cpp * * I2C Driver for MLX90632 Far Infrared Temperature Sensor * * This is a library for the Adafruit MLX90632 breakout: * http://www.adafruit.com/products * * Adafruit invests time and resources providing this open source code, * please support Adafruit and open-source hardware by purchasing products from * Adafruit! * * Written by Limor "Ladyada" Fried with assistance from Claude Code. * * MIT license, see LICENSE for more information */ #include "Adafruit_MLX90632.h" #define MLX90632_DEBUG /*! * @brief Instantiates a new MLX90632 class */ Adafruit_MLX90632::Adafruit_MLX90632() { TO0 = 25.0; // Initialize previous object temperature TA0 = 25.0; // Initialize previous ambient temperature i2c_dev = nullptr; } /*! * @brief Cleans up the MLX90632 */ Adafruit_MLX90632::~Adafruit_MLX90632() { if (i2c_dev) { delete i2c_dev; } } /*! * @brief Sets up the hardware and initializes I2C * @param i2c_address * The I2C address to be used. * @param wire * The Wire object to be used for I2C connections. * @return True if initialization was successful, otherwise false. */ bool Adafruit_MLX90632::begin(uint8_t i2c_address, TwoWire* wire) { if (i2c_dev) { delete i2c_dev; } i2c_dev = new Adafruit_I2CDevice(i2c_address, wire); if (!i2c_dev->begin()) { return false; } Adafruit_BusIO_Register product_code_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_EE_PRODUCT_CODE), 2, MSBFIRST, 2); uint16_t product_code = product_code_reg.read(); if (product_code == 0xFFFF || product_code == 0x0000) { return false; } // Load calibration constants automatically if (!getCalibrations()) { return false; } return true; } /*! * @brief Read the 48-bit product ID * @return Product ID (48-bit value in uint64_t) */ uint64_t Adafruit_MLX90632::getProductID() { Adafruit_BusIO_Register id0_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_ID0), 2, MSBFIRST, 2); Adafruit_BusIO_Register id1_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_ID1), 2, MSBFIRST, 2); Adafruit_BusIO_Register id2_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_ID2), 2, MSBFIRST, 2); uint16_t id0 = id0_reg.read(); uint16_t id1 = id1_reg.read(); uint16_t id2 = id2_reg.read(); return ((uint64_t)id2 << 32) | ((uint64_t)id1 << 16) | id0; } /*! * @brief Read the product code * @return Product code (16-bit value) */ uint16_t Adafruit_MLX90632::getProductCode() { Adafruit_BusIO_Register product_code_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_EE_PRODUCT_CODE), 2, MSBFIRST, 2); return product_code_reg.read(); } /*! * @brief Read the EEPROM version * @return EEPROM version (16-bit value) */ uint16_t Adafruit_MLX90632::getEEPROMVersion() { Adafruit_BusIO_Register version_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_EE_VERSION), 2, MSBFIRST, 2); return version_reg.read(); } /*! * @brief Start a single measurement (SOC) * @return True if write succeeded, false otherwise */ bool Adafruit_MLX90632::startSingleMeasurement() { Adafruit_BusIO_Register control_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_CONTROL), 2, MSBFIRST, 2); Adafruit_BusIO_RegisterBits soc_bit = Adafruit_BusIO_RegisterBits(&control_reg, 1, 3); return soc_bit.write(1); } /*! * @brief Start a full measurement table (SOB) * @return True if write succeeded, false otherwise */ bool Adafruit_MLX90632::startFullMeasurement() { Adafruit_BusIO_Register control_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_CONTROL), 2, MSBFIRST, 2); Adafruit_BusIO_RegisterBits sob_bit = Adafruit_BusIO_RegisterBits(&control_reg, 1, 11); return sob_bit.write(1); } /*! * @brief Set the measurement mode * @param mode The measurement mode to set * @return True if write succeeded, false otherwise */ bool Adafruit_MLX90632::setMode(mlx90632_mode_t