Doxygenate

This commit is contained in:
Phillip Burgess 2020-04-30 13:53:15 -07:00
parent fc180e4689
commit 8968259c14
7 changed files with 389 additions and 82 deletions

4
.gitignore vendored Normal file
View file

@ -0,0 +1,4 @@
# Our handy .gitignore for automation ease
Doxyfile*
doxygen_sqlite3.db
html

View file

@ -1,3 +1,38 @@
/*!
* @file Adafruit_Protomatter.cpp
*
* @mainpage Adafruit Protomatter RGB LED matrix library.
*
* @section intro_sec Introduction
*
* This is documentation for Adafruit's protomatter library for HUB75-style
* RGB LED matrices. It is designed to work with various matrices sold by
* Adafruit ("HUB75" is a vague term and other similar matrices are not
* guaranteed to work). This file is the Arduino-specific calls; the
* underlying C code is more platform-neutral.
*
* Adafruit invests time and resources providing this open source code,
* please support Adafruit and open-source hardware by purchasing products
* from Adafruit!
*
* @section dependencies Dependencies
*
* This library depends on
* <a href="https://github.com/adafruit/Adafruit-GFX-Library">Adafruit_GFX</a>
* being present on your system. Please make sure you have installed the
* latest version before using this library.
*
* @section author Author
*
* Written by Phil "Paint Your Dragon" Burgess and Jeff Epler for
* Adafruit Industries, with contributions from the open source community.
*
* @section license License
*
* BSD license, all text here must be included in any redistribution.
*
*/
// Arduino-specific wrapper for the Protomatter C library (provides
// constructor and so forth, builds on Adafruit_GFX). There should
// not be any device-specific #ifdefs here. See notes in core.c and
@ -5,7 +40,7 @@
#include "Adafruit_Protomatter.h" // Also includes core.h & Adafruit_GFX.h
extern Protomatter_core *_PM_protoPtr; // In core.c (via arch.h)
extern Protomatter_core *_PM_protoPtr; ///< In core.c (via arch.h)
// Overall matrix refresh rate (frames/second) is a function of matrix width
// and chain length, number of address lines, number of bit planes, CPU speed
@ -21,13 +56,13 @@ extern Protomatter_core *_PM_protoPtr; // In core.c (via arch.h)
// refresh slower than this, and in many cases will...just need to set an
// upper limit to avoid excessive CPU load). An incredibly long comment block
// for a single constant, thank you for coming to my TED talk!
#define _PM_MAX_REFRESH_HZ 250
#define _PM_MAX_REFRESH_HZ 250 ///< Upper limit (ish) to matrix refresh rate
// Time (in milliseconds) to pause following any change in address lines
// (individually or collectively). Some matrices respond slowly there...
// must pause on change for matrix to catch up. Defined here (rather than
// arch.h) because it's not architecture-specific.
#define _PM_ROW_DELAY 8
#define _PM_ROW_DELAY 8 ///< Delay time between row address line changes (ms)
Adafruit_Protomatter::Adafruit_Protomatter(

