Adafruit_STHS34PF80/sths34pf80.txt
ladyada 836a63d339 Add complete low-pass filter configuration support
- Add sths34pf80_lpf_config_t enum for all LPF options (ODR/9 to ODR/800)
- Implement 4 LPF function pairs:
  * setMotionLowPassFilter/getMotionLowPassFilter (LPF1 bits 2:0)
  * setMotionPresenceLowPassFilter/getMotionPresenceLowPassFilter (LPF1 bits 5:3)
  * setPresenceLowPassFilter/getPresenceLowPassFilter (LPF2 bits 5:3)
  * setTemperatureLowPassFilter/getTemperatureLowPassFilter (LPF2 bits 2:0)
- Add comprehensive test example with printLPFSetting helper function
- Verified all functions working on hardware with proper register bit manipulation

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-06-11 18:19:01 -04:00

5200 lines
No EOL
59 KiB
Text
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

STHS34PF80
Datasheet
Low-power, high-sensitivity infrared (IR) sensor for presence and motion detection
Features
Key features
Product status link
STHS34PF80
Product summary
Order code
STHS34PF80TR
Temperature
range [°C]
-40 to +85
Package
LGA-10L
Packing
Tape and reel
Product resources
High-sensitivity infrared presence and motion detection sensor
Reach up to 4 meters without lens for objects measuring 70 x 25 cm²
Integrated silicon IR filter
SMD friendly
Capable of detecting stationary objects
Capable of distinguishing between stationary and moving objects
80° field of view
Factory calibrated
Low power
Embedded smart algorithm for presence / motion detection
Electrical specifications
Supply voltage: 1.7 V to 3.6 V
Supply current: 10 µA
2-wire I²C / 3-wire SPI serial interface
Programmable ODRs from 0.25 Hz to 30 Hz
One-shot mode
Sensing specifications
IR sensitivity: 2000 LSB/°C
RMS noise: 25 LSBrms
Operating wavelength: 5 µm to 20 µm
Local temperature sensor accuracy: ±0.3 °C
AN5867 (device application note)
TN0018 (design and soldering)
Product label
Package specifications
LGA 10-lead, 3.2 x 4.2 x 1.455 (max) mm
ECOPACK and RoHS compliant
Applications
Presence and proximity sensing
Alarm / security systems
Home automation
Smart lighting
IoT
Smart lockers
Smart wall pads
DS13916 - Rev 2 - July 2023
For further information contact your local STMicroelectronics sales office.
www.st.com
STHS34PF80
Description
The STHS34PF80 is an uncooled, factory-calibrated, infrared motion and presence detection sensor with
operating wavelength between 5 µm and 20 µm.
The STHS34PF80 sensor has been designed to measure the amount of IR radiation emitted from an object within
its field of view. The information is digitally processed by the ASIC, which can be programmed to monitor motion,
presence, or an overtemperature condition.
Thanks to its exceptional sensitivity, the STHS34PF80 can detect the presence of a human being at a distance up
to 4 meters without the need of an optical lens.
The STHS34PF80 is housed in a small 3.2 x 4.2 x 1.455 (max) mm 10-lead LGA package.
DS13916 - Rev 2
page 2/40
STHS34PF80
Overview
1
Overview
The STHS34PF80 is an infrared sensor that can be used to detect the presence of stationary and moving objects
as well as overtemperature conditions. It measures the object's IR radiation with unique TMOS technology to
detect its presence or motion when the object is inside the field of view.
An optical band-pass filter is deposited over the sensor limiting its operating range within the wavelengths of 5 µm
to 20 µm, making it insensitive to visible light and other bands.
The sensor is based on a matrix of floating vacuum thermal transistors MOS (TMOS) connected together and
acting as a single sensing element. A state-of-the-art thermal isolation is achieved thanks to ST's unique MEMS
manufacturing technologies, allowing the sensor to translate the smallest temperature changes into electrical
signals that, in turn, are fed to the ASIC.
The sensor is split into two parts, one exposed to IR radiation and the other one shielded. Differential reading
between the two parts is implemented to remove the effect of sensor self-heating.
The STHS34PF80 embeds a high-accuracy temperature sensor to measure the ambient temperature and to
enable measuring the precise IR radiation of an object.
The ASIC also implements dedicated smart processing to detect / discriminate between stationary and moving
objects and which can assert dedicated interrupts.
Different ODRs from 0.25 Hz to 30 Hz and a one-shot mode are available.
The STHS34PF80 is equipped with an I²C / 3-wire SPI interface and is housed in an OLGA 3.2 x 4.2 x 1.455 mm
10L package compatible with SMD mounting.
The field of view guaranteed by the package is 80°.
Figure 1. Block diagram
TMOS
Sensor
TMOS Analog
Front
End
ADC1
Temperature
Sensor
ADC2
Power
management
DS13916 - Rev 2
Digital
Logic
(Registers / LPF
etc..)
Clock generator
I2C
SPI
Digital Interface
Interrupt
Voltage &
Current bias
CS
SCL/SPC
SDA/SDI/O
INT
Calibration
registers
page 3/40
STHS34PF80
Pin description
2
Pin description
Figure 2. Pin configuration (package bottom view)
Table 1. Pin description
DS13916 - Rev 2
Pin number
Name
1
SCL / SPC
2
RES
3
CS
4
SDA / SDI/O
5
NC
6
VDD
Power supply
7
GND
0 V supply
8
GND
0 V supply
9
VDD
Power supply
10
INT
Interrupt signal
Function
I²C / SPI serial interface clock
Reserved (connect to GND)
I²C / SPI interface selection (1: I²C enabled; 0: SPI enabled)
I²C / SPI serial data line
Leave floating (do not connect)
page 4/40
STHS34PF80
Sensor and electrical specifications
3
Sensor and electrical specifications
Conditions at VDD = 1.8 V, T = 25 °C.
Table 2. Sensor specifications
Min.
Typ.(1)
Max.
Unit
Temperature output data (object and ambient)
16
Bit
Tamb_s
Ambient temperature sensitivity
100
LSB/°C
Tobj_s
Object temperature sensitivity(2)
Tamb_a
Ambient temperature sensor accuracy
Symbol
Parameter
Tbit
ODR
Object and ambient temperature output data rate
RMS noise
FFOV
Test condition
15 °C to 35 °C
2000
-10 °C to 60 °C
±0.3
-40 °C to 85 °C
±0.6
ODR [3:0] = 0001
0.25
ODR [3:0] = 0010
0.5
ODR [3:0] = 0011
1.0
ODR [3:0] = 0100
2.0
ODR [3:0] = 0101
4.0
ODR [3:0] = 0110
8.0
ODR [3:0] = 0111
15.0
ODR [3:0] = 1xxx
30.0
LSB/°C
°C
Hz
AVG_TMOS = 32(3)
25
LSBrms
Full field of view(4)
80
Degree
1. Typical specifications are not guaranteed.
2. The object temperature sensitivity is specified for full field-of-view coverage by a blackbody with more than 99% emissivity
and default gain mode configuration (CTRL0 (17h)). The accuracy specifications apply under settled isothermal conditions
only.