mode) { Adafruit_BusIO_Register control_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_CONTROL), 2, MSBFIRST, 2); Adafruit_BusIO_RegisterBits mode_bits = Adafruit_BusIO_RegisterBits(&control_reg, 2, 1); return mode_bits.write(mode); } /*! * @brief Get the measurement mode * @return The current measurement mode */ mlx90632_mode_t Adafruit_MLX90632::getMode() { Adafruit_BusIO_Register control_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_CONTROL), 2, MSBFIRST, 2); Adafruit_BusIO_RegisterBits mode_bits = Adafruit_BusIO_RegisterBits(&control_reg, 2, 1); return (mlx90632_mode_t)mode_bits.read(); } /*! * @brief Set the measurement select type * @param meas_select The measurement select type to set * @return True if write succeeded, false otherwise */ bool Adafruit_MLX90632::setMeasurementSelect( mlx90632_meas_select_t meas_select) { Adafruit_BusIO_Register control_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_CONTROL), 2, MSBFIRST, 2); Adafruit_BusIO_RegisterBits meas_select_bits = Adafruit_BusIO_RegisterBits(&control_reg, 5, 4); return meas_select_bits.write(meas_select); } /*! * @brief Get the measurement select type * @return The current measurement select type */ mlx90632_meas_select_t Adafruit_MLX90632::getMeasurementSelect() { Adafruit_BusIO_Register control_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_CONTROL), 2, MSBFIRST, 2); Adafruit_BusIO_RegisterBits meas_select_bits = Adafruit_BusIO_RegisterBits(&control_reg, 5, 4); return (mlx90632_meas_select_t)meas_select_bits.read(); } /*! * @brief Check if device is busy with measurement * @return True if device is busy, false otherwise */ bool Adafruit_MLX90632::isBusy() { Adafruit_BusIO_Register status_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_STATUS), 2, MSBFIRST, 2); Adafruit_BusIO_RegisterBits device_busy_bit = Adafruit_BusIO_RegisterBits(&status_reg, 1, 10); return device_busy_bit.read(); } /*! * @brief Check if EEPROM is busy * @return True if EEPROM is busy, false otherwise */ bool Adafruit_MLX90632::isEEPROMBusy() { Adafruit_BusIO_Register status_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_STATUS), 2, MSBFIRST, 2); Adafruit_BusIO_RegisterBits eeprom_busy_bit = Adafruit_BusIO_RegisterBits(&status_reg, 1, 9); return eeprom_busy_bit.read(); } /*! * @brief Reset device using addressed reset command * @return True if reset succeeded, false otherwise */ bool Adafruit_MLX90632::reset() { // Send addressed reset command: 0x3005, 0x0006 uint8_t reset_cmd[] = {0x30, 0x05, 0x00, 0x06}; if (!i2c_dev->write(reset_cmd, 4)) { return false; } // Wait for reset to complete (at least 150us as per datasheet) delay(1); return true; } /*! * @brief Read the cycle position * @return Current cycle position (0-31) */ uint8_t Adafruit_MLX90632::readCyclePosition() { Adafruit_BusIO_Register status_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_STATUS), 2, MSBFIRST, 2); Adafruit_BusIO_RegisterBits cycle_position_bits = Adafruit_BusIO_RegisterBits(&status_reg, 5, 2); return cycle_position_bits.read(); } /*! * @brief Reset the new data flag to 0 * @return True if write succeeded, false otherwise */ bool Adafruit_MLX90632::resetNewData() { Adafruit_BusIO_Register status_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_STATUS), 2, MSBFIRST, 2); Adafruit_BusIO_RegisterBits new_data_bit = Adafruit_BusIO_RegisterBits(&status_reg, 1, 0); return new_data_bit.write(0); } /*! * @brief Check if new data is available * @return True if new data is available, false otherwise */ bool Adafruit_MLX90632::isNewData() { Adafruit_BusIO_Register status_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_STATUS), 2, MSBFIRST, 