Merge pull request #86 from adafruit/idf5.5

Update for ESP-IDF 5.5 compatibility
This commit is contained in:
Dan Halbert 2025-08-25 19:35:14 -04:00 committed by GitHub
commit f83bac7e42
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
10 changed files with 95 additions and 220 deletions

View file

@ -29,7 +29,7 @@
#define _PM_portSetRegister(pin) (volatile uint32_t *)&GPIO.out_w1ts
#define _PM_portClearRegister(pin) (volatile uint32_t *)&GPIO.out_w1tc
#define _PM_portBitMask(pin) (1U << ((pin)&31))
#define _PM_portBitMask(pin) (1U << ((pin) & 31))
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
#define _PM_byteOffset(pin) ((pin & 31) / 8)

View file

@ -29,7 +29,7 @@
#define _PM_portSetRegister(pin) (volatile uint32_t *)&GPIO.out_w1ts
#define _PM_portClearRegister(pin) (volatile uint32_t *)&GPIO.out_w1tc
#define _PM_portBitMask(pin) (1U << ((pin)&31))
#define _PM_portBitMask(pin) (1U << ((pin) & 31))
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
#define _PM_byteOffset(pin) ((pin & 31) / 8)

View file

@ -129,12 +129,10 @@ IRAM_ATTR static void blast_long(Protomatter_core *core, uint32_t *data) {}
static void pinmux(int8_t pin, uint8_t signal) {
esp_rom_gpio_connect_out_signal(pin, signal, false, false);
gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[pin], PIN_FUNC_GPIO);
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[pin], PIN_FUNC_GPIO);
gpio_set_drive_capability((gpio_num_t)pin, GPIO_DRIVE_STRENGTH);
}
#if defined(ARDUINO) // COMPILING FOR ARDUINO ------------------------------
// LCD_CAM requires a complete replacement of the "blast" functions in order
// to use the DMA-based peripheral.
#define _PM_CUSTOM_BLAST // Disable blast_*() functions in core.c
@ -162,11 +160,23 @@ IRAM_ATTR static void blast_byte(Protomatter_core *core, uint8_t *data) {
// Timer was cleared to 0 before calling blast_byte(), so this
// is the state of the timer immediately after DMA started:
#if defined(ARDUINO)
dmaSetupTime = (uint32_t)timerRead((hw_timer_t *)core->timer);
#elif defined(CIRCUITPY)
uint64_t value;
#if (ESP_IDF_VERSION_MAJOR == 5)
gptimer_handle_t timer = (gptimer_handle_t)core->timer;
gptimer_get_raw_count(timer, &value);
#else
timer_index_t *timer = (timer_index_t *)core->timer;
timer_get_counter_value(timer->group, timer->idx, &value);
#endif
dmaSetupTime = (uint32_t)value;
#endif
// See notes near top of this file for what's done with this info.
}
void _PM_timerInit(Protomatter_core *core) {
static void _PM_timerInit(Protomatter_core *core) {
// On S3, initialize the LCD_CAM peripheral and DMA.
// LCD_CAM isn't enabled by default -- MUST begin with this:
@ -242,157 +252,9 @@ void _PM_timerInit(Protomatter_core *core) {
desc.next = NULL;
// Alloc DMA channel & connect it to LCD periph
gdma_channel_alloc_config_t dma_chan_config = {
.sibling_chan = NULL,
.direction = GDMA_CHANNEL_DIRECTION_TX,
.flags = {.reserve_sibling = 0}};
esp_err_t ret = gdma_new_channel(&dma_chan_config, &dma_chan);
(void)ret;
gdma_connect(dma_chan, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_LCD, 0));
gdma_strategy_config_t strategy_config = {.owner_check = false,
.auto_update_desc = false};
gdma_apply_strategy(dma_chan, &strategy_config);
gdma_transfer_ability_t ability = {
.sram_trans_align = 0,
.psram_trans_align = 0,