3. Tobj RMS noise can be different based on the AVG_TMOS value. Further detailed information can be found in Table 19.
4. Angle to have 50% IR intensity.
Table 3. Electrical specifications
Symbol
Parameter
VDD
Supply voltage
IDD
Supply current
IddPDN
TOP
Test condition
Min.
Typ.(1)
Max.
Unit
1.7
3.6
V
128 average @ 1 Hz ODR
10
32 average @ 1 Hz ODR
5
Power-down supply current
Operating temperature range (refer to Table 5)
µA
1.5
-40
µA
85
°C
1. Typical specifications are not guaranteed.
DS13916 - Rev 2
page 5/40
STHS34PF80
Sensor and electrical specifications
Table 4. DC characteristics
Symbol
Parameter
Condition
Min.
Typ.
Max.
Unit
DC input characteristics
VIL
Low-level input voltage (Schmitt buffer)
-
-
-
0.3 * VDD
V
VIH
High-level input voltage (Schmitt buffer)
-
0.7 * VDD
-
-
V
DC output characteristics
VOL
Low-level output voltage
-
-
0.2
V
VOH
High-level output voltage
VDD - 0.2
-
-
V
Table 5. Operating temperature range
CTRL0 (17h)
Default gain mode
Wide mode
Operating temperature range
∆Temp = Tamb_room Tamb_sensor
-40 ~ 85 °C
± 2 °C
10 ~ 40 °C
± 10 °C
-40 ~ 85 °C
-90 ~ 50 °C
Considering IR radiation measurement methodology, the output signal of TMOS is sensitive to temperature
differences between the ambient temperature of the sensor itself and the ambient temperature of the room where
the sensor takes the measurement. This delta of temperature could impact the operating temperature of the
sensor. Depending on the target application, the user can select different gain modes to cover the proper range of
the operating temperature and the delta of the temperature between the ambient temperature of the room and the
ambient temperature of the sensor as described in Table 5.
The gain mode can be selected in the gain mode register (CTRL0 (17h)) when the device is in power-down mode.
Note that this register restores its default value whenever the boot/reboot procedure is performed, so the user
needs to set wide mode whenever the device is turned on in case the application needs to cover a broad
operating temperature range and the delta between the temperature of the room in which the object is located
and the temperature of the environment in thermal coupling with the sensor (in other words, the temperature
inside the application).
DS13916 - Rev 2
page 6/40
STHS34PF80
Communication interface characteristics
3.1
3.1.1
Communication interface characteristics
SPI - serial peripheral interface
Subject to general operating conditions for VDD and TOP.
Table 6. SPI slave timing values
Symbol
Parameter
Value(1)
Min
Typ
Max
fc(SPC)
SPI clock frequency
tc(SPC)
SPI clock period
100
thigh(SPC)
SPI clock high
45
tlow(SPC)
SPI clock low
45
CS setup time (mode 3)
5
CS setup time (mode 0)
20
CS hold time (mode 3)
40
CS hold time (mode 0)
20
tsu(SI)
SDI input setup time
15
th(SI)
SDI input hold time
15
tv(SO)
SDO valid output time
50
SDO output disable time
50
Bus capacitance
100
tsu(CS)
th(CS)
tdis(SO)
Cload
10
Unit
MHz
ns
pF
1. Values are evaluated at 10 MHz clock frequency for SPI with 3 wires, based on characterization results, not tested in
production.
Figure 3. SPI slave timing diagram
Note:
DS13916 - Rev 2
Measurement points are done at 0.3·VDD and 0.7·VDD for both ports.
page 7/40
STHS34PF80
Communication interface characteristics
3.1.2
I²C - inter-IC control interface
Subject to general operating conditions for VDD and TOP.
Table 7. I²C slave timing values
Symbol
f(SCL)
I²C fast mode(1)(2)
Parameter
SCL clock frequency
I²C fast mode plus(1)(2)
Min
Max
Min
Max
0
400
0
1000
tw(SCLL)
SCL clock low time
1.3
0.5
tw(SCLH)
SCL clock high time
0.6
0.26
tsu(SDA)
SDA setup time
100
50
th(SDA)
SDA data hold time
0
0.9
START/REPEATED START condition hold time
0.6
0.26
tsu(SR)
REPEATED START condition setup time
0.6
0.26
tsu(SP)
STOP condition setup time
0.6
0.26
Bus free time between STOP and START condition
1.3
0.5
CB
kHz
µs
ns
0
th(ST)
tw(SP:SR)
Unit
µs
Data valid time
0.9
0.45
Data valid acknowledge time
0.9
0.45
Capacitive load for each bus line
400
550
pF
1. Data based on standard I²C protocol requirement, not tested in production.
2. Data for I²C fast mode and I²C fast mode plus have been evaluated by characterization, not tested in production
Figure 4. I²C slave timing diagram
REPEATED
START
START
tsu(SR)
tw(SP:SR)
SDA
tsu(SDA)
START
th(SDA)
tsu(SP)
STOP
SCL
th(ST)
Note:
DS13916 - Rev 2
tw(SCLL)
tw(SCLH)
Measurement points are done at 0.3·VDD and 0.7·VDD for both ports.
page 8/40
STHS34PF80
Absolute maximum ratings
3.2
Absolute maximum ratings
Stress above those listed as “absolute maximum ratings” may cause permanent damage to the device. This is a
stress rating only and functional operation of the device under these conditions is not implied. Exposure to
maximum rating conditions for extended periods may affect device reliability.
Table 8. Absolute maximum ratings
Symbol
VDD
Vin
Note:
Ratings
Supply voltage
Input voltage on any control pin
TSTG
Storage temperature range
ESD
Electrostatic discharge protection
Maximum value
Unit
-0.3 to 4.8
V
-0.3 to VDD+0.3
V
-40 to +125
°C
2 (HBM)
kV
Supply voltage on any pin should never exceed 4.8 V.
This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part.
This device is sensitive to electrostatic discharge (ESD), improper handling can cause permanent damage to the part.
DS13916 - Rev 2
page 9/40
STHS34PF80
Optical specifications
4
Optical specifications
Table 9. Optical specification
Symbol
FFOV
Parameter
Test condition
Full field of view
Min.
Typ. (1)
At 50% intensity
80
Max.