2); Adafruit_BusIO_RegisterBits new_data_bit = Adafruit_BusIO_RegisterBits(&status_reg, 1, 0); return new_data_bit.read(); } /*! * @brief Set the refresh rate for both measurement registers * @param refresh_rate The refresh rate to set * @return True if both writes succeeded, false otherwise */ bool Adafruit_MLX90632::setRefreshRate(mlx90632_refresh_rate_t refresh_rate) { // Set refresh rate in EE_MEAS_1 register (bits 10:8) Adafruit_BusIO_Register meas1_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_EE_MEAS_1), 2, MSBFIRST, 2); Adafruit_BusIO_RegisterBits meas1_refresh_bits = Adafruit_BusIO_RegisterBits(&meas1_reg, 3, 8); if (!meas1_refresh_bits.write(refresh_rate)) { return false; } // Set refresh rate in EE_MEAS_2 register (bits 10:8) Adafruit_BusIO_Register meas2_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_EE_MEAS_2), 2, MSBFIRST, 2); Adafruit_BusIO_RegisterBits meas2_refresh_bits = Adafruit_BusIO_RegisterBits(&meas2_reg, 3, 8); return meas2_refresh_bits.write(refresh_rate); } /*! * @brief Get the refresh rate from EE_MEAS_1 register * @return The current refresh rate */ mlx90632_refresh_rate_t Adafruit_MLX90632::getRefreshRate() { Adafruit_BusIO_Register meas1_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_EE_MEAS_1), 2, MSBFIRST, 2); Adafruit_BusIO_RegisterBits meas1_refresh_bits = Adafruit_BusIO_RegisterBits(&meas1_reg, 3, 8); return (mlx90632_refresh_rate_t)meas1_refresh_bits.read(); } /*! * @brief Helper function to read 32-bit values from consecutive registers * @param lsw_addr Address of the least significant word register * @return 32-bit value (LSW + MSW) */ uint32_t Adafruit_MLX90632::read32BitRegister(uint16_t lsw_addr) { Adafruit_BusIO_Register lsw_reg = Adafruit_BusIO_Register(i2c_dev, swapBytes(lsw_addr), 2, MSBFIRST, 2); Adafruit_BusIO_Register msw_reg = Adafruit_BusIO_Register(i2c_dev, swapBytes(lsw_addr + 1), 2, MSBFIRST, 2); uint16_t lsw = lsw_reg.read(); uint16_t msw = msw_reg.read(); return ((uint32_t)msw << 16) | lsw; } /*! * @brief Read all calibration constants from EEPROM * @return True if all reads succeeded, false otherwise */ bool Adafruit_MLX90632::getCalibrations() { // Read 32-bit calibration constants uint32_t ee_p_r = read32BitRegister(MLX90632_REG_EE_P_R_LSW); uint32_t ee_p_g = read32BitRegister(MLX90632_REG_EE_P_G_LSW); uint32_t ee_p_t = read32BitRegister(MLX90632_REG_EE_P_T_LSW); uint32_t ee_p_o = read32BitRegister(MLX90632_REG_EE_P_O_LSW); uint32_t ee_aa = read32BitRegister(MLX90632_REG_EE_AA_LSW); uint32_t ee_ab = read32BitRegister(MLX90632_REG_EE_AB_LSW); uint32_t ee_ba = read32BitRegister(MLX90632_REG_EE_BA_LSW); uint32_t ee_bb = read32BitRegister(MLX90632_REG_EE_BB_LSW); uint32_t ee_ca = read32BitRegister(MLX90632_REG_EE_CA_LSW); uint32_t ee_cb = read32BitRegister(MLX90632_REG_EE_CB_LSW); uint32_t ee_da = read32BitRegister(MLX90632_REG_EE_DA_LSW); uint32_t ee_db = read32BitRegister(MLX90632_REG_EE_DB_LSW); uint32_t ee_ea = read32BitRegister(MLX90632_REG_EE_EA_LSW); uint32_t ee_eb = read32BitRegister(MLX90632_REG_EE_EB_LSW); uint32_t ee_fa = read32BitRegister(MLX90632_REG_EE_FA_LSW); uint32_t ee_fb = read32BitRegister(MLX90632_REG_EE_FB_LSW); uint32_t ee_ga = read32BitRegister(MLX90632_REG_EE_GA_LSW); // Read 16-bit calibration constants Adafruit_BusIO_Register gb_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_EE_GB), 2, MSBFIRST, 2); Adafruit_BusIO_Register ka_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_EE_KA), 2, MSBFIRST, 2); Adafruit_BusIO_Register kb_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_EE_KB), 2, MSBFIRST, 2); Adafruit_BusIO_Register ha_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_EE_HA), 2, MSBFIRST, 2); Adafruit_BusIO_Register