View file

@ -7,17 +7,94 @@
#include "core.h"
#include <Adafruit_GFX.h>
/*!
@brief Class representing the Arduino-facing side of the Protomatter
library. Subclass of Adafruit_GFX's GFXcanvas16 to allow all
the drawing operations.
*/
class Adafruit_Protomatter : public GFXcanvas16 {
public:
/*!
@brief Adafruit_Protomatter constructor.
@param bitWidth Total width of RGB matrix chain, in pixels.
Usu. some multiple of 32, but maybe exceptions.
@param bitDepth Color "depth" in bitplanes, determines range of
shades of red, green and blue. e.g. passing 4
bits = 16 shades ea. R,G,B = 16x16x16 = 4096
colors. Max is 6, since the GFX library works
with "565" RGB colors (6 bits green, 5 red/blue).
@param rgbCount Number of "sets" of RGB data pins, each set
containing 6 pins (2 ea. R,G,B). Typically 1,
indicating a single matrix (or matrix chain).
In theory (but not yet extensively tested),
multiple sets of pins can be driven in parallel,
up to 5 on some devices (if the hardware design
provides all those bits on one PORT).
@param rgbList A uint8_t array of pins (Arduino pin numbering),
6X the prior rgbCount value, corresponding to
the 6 output color bits for a matrix (or chain).
Order is upper-half red, green, blue, lower-half
red, green blue (repeat for each add'l chain).
All the RGB pins (plus the clock pin below on
some architectures) MUST be on the same PORT
register. It's recommended (but not required)
that all RGB pins (and clock depending on arch)
be within the same byte of a PORT (but do not
need to be sequential or contiguous within that
byte) for more efficient RAM utilization. For
two concurrent chains, same principle but 16-bit
word instead of byte.
@param addrCount Number of row address lines required of matrix.
Total pixel height is then 2 x 2^addrCount, e.g.
32-pixel-tall matrices have 4 row address lines.
@param addrList A uint8_t array of pins (Arduino pin numbering),
one per row address line.
@param clockPin RGB clock pin (Arduino pin #).
@param latchPin RGB data latch pin (Arduino pin #).
@param oePin Output enable pin (Arduino pin #), active low.
@param doubleBuffer If true, two matrix buffers are allocated,
so changing display contents doesn't introduce
artifacts mid-conversion. Requires ~2X RAM.
@param timer Pointer to timer peripheral or timer-related
struct (architecture-dependent), or NULL to
use a default timer ID (also arch-dependent).
*/
Adafruit_Protomatter(uint16_t bitWidth, uint8_t bitDepth,
uint8_t rgbCount, uint8_t *rgbList,
uint8_t addrCount, uint8_t *addrList,
uint8_t clockPin, uint8_t latchPin, uint8_t oePin,
bool doubleBuffer, void *timer=NULL);
~Adafruit_Protomatter(void);
/*!
@brief Start a Protomatter matrix display running -- initialize
pins, timer and interrupt into existence.
@return A ProtomatterStatus status, one of:
PROTOMATTER_OK if everything is good.
PROTOMATTER_ERR_PINS if data and/or clock pins are split
across different PORTs.
PROTOMATTER_ERR_MALLOC if insufficient RAM to allocate
display memory.
PROTOMATTER_ERR_ARG if a bad value was passed to the
constructor.
*/
ProtomatterStatus begin(void);
void show(void);
uint32_t getFrameCount(void);
/*!
@brief Process data from GFXcanvas16 to the matrix framebuffer's
internal format for display.
*/
void show(void);
/*!
@brief Returns current value of frame counter and resets its value
to zero. Two calls to this, timed one second apart (or use
math with other intervals), can be used to get a rough
frames-per-second value for the matrix (since this is
difficult to estimate beforehand).
@return Frame count since previous call to function, as a uint32_t.
*/
uint32_t getFrameCount(void);
private:
Protomatter_core core; // Underlying C struct
void convert_byte(uint8_t *dest); // GFXcanvas16-to-matrix