Unit
Degree
1. Typical specifications are not guaranteed.
Figure 5. Typical field of view measurements
Figure 6. Filter transmittance typical curve
DS13916 - Rev 2
page 10/40
STHS34PF80
Digital interfaces
5
Digital interfaces
The registers embedded inside the STHS34PF80 can be accessed through both an I²C and a 3-wire SPI slave
interface.
The serial interfaces are mapped to the same pins. The selection between the two interfaces is made through the
CS pin, refer to Table 1. Pin description.
5.1
I²C interface
Following the correct protocols, the device behaves as an I²C slave. The registers embedded inside the ASIC
device may be accessed through the I²C serial interfaces.
There are two signals associated with the I²C bus: the serial clock line (SCL) and the serial data line (SDA). The
latter is a bidirectional line used for sending and receiving the data to/from the interface. Both the lines must be
connected to VDD through an external pull-up resistor. When the bus is free, both the lines are high.
All transactions begin with a start (ST) and are terminated by a stop (SP) (see Figure 7). A high to low transition
on the SDA line while SCL is high defines a start condition (ST). A low to high transition on the SDA line while
SCL is high defines a stop condition.
Figure 7. Start and stop conditions
After the ST signal has been transmitted by the master, the bus is considered busy. The next byte of data
transmitted after the ST condition contains the address of the slave in the first 7 bits (SAD) and the eighth bit is W
= 0 which indicates that the master is transmitting data to the slave (SAD+W). When a slave address (SAD) is
sent, each device in the system compares the first seven bits after a start condition (ST) with its slave address. If
they match, the device considers itself addressed by the master.
The slave address of the STHS34PF80 is SAD=1011010.
Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge
pulse. The receiver must then pull the data line low so that it remains stable low during the high period of the
acknowledge clock pulse (SAK). A receiver which has been addressed must generate an acknowledge after each
byte of data has been received.
After the SAK from slave (STHS34PF80) the master sends an 8-bit subaddress (SUB): the 7 LSB represent the
actual register address while the MSB has no meaning. For this I²C the auto increment is always active. Since
auto increment is enabled by default, the SUB (register address) is automatically incremented to allow multiple
data read/write at increasing addresses. When the slave receives the subaddress it responds with an ACK.
After this SAK from the slave, the master can do a write (single or multiple) or a read (single or multiple).
When the master wants to write, it sends a DATA (8-bit) and the slave responds with SAK. At this point if the
master wants to close the communication, it sends a stop condition (SP) otherwise, it sends a new DATA.
When the master wants to read, it sends a repeated start condition (SR) and resends the slave address (SAD)
with a read bit (R = 1) (SAD+R). The slave responds with a SAK and sends the DATA (8-bit) to the master to read.
The master responds with a MAK (master acknowledge) if it wants to read from the next SUB address, otherwise
it responds with a NMAK (no master acknowledge) and closes the communication, sending a stop condition (SP).
DS13916 - Rev 2
page 11/40
STHS34PF80
I²C interface
5.1.1
I²C read and write sequences
The previous sequences are used to perform actual write and read sequences described in the following tables.
Table 10. Transfer when the master is writing one byte to slave
Master
ST
SAD+W
SUB
Slave
DATA
SAK
SP
SAK
SAK
Table 11. Transfer when master is writing multiple bytes to slave
Master
ST
SAD+W
SUB
Slave
SAK
DATA
DATA
SAK
SAK
SP
SAK
Table 12. Transfer when master is receiving (reading) one byte of data from slave
Master
ST
SAD+W
Slave
SUB
SAK
SR
SAD+R
SAK
NMAK
SAK
SP
DATA
Table 13. Transfer when master is receiving (reading) multiple bytes of data from slave
Master
Slave
DS13916 - Rev 2
ST
SAD+W
SUB
SAK
SR
SAK
SAD+R
MAK
SAK
DATA
MAK
DATA
NMAK
SP
DATA
page 12/40
STHS34PF80
SPI interface
5.2
SPI interface
The ASIC SPI is a bus slave. The SPI allows writing and read the registers of the device.
The serial interface interacts with the application using 3 wires: CS, SPC, SDI/O.
5.2.1
SPI write
Figure 8. SPI write protocol
The SPI write command is performed with 16 clock pulses. A multiple byte write command is performed by adding
blocks of 8 clock pulses to the previous one.
bit 0: WRITE bit. The value is 0.
bit 1 -7: address AD(6:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that is written inside the device (MSb first).
bit 16-... : data DI(...-8). Additional data in multiple byte writes.
Figure 9. Multiple byte SPI write protocol (2-byte example)
DS13916 - Rev 2
page 13/40
STHS34PF80
SPI interface
5.2.2
SPI read
Figure 10. SPI read protocol in 3-wire mode
The SPI read command is performed with 16 clocks pulses:
bit 0: READ bit. The value is 1.
bit 1-7: address AD(6:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSB first).
The multiple write command is also available in 3-wire mode.
DS13916 - Rev 2
page 14/40
STHS34PF80
Smart digital algorithms
6
Smart digital algorithms
The STHS34PF80 embeds smart digital algorithms to support the following three detection modes. These
embedded smart digital features are supported with default gain mode (CTRL0 (17h) = F1h), but they are not
available when wide mode (CTRL0 (17h) = 81h) is configured.
6.1
Presence detection
Motion detection
Ambient temperature shock detection
Presence detection
Presence detection is performed by observing the difference between the two output signals of each low-pass
filter (LPF_P_M & LPF_P) from the TMOS raw data of TOBJECT.
Then, the difference of the two signals is compared with the two thresholds of PRESENCE_THS and
HYST_PRES which can be configured for the target application. Finally, the presence detection flag signal
(PRES_FLAG) is set when the difference of the two filtered signals exceeds the threshold value as described in
the figure below. When the PRES_FLAG is asserted, the LPF_P output remains at its last value. The LPF_P
starts processing again the input data, providing filtered output when the PRES_FLAG is de-asserted
Figure 11. Block diagram of presence detection algorithm
TPRESENCE
TOBJECT
LPF_P_M
LPF_P
+
ABS
-
FREEZE
PRESENCE_THS
OR
PRESENCE_THS - HYST_PRESENCE
1
0
SEL_ABS
PRES_FLAG
TOGGLE
DS13916 - Rev 2
page 15/40
STHS34PF80
Motion detection
6.2
Motion detection
Motion detection is performed by observing the difference between the two output signals of each low-pass filter
(LPF_P_M & LPF_M) from the TMOS raw data of TOBJECT.
Then, the difference of the two signals is compared with the two thresholds of MOTION_THS and HYST_MOT
which can be configured for the target application. Finally, the motion detection flag signal (MOT_FLAG) is set
when the difference of the two filtered signals exceeds the threshold value as described in the figure below.