hb_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_EE_HB), 2, MSBFIRST, 2); // Convert to proper double values with scaling factors from datasheet P_R = (double)(int32_t)ee_p_r * (double)pow(2, -8); // 2^-8 P_G = (double)(int32_t)ee_p_g * (double)pow(2, -20); // 2^-20 P_T = (double)(int32_t)ee_p_t * (double)pow(2, -44); // 2^-44 P_O = (double)(int32_t)ee_p_o * (double)pow(2, -8); // 2^-8 Aa = (double)(int32_t)ee_aa * (double)pow(2, -16); // 2^-16 Ab = (double)(int32_t)ee_ab * (double)pow(2, -8); // 2^-8 Ba = (double)(int32_t)ee_ba * (double)pow(2, -16); // 2^-16 Bb = (double)(int32_t)ee_bb * (double)pow(2, -8); // 2^-8 Ca = (double)(int32_t)ee_ca * (double)pow(2, -16); // 2^-16 Cb = (double)(int32_t)ee_cb * (double)pow(2, -8); // 2^-8 Da = (double)(int32_t)ee_da * (double)pow(2, -16); // 2^-16 Db = (double)(int32_t)ee_db * (double)pow(2, -8); // 2^-8 Ea = (double)(int32_t)ee_ea * (double)pow(2, -16); // 2^-16 Eb = (double)(int32_t)ee_eb * (double)pow(2, -8); // 2^-8 Fa = (double)(int32_t)ee_fa * (double)pow(2, -46); // 2^-46 Fb = (double)(int32_t)ee_fb * (double)pow(2, -36); // 2^-36 Ga = (double)(int32_t)ee_ga * (double)pow(2, -36); // 2^-36 // 16-bit signed values with scaling Gb = (double)(int16_t)gb_reg.read() * (double)pow(2, -10); // 2^-10 Ka = (double)(int16_t)ka_reg.read() * (double)pow(2, -10); // 2^-10 Kb = (int16_t)kb_reg.read(); // No scaling Ha = (double)(int16_t)ha_reg.read() * (double)pow(2, -14); // 2^-14 Hb = (double)(int16_t)hb_reg.read() * (double)pow(2, -10); // 2^-10 #ifdef MLX90632_DEBUG // Debug: Print calibration constants Serial.println(F("Calibration constants:")); Serial.print(F(" P_R = ")); Serial.println(P_R, 8); Serial.print(F(" P_G = ")); Serial.println(P_G, 8); Serial.print(F(" P_T = ")); Serial.println(P_T, 12); Serial.print(F(" P_O = ")); Serial.println(P_O, 8); Serial.print(F(" Aa = ")); Serial.println(Aa, 8); Serial.print(F(" Ab = ")); Serial.println(Ab, 8); Serial.print(F(" Ba = ")); Serial.println(Ba, 8); Serial.print(F(" Bb = ")); Serial.println(Bb, 8); Serial.print(F(" Ca = ")); Serial.println(Ca, 8); Serial.print(F(" Cb = ")); Serial.println(Cb, 8); Serial.print(F(" Da = ")); Serial.println(Da, 8); Serial.print(F(" Db = ")); Serial.println(Db, 8); Serial.print(F(" Ea = ")); Serial.println(Ea, 8); Serial.print(F(" Eb = ")); Serial.println(Eb, 8); Serial.print(F(" Fa = ")); Serial.println(Fa, 12); Serial.print(F(" Fb = ")); Serial.println(Fb, 10); Serial.print(F(" Ga = ")); Serial.println(Ga, 10); Serial.print(F(" Gb = ")); Serial.println(Gb, 8); Serial.print(F(" Ka = ")); Serial.println(Ka, 8); Serial.print(F(" Kb = ")); Serial.println(Kb); Serial.print(F(" Ha = ")); Serial.println(Ha, 8); Serial.print(F(" Hb = ")); Serial.println(Hb, 8); #endif return true; } /*! * @brief Calculate ambient temperature * @return Ambient temperature in degrees Celsius */ double Adafruit_MLX90632::getAmbientTemperature() { // Check measurement mode to determine which RAM registers to use mlx90632_meas_select_t meas_mode = getMeasurementSelect(); int16_t ram_ambient, ram_ref; if (meas_mode == MLX90632_MEAS_EXTENDED_RANGE) { // Extended range mode: use RAM_54 and RAM_57 Adafruit_BusIO_Register ram54_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_RAM_54), 2, MSBFIRST, 2); Adafruit_BusIO_Register ram57_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_RAM_57), 2, MSBFIRST, 2); ram_ambient = (int16_t)ram54_reg.read(); ram_ref = (int16_t)ram57_reg.read(); } else { // Medical mode: use RAM_6 and RAM_9 (default) Adafruit_BusIO_Register ram6_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_RAM_6), 2, MSBFIRST, 2); Adafruit_BusIO_Register ram9_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_RAM_9), 