};
gdma_set_transfer_ability(dma_chan, &ability);
gdma_start(dma_chan, (intptr_t)&desc);
// Enable TRANS_DONE interrupt. Note that we do NOT require nor install
// an interrupt service routine, but DO need to enable the TRANS_DONE
// flag to make the LCD DMA transfer work.
LCD_CAM.lc_dma_int_ena.val |= LCD_LL_EVENT_TRANS_DONE & 0x03;
_PM_esp32commonTimerInit(core); // In esp32-common.h
}
#elif defined(CIRCUITPY) // COMPILING FOR CIRCUITPYTHON --------------------
// LCD_CAM requires a complete replacement of the "blast" functions in order
// to use the DMA-based peripheral.
#define _PM_CUSTOM_BLAST // Disable blast_*() functions in core.c
IRAM_ATTR static void blast_byte(Protomatter_core *core, uint8_t *data) {
// Reset LCD DOUT parameters each time (required).
// IN PRINCIPLE, cyclelen should be chainBits-1 (resulting in chainBits
// cycles). But due to the required dummy phases at start of transfer,
// extend by 1; set to chainBits, issue chainBits+1 cycles.
LCD_CAM.lcd_user.lcd_dout_cyclelen = core->chainBits;
LCD_CAM.lcd_user.lcd_dout = 1;
LCD_CAM.lcd_user.lcd_update = 1;
// Reset LCD TX FIFO each time, else we see old data. When doing this,
// it's REQUIRED in the setup code to enable at least one dummy pulse,
// else the PCLK & data are randomly misaligned by 1-2 clocks!
LCD_CAM.lcd_misc.lcd_afifo_reset = 1;
// Partially re-init descriptor each time (required)
desc.dw0.size = desc.dw0.length = core->chainBits;
desc.buffer = data;
gdma_start(dma_chan, (intptr_t)&desc);
esp_rom_delay_us(1); // Necessary before starting xfer
LCD_CAM.lcd_user.lcd_start = 1; // Begin LCD DMA xfer
// Timer was cleared to 0 before calling blast_byte(), so this
// is the state of the timer immediately after DMA started:
uint64_t value;
#if (ESP_IDF_VERSION_MAJOR == 5)
gptimer_handle_t timer = (gptimer_handle_t)core->timer;
gptimer_get_raw_count(timer, &value);
#else
timer_index_t *timer = (timer_index_t *)core->timer;
timer_get_counter_value(timer->group, timer->idx, &value);
#endif
dmaSetupTime = (uint32_t)value;
// See notes near top of this file for what's done with this info.
}
static void _PM_timerInit(Protomatter_core *core) {
// TO DO: adapt this function for any CircuitPython-specific changes.
// If none are required, this function can be deleted and the version
// above can be moved before the ARDUIO/CIRCUITPY checks. If minimal
// changes, consider a single _PM_timerInit() implementation with
// ARDUINO/CIRCUITPY checks inside. It's all good.
// On S3, initialize the LCD_CAM peripheral and DMA.
// LCD_CAM isn't enabled by default -- MUST begin with this:
periph_module_enable(PERIPH_LCD_CAM_MODULE);
periph_module_reset(PERIPH_LCD_CAM_MODULE);
// Reset LCD bus
LCD_CAM.lcd_user.lcd_reset = 1;
esp_rom_delay_us(100);
// Configure LCD clock
LCD_CAM.lcd_clock.clk_en = 1; // Enable clock
LCD_CAM.lcd_clock.lcd_clk_sel = 3; // PLL160M source
LCD_CAM.lcd_clock.lcd_clkm_div_a = 1; // 1/1 fractional divide,
LCD_CAM.lcd_clock.lcd_clkm_div_b = 1; // plus prescale below yields...
#if LCD_CLK_PRESCALE == 8
LCD_CAM.lcd_clock.lcd_clkm_div_num = 7; // 1:8 prescale (20 MHz CLK)
#elif LCD_CLK_PRESCALE == 9
LCD_CAM.lcd_clock.lcd_clkm_div_num = 8; // 1:9 prescale (17.8 MHz CLK)
#else
LCD_CAM.lcd_clock.lcd_clkm_div_num = 9; // 1:10 prescale (16 MHz CLK)
#endif