30
arch.h
View file

@ -1,3 +1,19 @@
/*!
* @file arch.h
*
* Part of Adafruit's Protomatter library for HUB75-style RGB LED matrices.
*
* Adafruit invests time and resources providing this open source code,
* please support Adafruit and open-source hardware by purchasing
* products from Adafruit!
*
* Written by Phil "Paint Your Dragon" Burgess and Jeff Epler for
* Adafruit Industries, with contributions from the open source community.
*
* BSD license, all text here must be included in any redistribution.
*
*/
// Establishes some very low-level things specific to each supported device.
// This should ONLY be included by core.c, nowhere else. Ever.
@ -865,27 +881,27 @@ _PM_minMinPeriod: Mininum value for the "minPeriod" class member,
// DEFAULTS IF NOT DEFINED ABOVE -------------------------------------------
#if !defined(_PM_chunkSize)
#define _PM_chunkSize 8
#define _PM_chunkSize 8 ///< Unroll data-stuffing loop to this size
#endif
#if !defined(_PM_clockHoldHigh)
#define _PM_clockHoldHigh
#define _PM_clockHoldHigh ///< Extra cycles (if any) on clock HIGH signal
#endif
#if !defined(_PM_clockHoldLow)
#define _PM_clockHoldLow
#define _PM_clockHoldLow ///< Extra cycles (if any) on clock LOW signal
#endif
#if !defined(_PM_minMinPeriod)
#define _PM_minMinPeriod 100
#define _PM_minMinPeriod 100 ///< Minimum timer interval for least bit
#endif
#ifndef _PM_ALLOCATOR
#define _PM_ALLOCATOR(x) (malloc((x)))
#define _PM_ALLOCATOR(x) (malloc((x))) ///< Memory alloc call
#endif
#ifndef _PM_FREE
#define _PM_FREE(x) (free((x)))
#define _PM_FREE(x) (free((x))) ///< Memory free call
#endif
// ARDUINO SPECIFIC CODE ---------------------------------------------------
@ -1251,7 +1267,7 @@ void _PM_swapbuffer_maybe(Protomatter_core *core) {
#endif // ARDUINO || CIRCUITPYTHON
#ifndef _PM_PORT_TYPE
#define _PM_PORT_TYPE uint32_t
#define _PM_PORT_TYPE uint32_t ///< PORT register size/type
#endif
#endif // _PROTOMATTER_ARCH_H_

28
core.c
View file

@ -1,3 +1,19 @@
/*!
* @file core.c
*
* Part of Adafruit's Protomatter library for HUB75-style RGB LED matrices.
*
* Adafruit invests time and resources providing this open source code,
* please support Adafruit and open-source hardware by purchasing
* products from Adafruit!
*
* Written by Phil "Paint Your Dragon" Burgess and Jeff Epler for
* Adafruit Industries, with contributions from the open source community.
*
* BSD license, all text here must be included in any redistribution.
*
*/
// Device- and environment-neutral core matrix-driving functionality.
// See notes near top of arch.h regarding assumptions of hardware
// "common ground." If you find yourself doing an "#ifdef ARDUINO" or
@ -32,13 +48,13 @@
// refresh slower than this, and in many cases will...just need to set an
// upper limit to avoid excessive CPU load). An incredibly long comment block
// for a single constant, thank you for coming to my TED talk!
#define _PM_MAX_REFRESH_HZ 250
#define _PM_MAX_REFRESH_HZ 250 ///< Max matrix refresh rate
// Time (in microseconds) to pause following any change in address lines
// (individually or collectively). Some matrices respond slowly there...
// must pause on change for matrix to catch up. Defined here (rather than
// arch.h) because it's not architecture-specific.
#define _PM_ROW_DELAY 8
#define _PM_ROW_DELAY 8 ///< Delay time between row address line changes (ms)
// These are the lowest-level functions for issing data to matrices.
// There are three versions because it depends on how the six RGB data bits
@ -56,8 +72,8 @@ static void blast_byte(Protomatter_core *core, uint8_t *data);
static void blast_word(Protomatter_core *core, uint16_t *data);
static void blast_long(Protomatter_core *core, uint32_t *data);
#define _PM_clearReg(x) (*(volatile _PM_PORT_TYPE*)((x).clearReg) = ((x).bit))
#define _PM_setReg(x) (*(volatile _PM_PORT_TYPE*)((x).setReg) = ((x).bit))
#define _PM_clearReg(x) (*(volatile _PM_PORT_TYPE*)((x).clearReg) = ((x).bit)) ///< Clear non-RGB-data-or-clock control line (_PM_pin type)
#define _PM_setReg(x) (*(volatile _PM_PORT_TYPE*)((x).setReg) = ((x).bit)) ///< Set non-RGB-data-or-clock control line (_PM_pin type)
// Validate and populate vital elements of core structure.
// Does NOT allocate core struct -- calling function must provide that.
@ -525,13 +541,13 @@ void _PM_row_handler(Protomatter_core *core) {
_PM_clockHoldLow; \
*set_full = clock; /* Set clock high */ \
_PM_clockHoldHigh; \
*clear_full = rgbclock; /* Clear RGB data + clock */
*clear_full = rgbclock; /* Clear RGB data + clock */ ///< Bitbang one set of RGB data bits to matrix
#endif
#if _PM_chunkSize == 1
#define PEW_UNROLL PEW
#elif _PM_chunkSize == 8
#define PEW_UNROLL PEW PEW PEW PEW PEW PEW PEW PEW
#define PEW_UNROLL PEW PEW PEW PEW PEW PEW PEW PEW ///< 8-way PEW unroll
#elif _PM_chunkSize == 16
#define PEW_UNROLL \
PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW

285
core.h
View file

@ -1,3 +1,19 @@
/*!
* @file core.h
*
* Part of Adafruit's Protomatter library for HUB75-style RGB LED matrices.
*
* Adafruit invests time and resources providing this open source code,
* please support Adafruit and open-source hardware by purchasing
* products from Adafruit!
*
* Written by Phil "Paint Your Dragon" Burgess and Jeff Epler for
* Adafruit Industries, with contributions from the open source community.
*
* BSD license, all text here must be included in any redistribution.
*
*/
#ifndef _PROTOMATTER_CORE_H_
#define _PROTOMATTER_CORE_H_
@ -8,7 +24,7 @@ extern "C" {
#include <stdint.h>
#include <stdbool.h>
// Status type returned by some functions.
/** Status type returned by some functions. */
typedef enum {
PROTOMATTER_OK, // Everything is hunky-dory!
PROTOMATTER_ERR_PINS, // Clock and/or data pins on different PORTs
@ -16,86 +32,229 @@ typedef enum {
PROTOMATTER_ERR_ARG, // Bad input to function
} ProtomatterStatus;
// Struct for matrix control lines NOT related to RGB data or clock, i.e.
// latch, OE and address lines. RGB data and clock ("RGBC") are handled
// differently as they have specific requirements (and might use a toggle
// register if present). The data conversion functions need bitmasks for
// RGB data but do NOT need the set or clear registers, so those items
// are also declared as separate things in the core structure that follows.
/** Struct for matrix control lines NOT related to RGB data or clock, i.e.
latch, OE and address lines. RGB data and clock ("RGBC") are handled
differently as they have specific requirements (and might use a toggle
register if present). The data conversion functions need bitmasks for
RGB data but do NOT need the set or clear registers, so those items are
also declared as separate things in the core structure that follows. */
typedef struct {
volatile void *setReg; // GPIO bit set register
volatile void *clearReg; // GPIO bit clear register
uint32_t bit; // GPIO bitmask
uint8_t pin; // Some identifier, e.g. Arduino pin #
volatile void *setReg; ///< GPIO bit set register
volatile void *clearReg; ///< GPIO bit clear register
uint32_t bit; ///< GPIO bitmask
uint8_t pin; ///< Some unique ID, e.g. Arduino pin #
} _PM_pin;
// Struct with info about an RGB matrix chain and lots of state and buffer
// details for the library. Toggle-related items in this structure MUST be
// declared even if the device lacks GPIO bit-toggle registers (i.e. don't
// do an ifdef check around these). All hardware-specific details (including
// the presence or lack of toggle registers) are isolated to a single
// file -- arch.h -- which should ONLY be included by core.c, and ifdef'ing
// them would result in differing representations of this structure which
// must be shared between the library and calling code. (An alternative is
// to put any toggle-specific stuff at the end of the struct with an ifdef
// check, but that's just dirty pool and asking for trouble.)
/** Struct with info about an RGB matrix chain and lots of state and buffer
details for the library. Toggle-related items in this structure MUST be
declared even if the device lacks GPIO bit-toggle registers (i.e. don't
do an ifdef check around these). All hardware-specific details (including
the presence or lack of toggle registers) are isolated to a single
file -- arch.h -- which should ONLY be included by core.c, and ifdef'ing
them would result in differing representations of this structure which
must be shared between the library and calling code. (An alternative is
to put any toggle-specific stuff at the end of the struct with an ifdef