2, MSBFIRST, 2); ram_ambient = (int16_t)ram6_reg.read(); ram_ref = (int16_t)ram9_reg.read(); } // Pre-calculations for ambient temperature (same for both modes) // Gb = EE_Gb * 2^-10 (already calculated in getCalibrations()) double VRTA = (double)ram_ref + Gb * ((double)ram_ambient / 12.0); double AMB = ((double)ram_ambient / 12.0) / VRTA * (double)pow(2, 19); // Calculate ambient temperature: P_O + (AMB - P_R)/P_G + P_T * (AMB - P_R)^2 double amb_diff = AMB - P_R; double ambient_temp = P_O + (amb_diff / P_G) + P_T * (amb_diff * amb_diff); #ifdef MLX90632_DEBUG // Debug output Serial.print(F(" Mode = ")); Serial.println(meas_mode == MLX90632_MEAS_EXTENDED_RANGE ? F("Extended") : F("Medical")); Serial.print(F(" RAM_ambient = ")); Serial.println(ram_ambient); Serial.print(F(" RAM_ref = ")); Serial.println(ram_ref); Serial.print(F(" Gb = ")); Serial.println(Gb, 8); Serial.print(F(" VRTA = ")); Serial.println(VRTA, 8); Serial.print(F(" AMB = ")); Serial.println(AMB, 8); Serial.print(F(" AMB - P_R = ")); Serial.println(amb_diff, 8); Serial.print(F(" Ambient Temp = ")); Serial.println(ambient_temp, 8); #endif return ambient_temp; } /*! * @brief Calculate object temperature * @return Object temperature in degrees Celsius or NaN if invalid cycle * position */ double Adafruit_MLX90632::getObjectTemperature() { // Check measurement mode to determine which calculation to use mlx90632_meas_select_t meas_mode = getMeasurementSelect(); double S; int16_t ram_ambient, ram_ref; if (meas_mode == MLX90632_MEAS_EXTENDED_RANGE) { // Extended range mode: use RAM_52-59 Adafruit_BusIO_Register ram52_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_RAM_52), 2, MSBFIRST, 2); Adafruit_BusIO_Register ram53_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_RAM_53), 2, MSBFIRST, 2); Adafruit_BusIO_Register ram54_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_RAM_54), 2, MSBFIRST, 2); Adafruit_BusIO_Register ram55_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_RAM_55), 2, MSBFIRST, 2); Adafruit_BusIO_Register ram56_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_RAM_56), 2, MSBFIRST, 2); Adafruit_BusIO_Register ram57_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_RAM_57), 2, MSBFIRST, 2); Adafruit_BusIO_Register ram58_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_RAM_58), 2, MSBFIRST, 2); Adafruit_BusIO_Register ram59_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_RAM_59), 2, MSBFIRST, 2); int16_t ram52 = (int16_t)ram52_reg.read(); int16_t ram53 = (int16_t)ram53_reg.read(); int16_t ram54 = (int16_t)ram54_reg.read(); int16_t ram55 = (int16_t)ram55_reg.read(); int16_t ram56 = (int16_t)ram56_reg.read(); int16_t ram57 = (int16_t)ram57_reg.read(); int16_t ram58 = (int16_t)ram58_reg.read(); int16_t ram59 = (int16_t)ram59_reg.read(); // Extended range S calculation S = ((double)ram52 - (double)ram53 - (double)ram55 + (double)ram56) / 2.0 + (double)ram58 + (double)ram59; ram_ambient = ram54; ram_ref = ram57; } else { // Medical mode: use cycle position and RAM_4-9 uint8_t cycle_pos = readCyclePosition(); Adafruit_BusIO_Register ram4_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_RAM_4), 2, MSBFIRST, 2); Adafruit_BusIO_Register ram5_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_RAM_5), 2, MSBFIRST, 2); Adafruit_BusIO_Register ram6_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_RAM_6), 2, MSBFIRST, 2); Adafruit_BusIO_Register ram7_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_RAM_7), 2, MSBFIRST, 2); Adafruit_BusIO_Register ram8_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_RAM_8), 2, MSBFIRST, 2); Adafruit_BusIO_Register ram9_reg = Adafruit_BusIO_Register( i2c_dev, swapBytes(MLX90632_REG_RAM_9), 