Figure 12. Block diagram of motion detection algorithm
TMOTION
TOBJECT
LPF_P_M
+
ABS
-
LPF_M
MOTION_THS
OR
MOTION_THS - HYST_MOTION
MOT_FLAG
TOGGLE
6.3
Ambient temperature shock detection
Ambient temperature shock detection is supported with the output signal of LPF_A_T and the signal of
TAMBIENT. The difference of the two signals is compared with the hysteresis of TAMB_SHOCK_THS and
HYST_TAMBS. The detection of the ambient shock flag (TAMB_SHOCK_FLAG) is set when the difference of the
two signals (LPF_A_T & TAMBIENT) exceeds the threshold values to indicate a sudden change of ambient
temperature.
Figure 13. Block diagram of ambient temperature shock detection algorithm
TAMB_SHOCK
TAMBIENT
LPF_A_T
+
ABS
TAMB_SHOCK_THS
OR
TAMB_SHOCK_THS - HYST_TAMB_SHOCK
TAMB_SHOCK_FLAG
TOGGLE
DS13916 - Rev 2
page 16/40
STHS34PF80
Application schematics
7
Application schematics
The device power supply must be provided through the VDD line, a power supply decoupling capacitor (100 nF)
must be placed as near as possible to the supply pins of device (VDD). Depending on the application, an
additional capacitor of 1 µF could be placed on the VDD line to avoid power noise on VDD.
The functionality of the device and the measured data outputs are selectable and accessible through the I²C and
SPI digital interface as shown in the following figures.
Figure 14. Application schematic with I²C connection
Figure 15. Application schematic with SPI connection
DS13916 - Rev 2
page 17/40
STHS34PF80
Application schematics
Table 14. Internal pin status
DS13916 - Rev 2
Pin number
Name
Default pin status
1
SCL / SPC
Default: input without pull-up
2
RES
3
CS
Default: input with pull-up
4
SDA / SDI/O
Default: input without pull-up
5
NC
6
VDD
7
GND
8
GND
9
VDD
10
INT
Default: input without pull-up
page 18/40
STHS34PF80
Soldering guidelines
8
Soldering guidelines
The soldering profile depends on the number, size and placement of components on the application board. For
this reason, it is not possible to define a unique soldering profile for the sensor only. The customer should use a
time and temperature reflow profile based on PCB design and manufacturing expertise. In any case, the soldering
profile should not exceed profiles as specified in Jedec J-STD-020.
LGA packages show metal traces on the side of the package so solder material must be avoided on the side of
package during reflow.
The product package is not sealed as there is a 0.1 mm hole on the bottom of the package as illustrated in
Figure 17. OLGA-10L (3.2 x 4.2 x 1.455 mm) package outline and mechanical data. A dry reflow process such as
convection reflow is recommended. Vapor phase reflow is not suitable for this type of optical component.
A "no-wash" assembly process has to be used. “Self-cleaning” / “no flux” solder paste are to be used.
The product top surface can be eventually protected by suitable tape during reflow and other manufacturing steps
to avoid contamination or scratches on the optical filter section of the component.
Any residual material (such as water, dust, or any contamination on top of the optical window) causes lower
sensitivity of the IR measurment.
For land pattern and soldering recommendations, consult technical note TN0018 available on www.st.com.
DS13916 - Rev 2
page 19/40
STHS34PF80
Register mapping
9
Register mapping
Table 15. Register map
Name
Type
Reserved
Register address
Default
00h - 0Bh
Reserved
LPF1
RW
0Ch
04h
LPF2
RW
0Dh
22h
Reserved
0Eh
Reserved
WHO_AM_I
R
0Fh
D3h
AVG_TRIM
RW
10h
03h
Reserved
CTRL0
11h - 16h
RW
Reserved
SENS_DATA
17h
Reserved
F1h
Reserved
1Dh
1Eh - 1Fh
Reserved
CTRL1
RW
20h
00h
CTRL2
RW
21h
00h
CTRL3
RW
22h
00h
R
23h
STATUS
Reserved
Who am I
Reserved
18h - 1Ch
RW
Function and comment
24h
FUNC_STATUS
R
25h
TOBJECT_L
R
26h
TOBJECT_H
R
27h
TAMBIENT_L
R
28h
TAMBIENT_H
R
29h
TOBJ_COMP_L
R
38h
TOBJ_COMP_H
R
39h
TPRESENCE_L
R
3Ah
TPRESENCE_H
R
3Bh
TMOTION_L
R
3Ch
TMOTION_H
R
3Dh
TAMB_SHOCK_L
R
3Eh
TAMB_SHOCK_H
R
3Fh
Interrupt control
Reserved
Reserved registers must not be changed. Writing to those registers may cause permanent damage to the device.
DS13916 - Rev 2
page 20/40
STHS34PF80
Embedded functions page register mapping
9.1
Embedded functions page register mapping
Table 16. Embedded functions page register map
Name
DS13916 - Rev 2
Type
Register address
Default
PRESENCE_THS
RW
20h - 21h
C8h
MOTION_THS
RW
22h - 23h
C8h
TAMB_SHOCK_THS
RW
24h - 25h
0Ah
HYST_MOTION
RW
26h
32h
HYST_PRESENCE
RW
27h
32h
ALGO_CONFIG
RW
28h
00h
HYST_TAMB_SHOCK
RW
29h
02h
RESET_ALGO
RW
2Ah
00h
Function and comment
page 21/40
STHS34PF80
Registers description
10
Registers description
10.1
LPF1 (0Ch)
RW default = 04h
7
6
5
4
3
2
1
0
-
-
LPF_P_M2
LPF_P_M1
LPF_P_M0
LPF_M2
LPF_M1
LPF_M0
LPF_P_M[2:0]
Low-pass filter configuration for motion and presence detection, see Table 17.
LPF_M[2:0]
Low-pass filter configuration for motion detection, see Table 17.
Table 17. Low-pass filter configuration
10.2
LPF_P_M[2:0] / LPF_M[2:0] / LPF_P[2:0] / LPF_A_T[2:0]
Low-pass filter configuration
000
ODR/9
001
ODR/20
010
ODR/50
011
ODR/100
100
ODR/200
101
ODR/400
110
ODR/800
LPF2 (0Dh)
RW default = 22h
7
6
5
4
3
2
1
0
-
-
LPF_P2
LPF_P1
LPF_P0
LPF_A_T2
LPF_A_T1
LPF_A_T0
LPF_P[2:0]
Low-pass filter configuration for presence detection, see Table 17.
LPF_A_T[2:0]
Low-pass filter configuration for ambient temperature shock detection, see Table 17.