LCD_CAM.lcd_clock.lcd_ck_out_edge = 0; // PCLK low in first half of cycle
LCD_CAM.lcd_clock.lcd_ck_idle_edge = 0; // PCLK low idle
LCD_CAM.lcd_clock.lcd_clk_equ_sysclk = 1; // PCLK = CLK (ignore CLKCNT_N)
// Configure frame format. Some of these could probably be skipped and
// use defaults, but being verbose for posterity...
LCD_CAM.lcd_ctrl.lcd_rgb_mode_en = 0; // i8080 mode (not RGB)
LCD_CAM.lcd_rgb_yuv.lcd_conv_bypass = 0; // Disable RGB/YUV converter
LCD_CAM.lcd_misc.lcd_next_frame_en = 0; // Do NOT auto-frame
LCD_CAM.lcd_data_dout_mode.val = 0; // No data delays
LCD_CAM.lcd_user.lcd_always_out_en = 0; // Only when requested
LCD_CAM.lcd_user.lcd_8bits_order = 0; // Do not swap bytes
LCD_CAM.lcd_user.lcd_bit_order = 0; // Do not reverse bit order
LCD_CAM.lcd_user.lcd_2byte_en = 0; // 8-bit data mode
// MUST enable at least one dummy phase at start of output, else clock and
// data are randomly misaligned by 1-2 cycles following required TX FIFO
// reset in blast_byte(). One phase MOSTLY works but sparkles a tiny bit
// (as in still very occasionally misaligned by 1 cycle). Two seems ideal;
// no sparkle. Since HUB75 is just a shift register, the extra clock ticks
// are harmless and the zero-data shifts off end of the chain.
LCD_CAM.lcd_user.lcd_dummy = 1; // Enable dummy phase(s) @ LCD start
LCD_CAM.lcd_user.lcd_dummy_cyclelen = 1; // 2 dummy phases
LCD_CAM.lcd_user.lcd_cmd = 0; // No command at LCD start
LCD_CAM.lcd_user.lcd_cmd_2_cycle_en = 0;
LCD_CAM.lcd_user.lcd_update = 1;
// Configure signal pins. IN THEORY this could be expanded to support
// 2 parallel chains, but the rest of the LCD & DMA setup is not currently
// written for that, so it's limited to a single chain for now.
const uint8_t signal[] = {LCD_DATA_OUT0_IDX, LCD_DATA_OUT1_IDX,
LCD_DATA_OUT2_IDX, LCD_DATA_OUT3_IDX,
LCD_DATA_OUT4_IDX, LCD_DATA_OUT5_IDX};
for (int i = 0; i < 6; i++)
pinmux(core->rgbPins[i], signal[i]);
pinmux(core->clockPin, LCD_PCLK_IDX);
gpio_set_drive_capability(core->latch.pin, GPIO_DRIVE_STRENGTH);
gpio_set_drive_capability(core->oe.pin, GPIO_DRIVE_STRENGTH);
for (uint8_t i = 0; i < core->numAddressLines; i++) {
gpio_set_drive_capability(core->addr[i].pin, GPIO_DRIVE_STRENGTH);
}
// Disable LCD_CAM interrupts, clear any pending interrupt
LCD_CAM.lc_dma_int_ena.val &= ~LCD_LL_EVENT_TRANS_DONE;
LCD_CAM.lc_dma_int_clr.val = 0x03;
// Set up DMA TX descriptor
desc.dw0.owner = DMA_DESCRIPTOR_BUFFER_OWNER_DMA;
desc.dw0.suc_eof = 1;
desc.dw0.size = desc.dw0.length = core->chainBits;
desc.buffer = core->screenData;
desc.next = NULL;
// Alloc DMA channel & connect it to LCD periph
#if defined(CIRCUITPY)
if (dma_chan == NULL) {
#endif
gdma_channel_alloc_config_t dma_chan_config = {
.sibling_chan = NULL,
.direction = GDMA_CHANNEL_DIRECTION_TX,
@ -407,7 +269,9 @@ static void _PM_timerInit(Protomatter_core *core) {
.psram_trans_align = 0,
};
gdma_set_transfer_ability(dma_chan, &ability);
#if defined(CIRCUITPY)
}
#endif
gdma_start(dma_chan, (intptr_t)&desc);
// Enable TRANS_DONE interrupt. Note that we do NOT require nor install
@ -418,6 +282,4 @@ static void _PM_timerInit(Protomatter_core *core) {
_PM_esp32commonTimerInit(core); // In esp32-common.h
}
#endif // END CIRCUITPYTHON ------------------------------------------------
#endif // END ESP32S3