2, MSBFIRST, 2); int16_t ram4 = (int16_t)ram4_reg.read(); int16_t ram5 = (int16_t)ram5_reg.read(); int16_t ram6 = (int16_t)ram6_reg.read(); int16_t ram7 = (int16_t)ram7_reg.read(); int16_t ram8 = (int16_t)ram8_reg.read(); int16_t ram9 = (int16_t)ram9_reg.read(); // Medical mode S calculation based on cycle position if (cycle_pos == 2) { S = ((double)ram4 + (double)ram5) / 2.0; } else if (cycle_pos == 1) { S = ((double)ram7 + (double)ram8) / 2.0; } else { // Invalid cycle position - return NaN return NAN; } ram_ambient = ram6; ram_ref = ram9; } // Pre-calculations for object temperature (same for both modes) // VRTO = ram_ref + Ka * (ram_ambient / 12) // Ka = EE_Ka * 2^-10 (already calculated in getCalibrations()) double VRTO = (double)ram_ref + Ka * ((double)ram_ambient / 12.0); // STO = [S/12]/VRTO * 2^19 double STO = ((S / 12.0) / VRTO) * (double)pow(2, 19); // Calculate AMB for ambient temperature (needed for TADUT) double VRTA = (double)ram_ref + Gb * ((double)ram_ambient / 12.0); double AMB = ((double)ram_ambient / 12.0) / VRTA * (double)pow(2, 19); // Additional temperature calculations double TADUT = (AMB - Eb) / Ea + 25.0; double TAK = TADUT + 273.15; double emissivity = 1.0; // For the first iteration, use current TADUT as TODUT approximation double TODUT = TADUT; // Calculate final object temperature: // TO = pow( STO / (emiss * Fa * Ha * (1 + Ga * (TODUT - TO0) + Fb * (TADUT - // TA0))) + TAK^4, 0.25) - 273.15 - Hb double denominator = emissivity * Fa * Ha * (1.0 + Ga * (TODUT - TO0) + Fb * (TADUT - TA0)); double TAK4 = pow(TAK, 4); double TO_K4 = (STO / denominator) + TAK4; double TO = pow(TO_K4, 0.25) - 273.15 - Hb; #ifdef MLX90632_DEBUG // Debug output Serial.print(F(" Mode = ")); Serial.println(meas_mode == MLX90632_MEAS_EXTENDED_RANGE ? F("Extended") : F("Medical")); if (meas_mode == MLX90632_MEAS_MEDICAL) { Serial.print(F(" Cycle Position = ")); Serial.println(readCyclePosition()); } Serial.print(F(" RAM_ambient = ")); Serial.println(ram_ambient); Serial.print(F(" RAM_ref = ")); Serial.println(ram_ref); Serial.print(F(" S = ")); Serial.println(S, 8); Serial.print(F(" Ka = ")); Serial.println(Ka, 8); Serial.print(F(" VRTO = ")); Serial.println(VRTO, 8); Serial.print(F(" STO = ")); Serial.println(STO, 8); Serial.print(F(" VRTA = ")); Serial.println(VRTA, 8); Serial.print(F(" AMB = ")); Serial.println(AMB, 8); Serial.print(F(" TADUT = ")); Serial.println(TADUT, 8); Serial.print(F(" TODUT = ")); Serial.println(TODUT, 8); Serial.print(F(" TAK = ")); Serial.println(TAK, 8); Serial.print(F(" TAK^4 = ")); if (TAK4 >= 1e9) { Serial.print(TAK4 / 1e9, 2); Serial.println(F("e+09")); } else if (TAK4 >= 1e6) { Serial.print(TAK4 / 1e6, 2); Serial.println(F("e+06")); } else { Serial.println(TAK4, 2); } Serial.print(F(" TO0 = ")); Serial.println(TO0, 8); Serial.print(F(" TA0 = ")); Serial.println(TA0, 8); Serial.print(F(" Emissivity = ")); Serial.println(emissivity, 8); Serial.print(F(" Denominator = ")); Serial.println(denominator, 8); Serial.print(F(" TO_K^4 = ")); if (TO_K4 >= 1e9) { Serial.print(TO_K4 / 1e9, 2); Serial.println(F("e+09")); } else if (TO_K4 >= 1e6) { Serial.print(TO_K4 / 1e6, 2); Serial.println(F("e+06")); } else { Serial.println(TO_K4, 2); } Serial.print(F(" TO = ")); Serial.println(TO, 8); #endif // Update TO0 and TA0 with current measurements for next calculation TO0 = TO; // Use calculated object temperature TA0 = TADUT; // Update with current ambient temperature calculation return TO; } /*! * @brief Byte swap helper for register addresses * @param value 16-bit value to swap * @return Byte-swapped value */ uint16_t Adafruit_MLX90632::swapBytes(uint16_t value) { return (value << 8) | (value >> 8); }