check, but that's just dirty pool and asking for trouble.) */
typedef struct {
void *timer; // Arch-specific timer/counter info
void *setReg; // RGBC bit set register (cast to use)
void *clearReg; // RGBC bit clear register "
void *toggleReg; // RGBC bit toggle register "
uint8_t *rgbPins; // Array of RGB data pins (mult of 6)
void *rgbMask; // PORT bit mask for each RGB pin
uint32_t clockMask; // PORT bit mask for RGB clock
uint32_t rgbAndClockMask; // PORT bit mask for RGB data + clock
volatile void *addrPortToggle; // See singleAddrPort below
void *screenData; // Per-bitplane RGB data for matrix
_PM_pin latch; // RGB data latch
_PM_pin oe; // !OE (LOW out enable)
_PM_pin *addr; // Array of address pins
uint32_t bufferSize; // Bytes per matrix buffer
uint32_t bitZeroPeriod; // Bitplane 0 timer period
uint32_t minPeriod; // Plane 0 timer period for ~250Hz
volatile uint32_t frameCount; // For estimating refresh rate
uint16_t width; // Matrix chain width in bits
uint8_t bytesPerElement; // Using 8, 16 or 32 bits of PORT?
uint8_t clockPin; // RGB clock pin identifier
uint8_t parallel; // Number of concurrent matrix outs
uint8_t numAddressLines; // Number of address line pins
uint8_t portOffset; // Active 8- or 16-bit pos. in PORT
uint8_t numPlanes; // Display bitplanes (1 to 6)
uint8_t numRowPairs; // Addressable row pairs
bool doubleBuffer; // 2X buffers for clean switchover
bool singleAddrPort; // If 1, all addr lines on same PORT
volatile uint8_t activeBuffer; // Index of currently-displayed buf
volatile uint8_t plane; // Current bitplane (changes in ISR)
volatile uint8_t row; // Current scanline (changes in ISR)
volatile uint8_t prevRow; // Scanline from prior ISR
volatile bool swapBuffers; // If 1, awaiting double-buf switch
void *timer; ///< Arch-specific timer/counter info
void *setReg; ///< RGBC bit set register (cast to use)
void *clearReg; ///< RGBC bit clear register "
void *toggleReg; ///< RGBC bit toggle register "
uint8_t *rgbPins; ///< Array of RGB data pins (mult of 6)
void *rgbMask; ///< PORT bit mask for each RGB pin
uint32_t clockMask; ///< PORT bit mask for RGB clock
uint32_t rgbAndClockMask; ///< PORT bit mask for RGB data + clock
volatile void *addrPortToggle; ///< See singleAddrPort below
void *screenData; ///< Per-bitplane RGB data for matrix
_PM_pin latch; ///< RGB data latch
_PM_pin oe; ///< !OE (LOW out enable)
_PM_pin *addr; ///< Array of address pins
uint32_t bufferSize; ///< Bytes per matrix buffer
uint32_t bitZeroPeriod; ///< Bitplane 0 timer period
uint32_t minPeriod; ///< Plane 0 timer period for ~250Hz
volatile uint32_t frameCount; ///< For estimating refresh rate
uint16_t width; ///< Matrix chain width in bits
uint8_t bytesPerElement; ///< Using 8, 16 or 32 bits of PORT?
uint8_t clockPin; ///< RGB clock pin identifier
uint8_t parallel; ///< Number of concurrent matrix outs
uint8_t numAddressLines; ///< Number of address line pins
uint8_t portOffset; ///< Active 8- or 16-bit pos. in PORT
uint8_t numPlanes; ///< Display bitplanes (1 to 6)
uint8_t numRowPairs; ///< Addressable row pairs
bool doubleBuffer; ///< 2X buffers for clean switchover
bool singleAddrPort; ///< If 1, all addr lines on same PORT
volatile uint8_t activeBuffer; ///< Index of currently-displayed buf
volatile uint8_t plane; ///< Current bitplane (changes in ISR)
volatile uint8_t row; ///< Current scanline (changes in ISR)
volatile uint8_t prevRow; ///< Scanline from prior ISR
volatile bool swapBuffers; ///< If 1, awaiting double-buf switch
} Protomatter_core;
// Protomatter core function prototypes. Environment-specific code (like the