View file

@ -32,7 +32,7 @@
#define _PM_portClearRegister(pin) \
(volatile uint32_t *)((pin < 32) ? &GPIO.out_w1tc : &GPIO.out1_w1tc.val)
#define _PM_portBitMask(pin) (1U << ((pin)&31))
#define _PM_portBitMask(pin) (1U << ((pin) & 31))
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
#define _PM_byteOffset(pin) ((pin & 31) / 8)

View file

@ -99,7 +99,7 @@ volatile uint32_t *_PM_portClearRegister(uint32_t pin) {
#define _PM_pinInput(pin) nrf_gpio_cfg_input(pin)
#define _PM_pinHigh(pin) nrf_gpio_pin_set(pin)
#define _PM_pinLow(pin) nrf_gpio_pin_clear(pin)
#define _PM_portBitMask(pin) (1u << ((pin)&31))
#define _PM_portBitMask(pin) (1u << ((pin) & 31))
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
#define _PM_byteOffset(pin) ((pin & 31) / 8)
@ -142,19 +142,19 @@ void _PM_timerInit(Protomatter_core *core) {
IRQn_Type IRQn; // Interrupt number
} timer[] = {
#if defined(NRF_TIMER0)
{NRF_TIMER0, TIMER0_IRQn},
{NRF_TIMER0, TIMER0_IRQn},
#endif
#if defined(NRF_TIMER1)
{NRF_TIMER1, TIMER1_IRQn},
{NRF_TIMER1, TIMER1_IRQn},
#endif
#if defined(NRF_TIMER2)
{NRF_TIMER2, TIMER2_IRQn},
{NRF_TIMER2, TIMER2_IRQn},
#endif
#if defined(NRF_TIMER3)
{NRF_TIMER3, TIMER3_IRQn},
{NRF_TIMER3, TIMER3_IRQn},
#endif
#if defined(NRF_TIMER4)
{NRF_TIMER4, TIMER4_IRQn},
{NRF_TIMER4, TIMER4_IRQn},
#endif
};
#define NUM_TIMERS (sizeof timer / sizeof timer[0])

View file

@ -64,7 +64,7 @@ void _PM_IRQ_HANDLER(void) {
#define _PM_pinInput(pin) gpio_set_pin_direction(pin, GPIO_DIRECTION_IN)
#define _PM_pinHigh(pin) gpio_set_pin_level(pin, 1)
#define _PM_pinLow(pin) gpio_set_pin_level(pin, 0)
#define _PM_portBitMask(pin) (1u << ((pin)&31))
#define _PM_portBitMask(pin) (1u << ((pin) & 31))
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
#define _PM_byteOffset(pin) ((pin & 31) / 8)

View file

@ -51,19 +51,19 @@ void _PM_timerInit(Protomatter_core *core) {
uint8_t GCM_ID; // GCLK selection ID
} timer[] = {
#if defined(TC0)
{TC0, TC0_IRQn, GCM_TCC0_TCC1},
{TC0, TC0_IRQn, GCM_TCC0_TCC1},
#endif
#if defined(TC1)
{TC1, TC1_IRQn, GCM_TCC0_TCC1},
{TC1, TC1_IRQn, GCM_TCC0_TCC1},
#endif
#if defined(TC2)
{TC2, TC2_IRQn, GCM_TCC2_TC3},
{TC2, TC2_IRQn, GCM_TCC2_TC3},
#endif
#if defined(TC3)
{TC3, TC3_IRQn, GCM_TCC2_TC3},
{TC3, TC3_IRQn, GCM_TCC2_TC3},
#endif
#if defined(TC4)
{TC4, TC4_IRQn, GCM_TC4_TC5},
{TC4, TC4_IRQn, GCM_TC4_TC5},
#endif
};
#define NUM_TIMERS (sizeof timer / sizeof timer[0])

