Adafruit_nRF52_Arduino/libraries/SoftwareSerial/SoftwareSerial.cpp
2021-06-02 13:26:54 +07:00

331 lines
7.5 KiB
C++

/*
SoftwareSerial.cpp - library for Arduino Primo
Copyright (c) 2016 Arduino. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <Arduino.h>
#include <SoftwareSerial.h>
#include <variant.h>
#include <WInterrupts.h>
#include <Adafruit_TinyUSB.h> // for Serial
SoftwareSerial *SoftwareSerial::active_object = 0;
char SoftwareSerial::_receive_buffer[_SS_MAX_RX_BUFF];
volatile uint8_t SoftwareSerial::_receive_buffer_tail = 0;
volatile uint8_t SoftwareSerial::_receive_buffer_head = 0;
SoftwareSerial::SoftwareSerial(uint8_t receivePin, uint8_t transmitPin, bool inverse_logic /* = false */) :
_rx_delay_centering(0),
_rx_delay_intrabit(0),
_rx_delay_stopbit(0),
_tx_delay(0),
_buffer_overflow(false),
_inverse_logic(inverse_logic)
{
_receivePin = receivePin;
_transmitPin = transmitPin;
}
SoftwareSerial::~SoftwareSerial()
{
end();
}
void SoftwareSerial::begin(long speed)
{
setTX(_transmitPin);
setRX(_receivePin);
// Precalculate the various delays
//Calculate the distance between bit in micro seconds
uint32_t bit_delay = (float(1)/speed)*1000000;
_tx_delay = bit_delay;
//Wait 1/2 bit - 2 micro seconds (time for interrupt to be served)
_rx_delay_centering = (bit_delay/2) - 2;
//Wait 1 bit - 2 micro seconds (time in each loop iteration)
_rx_delay_intrabit = bit_delay - 1;//2
//Wait 1 bit (the stop one)
_rx_delay_stopbit = bit_delay;
delayMicroseconds(_tx_delay);
listen();
}
bool SoftwareSerial::listen()
{
if (!_rx_delay_stopbit)
return false;
if (active_object != this)
{
if (active_object)
active_object->stopListening();
_buffer_overflow = false;
_receive_buffer_head = _receive_buffer_tail = 0;
active_object = this;
if(_inverse_logic)
//Start bit high
_intMask = attachInterrupt(_receivePin, handle_interrupt, RISING);
else
//Start bit low
_intMask = attachInterrupt(_receivePin, handle_interrupt, FALLING);
return true;
}
return false;
}
bool SoftwareSerial::stopListening()
{
if (active_object == this)
{
detachInterrupt(_receivePin);
active_object = NULL;
return true;
}
return false;
}
void SoftwareSerial::end()
{
stopListening();
}
int SoftwareSerial::read()
{
if (!isListening()){
return -1;}
// Empty buffer?