10.3
WHO_AM_I (0Fh)
Read only default = D3h
7
6
5
4
3
2
1
0
1
1
0
1
0
0
1
1
WHO_AM_I
DS13916 - Rev 2
Device identification Who am I
page 22/40
STHS34PF80
AVG_TRIM (10h)
10.4
AVG_TRIM (10h)
RW default = 03h
7
6
5
4
3
2
1
0
0
0
AVG_T1
AVG_T0
0
AVG_TMOS2
AVG_TMOS1
AVG_TMOS0
AVG_T[1:0]
Select the number of averaged samples for ambient temperature, see Table 18.
AVG_TMOS[2:0]
Select the number of averaged samples for object temperature, see Table 19.
Table 18. Averaging selection for ambient temperature
AVG_T[1:0]
Number of averaged samples for ambient temperature
00
8 (default)
01
4
10
2
11
1
Table 19. Averaging selection for object temperature and noise
DS13916 - Rev 2
AVG_TMOS [2:0]
Number of averaged samples for object temperature
RMS noise (LSBrms)
000
2
90
001
8
50
010
32
25
011
128 (default)
20
100
256
15
101
512
12
110
1024
11
111
2048
10
page 23/40
STHS34PF80
CTRL0 (17h)
10.5
CTRL0 (17h)
RW default = F1h
7
6
5
4
3
2
1
0
1
GAIN2
GAIN1
GAIN0
0
0
0
1
Enables the device to cover a wide operating temperature range for applications that might be thermally heated inside of the
GAIN[2:0] application.
(000: wide mode; 111: default gain mode)
Refer to the ranges in Table 5. Operating temperature range for the wide mode and default gain modes.
10.6
SENS_DATA (1Dh)
RW default = 00h
7
6
5
4
3
2
1
0
SENS7
SENS6
SENS5
SENS4
SENS3
SENS2
SENS1
SENS0
SENS[7:0]
Provides the sensitivity value in the embedded linear algorithm for compensating ambient temperature variations in the object
temperature.
This register is written during factory calibration to indicate the sensitivity of the device and this value is used in
the embedded linear algorithm for compensating ambient temperature variations in the object temperature.
If the sensitivity is changed by the optical material (that is, cover material) and the embedded compensation
algorithm is required, the sensitivity data need to be revised accordingly.
Sensitivity can be calculated with the following formula by reading the SENS_DATA (1Dh) register.
Sensitivity = value of 1Dh (signed two's complement) x 16 + 2048
DS13916 - Rev 2
page 24/40
STHS34PF80
CTRL1 (20h)
10.7
CTRL1 (20h)
RW default = 00h
7
6
5
4
3
2
1
0
0
-
-
BDU
ODR3
ODR2
ODR1
ODR0
BDU
Enables the block data update feature for output registers TOBJECT (26h and 27h) and TAMBIENT (28h and 29h).
ODR[3:0]
Output data rate, refer to Table 20 for ODR configuration
Table 20. ODR configuration
ODR [3:0]
ODR frequency [Hz]
Time [ms]
0000
Power-down mode
-
0001
0.25
4000
0010
0.5
2000
0011
1
1000
0100
2
500
0101
4
250
0110
8
126
0111
15
66.67
1xxx
30
33.33
Refer to AN5867 (Section 3.3 Continuous mode) on www.st.com for the details of entering power-down mode and
changing the ODR in continuous mode.
Device power consumption depends on the AVG_TMOS configuration and continuous mode at different ODRs as
described in the following table.
Table 21. Current consumption at different ODRs and AVG_TMOS setting
AVG_TMOS [2:0]
DS13916 - Rev 2
One-shot mode
Continuous mode current consumption (μA) vs ODR
Current consumption (μA) @ 1Hz
0.25 Hz
0.5 Hz
1 Hz
2 Hz
4 Hz
8 Hz
15 Hz
30 Hz
000 (2)
3.23
3.2
3.52
4.39
6.58
10.54 18.32
33.45
64.50
001 (8)
3.74
3.27
3.82
4.9
7.23
010 (32)
5
3.6
4.48
6.26
9.58
11.4
20.62
011 (128)
10
4.89
7.07
11.44
19.65 37.25 71.85
100 (256)
16.89
6.55
10.55
18.02
33.1
101 (512)
31.16
10.05
17.45
32.25 59.50
110 (1024)
56.34
16.97
31.3
57.60
111 (2048)
113
30.86
58.97
17.05 30.75
38.3
74.94
59
115.65
65.5
page 25/40
STHS34PF80
CTRL2 (21h)
10.8
CTRL2 (21h)
RW (bit 4: write only) default = 00h
7
6
5
4
3
2
1
0
BOOT
-
-
FUNC_
CFG_ACCESS
-
0
0
ONE_SHOT
Reboot OTP memory content. Self-clearing upon completion. Default value : 0
BOOT
(0: normal mode; 1: reboot memory content)
Enable access to the registers(1) for embedded functions. Default value : 0
FUNC_CFG_ACCESS
(0 : disable access to the embedded function page; 1: enable access to the embedded function page)
Trigger one-shot acquisition. Self-clearing upon completion. Default value: 0
ONE_SHOT
(0 : idle mode; 1 : new data set is acquired)
1. It is not possible to write or read registers in the main page if this bit is set to 1. In order to go back to the main page, this bit should be
written to 0.
CTRL3 (22h)
10.9
RW default = 00h
7
6
5
4
3
2
1
0
INT_H_L
PP_OD
INT_MSK2
INT_MSK1
INT_MSK0
INT_LATCHED
IEN1
IEN0
Interrupt active-high & active-low. Default value: 0
INT_H_L
(0: active high; 1: active low)
Push-pull / open-drain selection on the INT pin. Default value: 0
PP_OD
(0: push-pull; 1: open drain)
INT_MSK[2:0]
Interrupt masks for flag of FUNC_STATUS (25h), see Figure 16.
INT_LATCHED
IEN[1:0]
Sets latched mode of DRDY on the INT pin.
(0: pulsed mode on the INT pin; 1: latched mode on the INT pin)
Configures the signal routed to the INT pin, see Table 22.
The DRDY signal on the INT pin is set to either pulsed or latched mode using the INT_LATCHED bit.
If IEN[1:0] = 10 (INT_OR routed to the INT pin), INT_LATCHED must be set to 0.
Figure 16. INT_OR
INT_MSK2
PRES_FLAG
INT_MSK1
INT_OR
MOT_FLAG
INT_MSK0
TAMB_SHOCK_FLAG
 PRES_FLAG , MOT_FLAG, TAMB_SHOCK_FLAG from FUNC_STATUS (25h)
 INT_OR is enabled by IEN[1:0] = “10”
DS13916 - Rev 2
page 26/40
STHS34PF80
STATUS (23h)
Table 22. IEN[1:0] configuration
10.10
IEN[1:0]
INT pin
00
high-Z
01
Data ready (DRDY)
10
INT_OR
STATUS (23h)
Read only default = 00h
7
6
5
4
3
2
1
0
-
-
-
-
-
DRDY
-
-
Data ready for TAMBIENT, TOBJECT, TAMB_SHOCK, TPRESENCE, TMOTION. This bit is reset to 0 when reading the
DRDY FUNC_STATUS (25h) register.