// Adafruit_Protomatter class for Arduino) calls on these underlying things,
// and has to provide a few extras of its own (interrupt handlers and such).
// User code shouldn't need to invoke any of them directly.
/*!
@brief Initialize values in Protomatter_core structure.
@param core Pointer to Protomatter_core structure.
@param bitWidth Total width of RGB matrix chain, in pixels.
Usu. some multiple of 32, but maybe exceptions.
@param bitDepth Color "depth" in bitplanes, determines range of
shades of red, green and blue. e.g. passing 4
bits = 16 shades ea. R,G,B = 16x16x16 = 4096
colors.
@param rgbCount Number of "sets" of RGB data pins, each set
containing 6 pins (2 ea. R,G,B). Typically 1,
indicating a single matrix (or matrix chain).
In theory (but not yet extensively tested),
multiple sets of pins can be driven in parallel,
up to 5 on some devices (if the hardware design
provides all those bits on one PORT).
@param rgbList A uint8_t array of pins (values are platform-
dependent), 6X the prior rgbCount value,
corresponding to the 6 output color bits for a
matrix (or chain). Order is upper-half red, green,
blue, lower-half red, green blue (repeat for each
add'l chain). All the RGB pins (plus the clock pin
below on some architectures) MUST be on the same
PORT register. It's recommended (but not required)
that all RGB pins (and clock depending on arch) be
within the same byte of a PORT (but do not need to
be sequential or contiguous within that byte) for
more efficient RAM utilization. For two concurrent
chains, same principle but 16-bit word.
@param addrCount Number of row address lines required of matrix.
Total pixel height is then 2 x 2^addrCount, e.g.
32-pixel-tall matrices have 4 row address lines.
@param addrList A uint8_t array of pins (platform-dependent pin
numbering), one per row address line.
@param clockPin RGB clock pin (platform-dependent pin #).
@param latchPin RGB data latch pin (platform-dependent pin #).
@param oePin Output enable pin (platform-dependent pin #),
active low.
@param doubleBuffer If true, two matrix buffers are allocated,
so changing display contents doesn't introduce
artifacts mid-conversion. Requires ~2X RAM.
@param timer Pointer to timer peripheral or timer-related
struct (architecture-dependent), or NULL to
use a default timer ID (also arch-dependent).
@return A ProtomatterStatus status, one of:
PROTOMATTER_OK if everything is good.
PROTOMATTER_ERR_PINS if data and/or clock pins are split across
different PORTs.
PROTOMATTER_ERR_MALLOC if insufficient RAM to allocate display
memory.
PROTOMATTER_ERR_ARG if a bad value (core or timer pointer) was
passed in.
*/
extern ProtomatterStatus _PM_init(Protomatter_core *core,
uint16_t bitWidth, uint8_t bitDepth,
uint8_t rgbCount, uint8_t *rgbList,
uint8_t addrCount, uint8_t *addrList,
uint8_t clockPin, uint8_t latchPin, uint8_t oePin,
bool doubleBuffer, void *timer);
/*!
@brief Allocate display buffers and populate additional elements of a
Protomatter matrix.
@param core Pointer to Protomatter_core structure.
@return A ProtomatterStatus status, one of:
PROTOMATTER_OK if everything is good.
PROTOMATTER_ERR_PINS if data and/or clock pins are split across
different PORTs.
PROTOMATTER_ERR_MALLOC if insufficient RAM to allocate display
memory.
PROTOMATTER_ERR_ARG if a bad value.
*/
extern ProtomatterStatus _PM_begin(Protomatter_core *core);
extern void _PM_stop(Protomatter_core *core);
extern void _PM_resume(Protomatter_core *core);
extern void _PM_free(Protomatter_core *core);
extern void _PM_row_handler(Protomatter_core *core);