View file

@ -78,43 +78,43 @@ void _PM_timerInit(Protomatter_core *core) {
uint8_t GCLK_ID; // Peripheral channel # for clock source
} timer[] = {
#if defined(TC0)
{TC0, TC0_IRQn, TC0_GCLK_ID},
{TC0, TC0_IRQn, TC0_GCLK_ID},
#endif
#if defined(TC1)
{TC1, TC1_IRQn, TC1_GCLK_ID},
{TC1, TC1_IRQn, TC1_GCLK_ID},
#endif
#if defined(TC2)
{TC2, TC2_IRQn, TC2_GCLK_ID},
{TC2, TC2_IRQn, TC2_GCLK_ID},
#endif
#if defined(TC3)
{TC3, TC3_IRQn, TC3_GCLK_ID},
{TC3, TC3_IRQn, TC3_GCLK_ID},
#endif
#if defined(TC4)
{TC4, TC4_IRQn, TC4_GCLK_ID},
{TC4, TC4_IRQn, TC4_GCLK_ID},
#endif
#if defined(TC5)
{TC5, TC5_IRQn, TC5_GCLK_ID},
{TC5, TC5_IRQn, TC5_GCLK_ID},
#endif
#if defined(TC6)
{TC6, TC6_IRQn, TC6_GCLK_ID},
{TC6, TC6_IRQn, TC6_GCLK_ID},
#endif
#if defined(TC7)
{TC7, TC7_IRQn, TC7_GCLK_ID},
{TC7, TC7_IRQn, TC7_GCLK_ID},
#endif
#if defined(TC8)
{TC8, TC8_IRQn, TC8_GCLK_ID},
{TC8, TC8_IRQn, TC8_GCLK_ID},
#endif
#if defined(TC9)
{TC9, TC9_IRQn, TC9_GCLK_ID},
{TC9, TC9_IRQn, TC9_GCLK_ID},
#endif
#if defined(TC10)
{TC10, TC10_IRQn, TC10_GCLK_ID},
{TC10, TC10_IRQn, TC10_GCLK_ID},
#endif
#if defined(TC11)
{TC11, TC11_IRQn, TC11_GCLK_ID},
{TC11, TC11_IRQn, TC11_GCLK_ID},
#endif
#if defined(TC12)
{TC12, TC12_IRQn, TC12_GCLK_ID},
{TC12, TC12_IRQn, TC12_GCLK_ID},
#endif
};
#define NUM_TIMERS (sizeof timer / sizeof timer[0])

View file

@ -28,7 +28,7 @@
#include "timers.h"
#undef _PM_portBitMask
#define _PM_portBitMask(pin) (1u << ((pin)&15))
#define _PM_portBitMask(pin) (1u << ((pin) & 15))
#define _PM_byteOffset(pin) ((pin & 15) / 8)
#define _PM_wordOffset(pin) ((pin & 15) / 16)