(0: no set of output data is available; 1: new set of output data is available)
10.11
FUNC_STATUS (25h)
Read only default = 00h
7
6
5
4
3
2
1
0
-
-
-
-
-
PRES_FLAG
MOT_FLAG
TAMB_
SHOCK_FLAG
PRES_FLAG
Presence detection flag. This bit goes to 1 when there is presence detection. It returns back to 0 when there is no
presence detection. Default value: 0
(0: no presence is detected; 1: presence is detected)
MOT_FLAG
Motion detection flag. This bit goes to 1 when there is motion detection. It returns back to 0 when there is no motion
detection. Default value: 0
(0: no motion is detected; 1: motion is detected)
Ambient temperature shock detection flag. This bit goes to 1 when there is ambient temperature shock detection. It
TAMB_SHOCK_FLAG returns back to 0 when there is no ambient temperature shock detection. Default : 0
(0: no ambient temperature shock is detected; 1: ambient temperature shock is detected)
10.12
TOBJECT_L (26h)
Read only default = 00h
7
6
5
4
3
2
1
0
TOBJECT7
TOBJECT6
TOBJECT5
TOBJECT4
TOBJECT3
TOBJECT2
TOBJECT1
TOBJECT0
TOBJECT[7:0]
DS13916 - Rev 2
TOBJECT LSB data
page 27/40
STHS34PF80
TOBJECT_H (27h)
10.13
TOBJECT_H (27h)
Read only default = 00h
7
6
5
4
3
2
1
0
TOBJECT15
TOBJECT14
TOBJECT13
TOBJECT12
TOBJECT11
TOBJECT10
TOBJECT9
TOBJECT8
TOBJECT[15:8]
TOBJECT MSB data
The TOBJECT (object temperature) output value is 16-bit data that represents the amount of infrared radiation
emitted from the objects inside the field of view. It is composed of TOBJECT_H (27h) and TOBJECT_L (28h). The
value is expressed as two's complement.
10.14
TAMBIENT_L (28h)
Read only default = 00h
7
6
5
4
3
2
1
0
TAMBIENT7
TAMBIENT6
TAMBIENT5
TAMBIENT4
TAMBIENT3
TAMBIENT2
TAMBIENT1
TAMBIENT0
TAMBIENT[7:0]
10.15
Ambient temperature LSB data
TAMBIENT_H (29h)
Read only default = 00h
7
6
5
4
3
2
1
0
TAMBIENT15
TAMBIENT14
TAMBIENT13
TAMBIENT12
TAMBIENT11
TAMBIENT10
TAMBIENT9
TAMBIENT8
TAMBIENT[15:8]
Ambient temperature MSB data
The TAMBIENT (ambient temperature) output value is 16-bit data that represents the temperature of the
environment in thermal coupling with the sensor. It is composed of TAMBIENT_H (28h) and TAMBIENT_L (29h).
The value is expressed as two's complement and its sensitivity is 100 LSB/°C.
10.16
TOBJ_COMP_L (38h)
Read only default = 00h
7
6
5
4
3
2
1
0
TOBJ_COMP7
TOBJ_COMP6
TOBJ_COMP5
TOBJ_COMP4
TOBJ_COMP3
TOBJ_COMP2
TOBJ_COMP1
TOBJ_COMP0
TOBJ_COMP[7:0]
DS13916 - Rev 2
Compensated LSB data for object temperature output
page 28/40
STHS34PF80
TOBJ_COMP_H (39h)
10.17
TOBJ_COMP_H (39h)
Read only default = 00h
7
6
5
4
3
2
1
0
TOBJ_COMP15
TOBJ_COMP14
TOBJ_COMP13
TOBJ_COMP12
TOBJ_COMP11
TOBJ_COMP10
TOBJ_COMP9
TOBJ_COMP8
TOBJ_COMP[15:8]
Compensated MSB data for object temperature output
The TOBJ_COMP output value is 16-bit data that represents the amount of infrared radiation emitted from the
objects inside the field of view compensated through the embedded algorithm for compensating ambient
temperature variations (refer to application note AN5867 on www.st.com for the details of the compensation
algorithm). The output data is composed of TOBJ_COMP_H (39h) and TOBJ_COMP_L (38h). The value is
expressed as two's complement.
10.18
TPRESENCE_L (3Ah)
Read only default = 00h
7
6
5
4
3
2
1
0
TPRESENCE7
TPRESENCE6
TPRESENCE5
TPRESENCE4
TPRESENCE3
TPRESENCE2
TPRESENCE1
TPRESENCE0
TPRESENCE[7:0]
10.19
Presence detection output using embedded algorithms, LSB data
TPRESENCE_H (3Bh)
Read only default = 00h
7
6
5
4
3
2
1
0
TPRESENCE15
TPRESENCE14
TPRESENCE13
TPRESENCE12
TPRESENCE11
TPRESENCE10
TPRESENCE9
TPRESENCE8
TPRESENCE[15:8]
Presence detection output using embedded algorithms, MSB data
The TPRESENCE (presence) output value is 16-bit data that contains the presence data. It is composed of
TPRESENCE_H (3Bh) and TPRESENCE_L (3Ah). The value is expressed as two's complement.
10.20
TMOTION_L (3Ch)
Read only default =00h
7
6
5
4
3
2
1
0
TMOTION 7
TMOTION 6
TMOTION 5
TMOTION 4
TMOTION 3
TMOTION 2
TMOTION 1
TMOTION 0
TMOTION[7:0]
10.21
Motion detection output using embedded algorithms, LSB data
TMOTION_H (3Dh)
Read only default = 00h
7
6
5
4
3
2
1
0
TMOTION 15
TMOTION 14
TMOTION 13
TMOTION 12
TMOTION 11
TMOTION 10
TMOTION 9
TMOTION 8
TMOTION[15:8]
Motion detection output using embedded algorithms, MSB data
The TMOTION (motion) output value is 16-bit data that contains the motion data. It is composed of TMOTION_H
(3Dh) and TMOTION_L (3Ch). The value is expressed as two's complement.