extern uint32_t _PM_getFrameCount(Protomatter_core *core);
extern void _PM_timerStart(void *tptr, uint32_t period);
extern uint32_t _PM_timerStop(void *tptr);
extern uint32_t _PM_timerGetCount(void *tptr);
extern void _PM_convert_565(Protomatter_core *core,
/*!
@brief Disable (but do not deallocate) a Protomatter matrix. Disables
matrix by setting OE pin HIGH and writing all-zero data to
matrix shift registers, so it won't halt with lit LEDs.
@param core Pointer to Protomatter_core structure.
*/
extern void _PM_stop(Protomatter_core *core);
/*!
@brief Start or restart a matrix. Initialize counters, configure and
start timer.
@param core Pointer to Protomatter_core structure.
*/
extern void _PM_resume(Protomatter_core *core);
/*!
@brief Deallocate memory associated with Protomatter_core structure
(e.g. screen data, pin lists for data and rows). Does not
deallocate the structure itself.
@param core Pointer to Protomatter_core structure.
*/
extern void _PM_free(Protomatter_core *core);
/*!
@brief Matrix "row handler" that's called by the timer interrupt.
Handles row address lines and issuing data to matrix.
@param core Pointer to Protomatter_core structure.
*/
extern void _PM_row_handler(Protomatter_core *core);
/*!
@brief Returns current value of frame counter and resets its value to
zero. Two calls to this, timed one second apart (or use math with
other intervals), can be used to get a rough frames-per-second
value for the matrix (since this is difficult to estimate
beforehand).
@param core Pointer to Protomatter_core structure.
@return Frame count since previous call to function, as a uint32_t.
*/
extern uint32_t _PM_getFrameCount(Protomatter_core *core);
/*!
@brief Start (or restart) a timer/counter peripheral.
@param tptr Pointer to timer/counter peripheral OR a struct
encapsulating information about a timer/counter
periph (architecture-dependent).
@param period Timer 'top' / rollover value.
*/
extern void _PM_timerStart(void *tptr, uint32_t period);
/*!
@brief Stop timer/counter peripheral.
@param tptr Pointer to timer/counter peripheral OR a struct
encapsulating information about a timer/counter
periph (architecture-dependent).
@return Counter value when timer was stopped.
*/
extern uint32_t _PM_timerStop(void *tptr);
/*!
@brief Query a timer/counter peripheral's current count.
@param tptr Pointer to timer/counter peripheral OR a struct
encapsulating information about a timer/counter
periph (architecture-dependent).
@return Counter value.
*/
extern uint32_t _PM_timerGetCount(void *tptr);
/*!
@brief Converts image data from GFX16 canvas to the matrices weird
internal format.
@param core Pointer to Protomatter_core structure.
@param source Pointer to source image data (see Adafruit_GFX 16-bit
canvas type for format).
@param width Width of canvas in pixels, as this may be different than
the matrix pixel width due to row padding.
*/
extern void _PM_convert_565(Protomatter_core *core,
uint16_t *source, uint16_t width);
extern void _PM_swapbuffer_maybe(Protomatter_core *core);
/*!
@brief Pauses until the next vertical blank to avoid 'tearing' animation
(if display is double-buffered). If single-buffered, has no effect.
@param core Pointer to Protomatter_core structure.
*/
extern void _PM_swapbuffer_maybe(Protomatter_core *core);
#ifdef __cplusplus
} // extern "C"

View file

@ -6,5 +6,5 @@ sentence=This is a library for the Adafruit RGB LED matrix.
paragraph=RGB LED matrix.
category=Display
url=https://github.com/adafruit/Adafruit_protomatter
architectures=*
architectures=samd,nrf52,stm32
depends=Adafruit GFX Library