if (_receive_buffer_head == _receive_buffer_tail){
return -1;}
// Read from "head"
uint8_t d = _receive_buffer[_receive_buffer_head]; // grab next byte
_receive_buffer_head = (_receive_buffer_head + 1) % _SS_MAX_RX_BUFF;
return d;
}
int SoftwareSerial::available()
{
if (!isListening())
return 0;
return (_receive_buffer_tail + _SS_MAX_RX_BUFF - _receive_buffer_head) % _SS_MAX_RX_BUFF;
}
size_t SoftwareSerial::write(uint8_t b)
{
if (_tx_delay == 0) {
setWriteError();
return 0;
}
// By declaring these as local variables, the compiler will put them
// in registers _before_ disabling interrupts and entering the
// critical timing sections below, which makes it a lot easier to
// verify the cycle timings
volatile uint32_t* reg = _transmitPortRegister;
uint32_t reg_mask = _transmitBitMask;
uint32_t inv_mask = ~_transmitBitMask;
bool inv = _inverse_logic;
uint16_t delay = _tx_delay;
if (inv)
b = ~b;
// turn off interrupts for a clean txmit
NRF_GPIOTE->INTENCLR = _intMask;
// Write the start bit
if (inv)
*reg |= reg_mask;
else
*reg &= inv_mask;
delayMicroseconds(delay);
// Write each of the 8 bits
for (uint8_t i = 8; i > 0; --i)
{
if (b & 1) // choose bit
*reg |= reg_mask; // send 1
else
*reg &= inv_mask; // send 0
delayMicroseconds(delay);
b >>= 1;
}
// restore pin to natural state
if (inv)
*reg &= inv_mask;
else
*reg |= reg_mask;
NRF_GPIOTE->INTENSET = _intMask;
delayMicroseconds(delay);
return 1;
}
void SoftwareSerial::flush()
{
if (!isListening())
return;
NRF_GPIOTE->INTENCLR = _intMask;
_receive_buffer_head = _receive_buffer_tail = 0;
NRF_GPIOTE->INTENSET = _intMask;
}
int SoftwareSerial::peek()
{
if (!isListening())
return -1;
// Empty buffer?
if (_receive_buffer_head == _receive_buffer_tail)
return -1;
// Read from "head"
return _receive_buffer[_receive_buffer_head];
}
//private methods
void SoftwareSerial::recv()
{
uint8_t d = 0;
// If RX line is high, then we don't see any start bit
// so interrupt is probably not for us
if (_inverse_logic ? rx_pin_read() : !rx_pin_read())
{
NRF_GPIOTE->INTENCLR = _intMask;
// Wait approximately 1/2 of a bit width to "center" the sample
delayMicroseconds(_rx_delay_centering);
// Read each of the 8 bits
for (uint8_t i=8; i > 0; --i)
{
delayMicroseconds(_rx_delay_intrabit);
// nRF52 needs another delay less than 1 uSec to be better synchronized
// with the highest baud rates
__ASM volatile (
" NOP\n\t"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
" NOP\n"
);
d >>= 1;
if (rx_pin_read()){
d |= 0x80;
}
}
if (_inverse_logic){
d = ~d;
}
// if buffer full, set the overflow flag and return
uint8_t next = (_receive_buffer_tail + 1) % _SS_MAX_RX_BUFF;
if (next != _receive_buffer_head)
{
// save new data in buffer: tail points to where byte goes
_receive_buffer[_receive_buffer_tail] = d; // save new byte
_receive_buffer_tail = next;
}
else
{
_buffer_overflow = true;
}
// skip the stop bit
delayMicroseconds(_rx_delay_stopbit);
NRF_GPIOTE->INTENSET = _intMask;
}
}
uint32_t SoftwareSerial::rx_pin_read()
{
return *_receivePortRegister & digitalPinToBitMask(_receivePin);
}
/* static */
inline void SoftwareSerial::handle_interrupt()
{
if (active_object)
{
active_object->recv();
}
}
void SoftwareSerial::setTX(uint8_t tx)
{
// First write, then set output. If we do this the other way around,
// the pin would be output low for a short while before switching to
// output hihg. Now, it is input with pullup for a short while, which
// is fine. With inverse logic, either order is fine.
digitalWrite(tx, _inverse_logic ? LOW : HIGH);
pinMode(tx, OUTPUT);
_transmitBitMask = digitalPinToBitMask(tx);
NRF_GPIO_Type * port = digitalPinToPort(tx);
_transmitPortRegister = portOutputRegister(port);
}
void SoftwareSerial::setRX(uint8_t rx)
{
pinMode(rx, INPUT);
if (!_inverse_logic)
digitalWrite(rx, HIGH); // pullup for normal logic!
_receivePin = rx;
_receiveBitMask = digitalPinToBitMask(rx);
NRF_GPIO_Type * port = digitalPinToPort(rx);
_receivePortRegister = portInputRegister(port);
}