DS13916 - Rev 2
page 29/40
STHS34PF80
TAMB_SHOCK_L (3Eh)
10.22
TAMB_SHOCK_L (3Eh)
Read only default = 00h
7
6
5
4
3
2
1
0
TAMB_SHOCK7
TAMB_SHOCK6
TAMB_SHOCK5
TAMB_SHOCK4
TAMB_SHOCK3
TAMB_SHOCK2
TAMB_SHOCK1
TAMB_SHOCK0
TAMB_SHOCK[7:0]
10.23
Ambient shock detection output using embedded algorithms, LSB data
TAMB_SHOCK_H (3Fh)
Read only default = 00h
7
6
5
4
3
2
1
0
TAMB_SHOCK15
TAMB_SHOCK14
TAMB_SHOCK13
TAMB_SHOCK12
TAMB_SHOCK11
TAMB_SHOCK10
TAMB_SHOCK9
TAMB_SHOCK8
TAMB_SHOCK[15:8]
Ambient shock detection output using embedded algorithms, MSB data
The TAMB_SHOCK (ambient temperature shock) output value is 16-bit data that contains the ambient
temperature shock data. It is composed of TAMB_SHOCK_H (3Fh) and TAMB_SHOCK_L (3Eh). The value is
expressed as two's complement.
DS13916 - Rev 2
page 30/40
STHS34PF80
Embedded functions description
11
Embedded functions description
The following registers are used to configure the embedded functions page. These registers are accessible when
the FUNC_CFG_ACCESS bit in CTRL2 (21h) is set to 1.
11.1
FUNC_CFG_ADDR (08h)
RW default = 00h
7
6
5
4
3
2
1
0
FUNC_CFG_ADDR[7:0]
FUNC_CFG_ADDR[7:0]
11.2
Address of embedded feature that has to be read or written according to the configuration bits in the PAGE_RW
(11h) register.
FUNC_CFG_DATA (09h)
RW default = 00h
7
6
5
4
3
2
1
0
FUNC_CFG_DATA[7:0]
FUNC_CFG_DATA[7:0]
11.3
Data byte that is read or written to the address of the page indicated by FUNC_CFG_ADDR (08h) according to the
configuration bit in PAGE_RW (11h).
PAGE_RW (11h)
RW default = 00h
7
6
5
4
3
2
1
0
0
FUNC_CFG
_WRITE
FUNC_CFG
_READ
0
-
-
-
-
FUNC_CFG_WRITE
When set to 1, enables the write procedure for the embedded functions.
FUNC_CFG_READ
When set to 1, enables the read procedure for the embedded functions.
DS13916 - Rev 2
page 31/40
STHS34PF80
Embedded functions registers description
12
Embedded functions registers description
Detailed write and read procedures for the embedded functions registers are explained in application note
AN5867 (refer to sections 2.1.1 and 2.1.2, respectively) on www.st.com.
12.1
PRESENCE_THS (20h - 21h)
Presence threshold for presence detection algorithm. This value is 15-bit unsigned. The default value is 200
(00C8h).
7
6
5
4
3
2
1
0
PRESENCE_THS7
PRESENCE_THS6
PRESENCE_THS5
PRESENCE_THS4
PRESENCE_THS3
PRESENCE_THS2
PRESENCE_THS1
PRESENCE_THS0
15
14
13
12
11
10
9
8
-
PRESENCE_THS14
PRESENCE_THS13
PRESENCE_THS12
PRESENCE_THS11
PRESENCE_THS10
PRESENCE_THS9
PRESENCE_THS8
12.2
MOTION_THS (22h - 23h)
Motion threshold for motion detection algorithm. This value is 15-bit unsigned. The default value is 200 (00C8h).
7
6
5
4
3
2
1
0
MOTION_THS7
MOTION_THS6
MOTION_THS5
MOTION_THS4
MOTION_THS3
MOTION_THS2
MOTION_THS1
MOTION_THS0
15
14
13
12
11
10
9
8
-
MOTION_THS14
MOTION_THS13
MOTION_THS12
MOTION_THS11
MOTION_THS10
MOTION_THS9
MOTION_THS8
12.3
TAMB_SHOCK_THS (24h - 25h)
Ambient temperature shock threshold for Tambient shock detection algorithm. This value is 15-bit unsigned. The
default value is 10 (000Ah).
7
6
5
4
3
2
1
0
TAMB_SHOCK7
TAMB_SHOCK6
TAMB_SHOCK5
TAMB_SHOCK4
TAMB_SHOCK3
TAMB_SHOCK2
TAMB_SHOCK1
TAMB_SHOCK0
15
14
13
12
11
10
9
8
TAMB_SHOCK9
TAMB_SHOCK8
-
12.4
TAMB_SHOCK14 TAMB_SHOCK13 TAMB_SHOCK12 TAMB_SHOCK11 TAMB_SHOCK10
HYST_MOTION (26h)
Hysteresis configuration value for motion detection algorithm. It is an 8-bit unsigned value in the registers. The
default value is 32h.
7
6
5
4
3
2
1
0
HYST_MOTION7
HYST_MOTION6
HYST_MOTION5
HYST_MOTION4
HYST_MOTION3
HYST_MOTION2
HYST_MOTION1
HYST_MOTION0
12.5
HYST_PRESENCE (27h)
Hysteresis configuration value for presence detection algorithm. It is an 8-bit unsigned value in the registers. The
default value is 32h.
7
6
5
4
3
2
1
0
HYST_
PRESENCE7
HYST_
PRESENCE6
HYST_
PRESENCE5
HYST_
PRESENCE4
HYST_
PRESENCE3
HYST_
PRESENCE2
HYST_
PRESENCE1
HYST_
PRESENCE0
DS13916 - Rev 2
page 32/40
STHS34PF80
ALGO_CONFIG (28h)
12.6
ALGO_CONFIG (28h)
Algorithm configuration with 00h default value
7
6
5
4
3
2
1
0
-
-
-
0
INT_PULSED
COMP_TYPE
SEL_ABS
0
When 1, the flags as a result of the algorithms are pulsed (high for ODR defined) on the INT pin. Default value: 0
INT_PULSED
(0: latched mode; 1: pulsed mode)
Enables the embedded linear algorithm for compensating ambient temperature variations in the object temperature. Default
COMP_TYPE value: 0
(0: disabled; 1: enabled)
Selects the absolute value in the presence detection algorithm. Default value: 0
SEL_ABS
(0: ABS is not applied; 1: ABS is applied)
The COMP_TYPE bit can be set to enable the embedded algorithm for compensating ambient temperature
variations in the object temperature under the condition of CTRL0 (17h) GAIN[2:0] = 111. If CTRL0 (17h)
GAIN[2:0] is set as 000, the embedded compensation algorithm is not supported. Note that enabling the
embedded compensation algorithm may cause the signal to have higher RMS noise. For further configuration
guidelines, refer to the application note.
12.7
HYST_TAMB_SHOCK (29h)
Hysteresis configuration value for ambient temperature shock detection algorithm. It is an 8-bit unsigned value in
the registers. The default value is 02h.