View file

@ -95,12 +95,13 @@ ProtomatterStatus _PM_init(Protomatter_core *core, uint16_t bitWidth,
uint8_t addrCount, uint8_t *addrList,
uint8_t clockPin, uint8_t latchPin, uint8_t oePin,
bool doubleBuffer, int8_t tile, void *timer) {
if (!core)
if (!core) {
return PROTOMATTER_ERR_ARG;
}
// bitDepth is NOT constrained here, handle in calling function
// (varies with implementation, e.g. GFX lib is max 6 bitplanes,
// but might be more or less elsewhere)
// bitDepth is NOT constrained here, handle in calling function
// (varies with implementation, e.g. GFX lib is max 6 bitplanes,
// but might be more or less elsewhere)
#if defined(_PM_bytesPerElement)
#if _PM_bytesPerElement == 1
if (rgbCount > 1)
@ -780,9 +781,9 @@ IRAM_ATTR static void blast_word(Protomatter_core *core, uint16_t *data) {
volatile uint16_t *toggle =
(volatile uint16_t *)core->toggleReg + core->portOffset;
#else
volatile uint16_t *set; // For RGB data set
volatile _PM_PORT_TYPE *set_full; // For clock set
volatile _PM_PORT_TYPE *clear_full; // For RGB data + clock clear
volatile uint16_t *set; // For RGB data set
volatile _PM_PORT_TYPE *set_full; // For clock set
volatile _PM_PORT_TYPE *clear_full; // For RGB data + clock clear
set = (volatile uint16_t *)core->setReg + core->portOffset;
set_full = (volatile _PM_PORT_TYPE *)core->setReg;
clear_full = (volatile _PM_PORT_TYPE *)core->clearReg;
@ -829,7 +830,7 @@ IRAM_ATTR static void blast_long(Protomatter_core *core, uint32_t *data) {
// Note in this case two copies exist of the PORT set register.
// The optimizer will most likely simplify this; leaving as-is, not
// wanting a special case of the PEW macro due to divergence risk.
volatile uint32_t *set; // For RGB data set
volatile uint32_t *set; // For RGB data set
#if !defined(_PM_STRICT_32BIT_IO)
volatile _PM_PORT_TYPE *set_full; // For clock set
set_full = (volatile _PM_PORT_TYPE *)core->setReg;
@ -1074,7 +1075,7 @@ __attribute__((noinline)) void _PM_convert_565_byte(Protomatter_core *core,
*d2++ = result;
#endif
} // end x
} // end tile
} // end tile
greenBit <<= 1;
if (plane || (core->numPlanes < 6)) {
@ -1100,8 +1101,8 @@ __attribute__((noinline)) void _PM_convert_565_byte(Protomatter_core *core,
dest[-pad] &= ~clockMask; // Negative index is legal & intentional
#endif
dest += bitplaneSize; // Advance one scanline in dest buffer
} // end plane
} // end row
} // end plane
} // end row
}
// Corresponding function for word output -- either 12 RGB bits (2 parallel
@ -1199,20 +1200,26 @@ void _PM_convert_565_word(Protomatter_core *core, uint16_t *source,
uint16_t upperRGB = upperSrc[srcIdx]; // Pixel in upper half
uint16_t lowerRGB = lowerSrc[srcIdx]; // Pixel in lower half
uint16_t result = 0;
if (upperRGB & redBit)
if (upperRGB & redBit) {
result |= pinMask[0];
if (upperRGB & greenBit)
}
if (upperRGB & greenBit) {
result |= pinMask[1];
if (upperRGB & blueBit)
}
if (upperRGB & blueBit) {
result |= pinMask[2];
if (lowerRGB & redBit)
}
if (lowerRGB & redBit) {
result |= pinMask[3];
if (lowerRGB & greenBit)
}
if (lowerRGB & greenBit) {
result |= pinMask[4];
if (lowerRGB & blueBit)
}
if (lowerRGB & blueBit) {
result |= pinMask[5];
// Main difference here vs byte converter is each chain
// ORs new bits into place (vs single-pass overwrite).
}
// Main difference here vs byte converter is each chain
// ORs new bits into place (vs single-pass overwrite).
// #if defined(_PM_portToggleRegister)
#if defined(_PM_USE_TOGGLE_FORMAT)
*d2++ |= result ^ prior; // Bitwise OR
@ -1221,7 +1228,7 @@ void _PM_convert_565_word(Protomatter_core *core, uint16_t *source,
*d2++ |= result; // Bitwise OR
#endif
} // end x
} // end tile
} // end tile
greenBit <<= 1;
if (plane || (core->numPlanes < 6)) {
redBit <<= 1;
@ -1231,9 +1238,9 @@ void _PM_convert_565_word(Protomatter_core *core, uint16_t *source,
blueBit = 0b0000000000000001;
}
dest += bitplaneSize; // Advance one scanline in dest buffer
} // end plane
} // end row
pinMask += 6; // Next chain's RGB pin masks
} // end plane
} // end row
pinMask += 6; // Next chain's RGB pin masks
}
}
@ -1323,20 +1330,26 @@ void _PM_convert_565_long(Protomatter_core *core, uint16_t *source,
uint16_t upperRGB = upperSrc[srcIdx]; // Pixel in upper half
uint16_t lowerRGB = lowerSrc[srcIdx]; // Pixel in lower half
uint32_t result = 0;
if (upperRGB & redBit)
if (upperRGB & redBit) {
result |= pinMask[0];
if (upperRGB & greenBit)
}
if (upperRGB & greenBit) {
result |= pinMask[1];
if (upperRGB & blueBit)
}
if (upperRGB & blueBit) {
result |= pinMask[2];
if (lowerRGB & redBit)
}
if (lowerRGB & redBit) {
result |= pinMask[3];
if (lowerRGB & greenBit)
}
if (lowerRGB & greenBit) {
result |= pinMask[4];
if (lowerRGB & blueBit)
}
if (lowerRGB & blueBit) {
result |= pinMask[5];
// Main difference here vs byte converter is each chain
// ORs new bits into place (vs single-pass overwrite).
}
// Main difference here vs byte converter is each chain
// ORs new bits into place (vs single-pass overwrite).
// #if defined(_PM_portToggleRegister)
#if defined(_PM_USE_TOGGLE_FORMAT)
*d2++ |= result ^ prior; // Bitwise OR
@ -1345,7 +1358,7 @@ void _PM_convert_565_long(Protomatter_core *core, uint16_t *source,
*d2++ |= result; // Bitwise OR
#endif
} // end x
} // end tile
} // end tile
greenBit <<= 1;
if (plane || (core->numPlanes < 6)) {
redBit <<= 1;
@ -1355,9 +1368,9 @@ void _PM_convert_565_long(Protomatter_core *core, uint16_t *source,
blueBit = 0b0000000000000001;
}
dest += bitplaneSize; // Advance one scanline in dest buffer
} // end plane
} // end row
pinMask += 6; // Next chain's RGB pin masks
} // end plane
} // end row
pinMask += 6; // Next chain's RGB pin masks
}
}