7
6
5
4
3
2
1
0
HYST_TAMB_
SHOCK7
HYST_TAMB_
SHOCK6
HYST_TAMB_
SHOCK5
HYST_TAMB_
SHOCK4
HYST_TAMB_
SHOCK3
HYST_TAMB_
SHOCK2
HYST_TAMB_
SHOCK1
HYST_TAMB_
SHOCK0
12.8
RESET_ALGO (2Ah)
RW default = 00h
7
6
5
4
3
2
1
0
-
-
-
-
-
-
-
ALGO_ENABLE
_RESET
When this bit is set to 1, it executes a reset of the algorithms. Default value: 0
ALGO_ENABLE_RESET
(0 : no reset of algorithms;
1: reset of algorithms)
The ALGO_ENABLE_RESET bit must be set to 1 in power-down mode in order to reset the algorithm properly.
This register allows a reset of the algorithm when relevant parameters (threshold, hysteresis, SEL_ABS, or lowpass filter configuration) are modified.
When the user changes one or more of these parameters, it is necessary to execute a reset operation of the
algorithms before restarting a new measurement.
Refer to AN5867 (Section 7.4 Resetting the algorithm) on www.st.com for the details of the reset procedure.
DS13916 - Rev 2
page 33/40
STHS34PF80
Package information
13
Package information
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,
depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product
status are available at: www.st.com. ECOPACK is an ST trademark.
13.1
OLGA-10L 3.2 x 4.2 x 1.455 mm package information
Figure 17. OLGA-10L (3.2 x 4.2 x 1.455 mm) package outline and mechanical data
Dimensions are in millimeter unless otherwise specified.
General Tolerance is +/-0.1mm unless otherwise specified.
OUTER DIMENSIONS
ITEM
Width [W]
Length [L]
Height [H]
DIMENSION [mm]
3.2
4.2
1.455
TOLERANCE [mm]
±0.1
±0.1
MA X
DM00488758_6
DS13916 - Rev 2
page 34/40
STHS34PF80
Revision history
Table 23. Document revision history
Date
Version
25-May-2023
1
Changes
Initial release
Added Table 4. DC characteristics
05-Jul-2023
2
Added Section 3.2 Absolute maximum ratings
Minor textual updates
DS13916 - Rev 2
page 35/40
STHS34PF80
Contents
Contents
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
2
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
3
Sensor and electrical specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1
3.2
Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.1
SPI - serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.2
I²C - inter-IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Absolute maximum ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4
Optical specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
5
Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
5.1
I²C interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.1.1
5.2
6
I²C read and write sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
SPI interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2.1
SPI write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2.2
SPI read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Smart digital algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
6.1
Presence detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.2
Motion detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.3
Ambient temperature shock detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7
Application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
8
Soldering guidelines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
9
Register mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
9.1
10
Embedded functions page register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Registers description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
10.1
LPF1 (0Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
10.2
LPF2 (0Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
10.3
WHO_AM_I (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
10.4
AVG_TRIM (10h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
10.5
CTRL0 (17h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
10.6
SENS_DATA (1Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
10.7
CTRL1 (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
10.8
CTRL2 (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
10.9
CTRL3 (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
10.10 STATUS (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
10.11 FUNC_STATUS (25h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
DS13916 - Rev 2
page 36/40
STHS34PF80
Contents
10.12 TOBJECT_L (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
10.13 TOBJECT_H (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
10.14 TAMBIENT_L (28h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
10.15 TAMBIENT_H (29h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
10.16 TOBJ_COMP_L (38h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
10.17 TOBJ_COMP_H (39h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
10.18 TPRESENCE_L (3Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
10.19 TPRESENCE_H (3Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
10.20 TMOTION_L (3Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
10.21 TMOTION_H (3Dh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
10.22 TAMB_SHOCK_L (3Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
10.23 TAMB_SHOCK_H (3Fh). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
11
12
13
Embedded functions description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
11.1
FUNC_CFG_ADDR (08h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
11.2
FUNC_CFG_DATA (09h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
11.3
PAGE_RW (11h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Embedded functions registers description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
12.1
PRESENCE_THS (20h - 21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
12.2
MOTION_THS (22h - 23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
12.3
TAMB_SHOCK_THS (24h - 25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
12.4
HYST_MOTION (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
12.5
HYST_PRESENCE (27h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
12.6
ALGO_CONFIG (28h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
12.7
HYST_TAMB_SHOCK (29h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
12.8
RESET_ALGO (2Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
13.1
OLGA-10L 3.2 x 4.2 x 1.455 mm package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
List of figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
DS13916 - Rev 2
page 37/40
STHS34PF80
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Pin description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sensor specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating temperature range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SPI slave timing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I²C slave timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Optical specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Transfer when the master is writing one byte to slave . . . . . . . . . . . . . . . . .
Transfer when master is writing multiple bytes to slave . . . . . . . . . . . . . . . .
Transfer when master is receiving (reading) one byte of data from slave . . . .
Transfer when master is receiving (reading) multiple bytes of data from slave
Internal pin status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Register map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Embedded functions page register map . . . . . . . . . . . . . . . . . . . . . . . . . .
Low-pass filter configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Averaging selection for ambient temperature . . . . . . . . . . . . . . . . . . . . . . .
Averaging selection for object temperature and noise . . . . . . . . . . . . . . . .
ODR configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Current consumption at different ODRs and AVG_TMOS setting . . . . . . . . .
IEN[1:0] configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DS13916 - Rev 2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 4
. 5
. 5
. 6
. 6
. 7
. 8
. 9
10
12
12
12
12
18
20
21
22
23
23
25
25
27
35
page 38/40
STHS34PF80
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
DS13916 - Rev 2
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin configuration (package bottom view) . . . . . . . . . . . . . . . . . . . . . . .
SPI slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I²C slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Typical field of view measurements . . . . . . . . . . . . . . . . . . . . . . . . . . .
Filter transmittance typical curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Start and stop conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SPI write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Multiple byte SPI write protocol (2-byte example) . . . . . . . . . . . . . . . . .
SPI read protocol in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block diagram of presence detection algorithm . . . . . . . . . . . . . . . . . . .
Block diagram of motion detection algorithm. . . . . . . . . . . . . . . . . . . . .
Block diagram of ambient temperature shock detection algorithm . . . . . .
Application schematic with I²C connection . . . . . . . . . . . . . . . . . . . . . .
Application schematic with SPI connection . . . . . . . . . . . . . . . . . . . . . .
INT_OR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OLGA-10L (3.2 x 4.2 x 1.455 mm) package outline and mechanical data .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 3
. 4
. 7
. 8
10
10
11
13
13
14
15
16
16
17
17
26
34
page 39/40
STHS34PF80
IMPORTANT NOTICE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to STs terms and conditions of sale in place at the time of order acknowledgment.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2023 STMicroelectronics All rights reserved
DS13916 - Rev 2
page 40/40