refactor single and dual examples; improve docs

This commit is contained in:
Cedar Grove Maker Studios 2022-07-27 11:22:47 -07:00
parent 5784e95686
commit f580faa4a9
6 changed files with 339 additions and 365 deletions

View file

@ -1,17 +1,18 @@
# SPDX-FileCopyrightText: 2022 Cedar Grove Maker Studios
# SPDX-FileCopyrightText: 2022 Jan Goolsbey for Adafruit Industries
# SPDX-License-Identifier: MIT
# clue_scale_single_calibrate.py 2022-07-26 1.1.0 Cedar Grove Maker Studios
# Clue Scale Single Channel Calibration
# Cedar Grove NAU7802 FeatherWing example
#
# clue_scale_calibrator.py
# 2022-07-27 v1.1.0
#
# Clue Scale Calibrator - Single Channel Version
# Adafruit NAU7802 Stemma breakout example
import time
import board
from adafruit_clue import clue
from cedargrove_nau7802 import NAU7802
clue.pixel[0] = (32, 32, 0) # Set status indicator to yellow (initializing)
clue.pixel[0] = 0x202000 # Set status indicator to yellow (initializing)
SAMPLE_AVG = 1000 # Number of sample values to average
DEFAULT_GAIN = 128 # Default gain for internal PGA
@ -42,15 +43,15 @@ def read(samples=100):
# Activate the NAU780 internal analog circuitry, set gain, and calibrate/zero
nau7802.enable(True)
nau7802.gain = DEFAULT_GAIN # Use default gain
zero_channel() # Calibrate and get raw zero offset value
zero_channel() # Calibrate and zero
print("-----------------------------------")
print(" NAU7802 SINGLE CHANNEL CALIBRATOR")
print("-----------------------------------")
print("Place the calibration weight on the")
print("Place a calibration weight on the")
print("load cell.")
print("To re-zero the load cell, remove")
print("any weights and press A.")
print("any weights then press and hold A.")
print("-----------------------------------")
print("")
@ -58,9 +59,9 @@ print("")
clue.play_tone(1660, 0.15)
clue.play_tone(1440, 0.15)
# ## Main loop: Read sample, move bubble, and display values
# Main loop: Read sample and display value
while True:
clue.pixel[0] = (0, 32, 0) # Set status indicator to green
clue.pixel[0] = 0x002000 # Set status indicator to green
# Read the raw value; print raw value, gain setting, and % of full-scale
value = read(SAMPLE_AVG)
@ -73,7 +74,7 @@ while True:
if clue.button_a:
# Zero and recalibrate the NAU780
clue.play_tone(1660, 0.3) # Play "button pressed" tone
clue.pixel[0] = (32, 0, 0) # Set status indicator to red (stopped)
clue.pixel[0] = 0x200000 # Set status indicator to red (stopped)
zero_channel()
while clue.button_a:
# Wait until button is released

View file

@ -1,12 +1,13 @@
# SPDX-FileCopyrightText: 2021, 2022 Cedar Grove Maker Studios
# SPDX-FileCopyrightText: 2022 Jan Goolsbey for Adafruit Industries
# SPDX-License-Identifier: MIT
#
# clue_scale_single_chan_code.py 2022-07-26 1.2.0 Cedar Grove Maker Studios
# clue_scale_code.py
# 2022-07-27 v1.2.0
#
# Clue Scale -- single channel version
# Cedar Grove NAU7802 FeatherWing example
# Clue Scale - Single Channel Version
# Adafruit NAU7802 Stemma breakout example
# import clue_scale_single_calibrate # uncomment to run calibration method
# import clue_scale_calibrator # Uncomment to run calibrator method
import time
import board
@ -33,7 +34,7 @@ composed of the reference weight in grams divided by the raw reading. For
example, a raw reading of 215300 for a 100 gram weight results in a calibration
ratio of 100 / 215300. Use the clue_scale_single_calibrate method to obtain the
raw value.
For referency, a US dime (10-cent) coin weighs 2.268 grams."""
FYI: A US dime coin weighs 2.268 ounces or 64.3 grams."""
CALIB_RATIO_1 = 100 / 215300 # load cell serial#4540-02
# Instantiate 24-bit load sensor ADC
@ -50,7 +51,6 @@ FONT_2 = bitmap_font.load_font("/fonts/OpenSans-9.bdf")
# Define displayio background and group elements
bkg = displayio.OnDiskBitmap("/clue_scale_bkg.bmp")
_background = displayio.TileGrid(bkg, pixel_shader=bkg.pixel_shader, x=0, y=0)
scale_group.append(_background)
# Place the project name on either side of the graduated scale
@ -115,7 +115,7 @@ scale_group.append(indicator_group)
display.show(scale_group)
def zero_scale():
def zero_channel():
"""Initiate internal calibration and zero the current channel. Use after
power-up, a new channel is selected, or to adjust for measurement drift.
Can be used to zero the scale with a tare weight."""
@ -137,7 +137,7 @@ def read(samples=100):
# Activate the NAU780 internal analog circuitry, set gain, and calibrate/zero
nau7802.enable(True)
nau7802.gain = DEFAULT_GAIN
zero_scale()
zero_channel()
# Play "welcome" tones
clue.play_tone(1660, 0.15)
@ -169,7 +169,7 @@ while True:
bubble.fill = clue.RED # Set bubble center to red (stopped)
clue.play_tone(1660, 0.3) # Play "button pressed" tone
zero_scale()
zero_channel()
while clue.button_a:
# Wait until button is released

View file

@ -1,100 +0,0 @@
# SPDX-FileCopyrightText: 2021, 2022 Cedar Grove Maker Studios
# SPDX-License-Identifier: MIT
# clue_scale_calibrate.py 2022-04-23 1.1.0 Cedar Grove Maker Studios
# Clue Scale Calibration
# Cedar Grove NAU7802 FeatherWing example
import time
import board
from adafruit_clue import clue
from cedargrove_nau7802 import NAU7802
clue.pixel[0] = (16, 0, 16) # Set status indicator to purple during instantiation phase
SAMPLE_AVG = 1000 # Number of sample values to average
DEFAULT_GAIN = 128 # Default gain for internal PGA
# Instantiate 24-bit load sensor ADC
nau7802 = NAU7802(board.I2C(), address=0x2A, active_channels=2)
def zero_channel():
# Initiate internal calibration for current channel; return raw zero offset value
# Use when scale is started, a new channel is selected, or to adjust for measurement drift
# Remove weight and tare from load cell before executing
print(
"channel %1d calibrate.INTERNAL: %5s"
% (nau7802.channel, nau7802.calibrate("INTERNAL"))
)
print(
"channel %1d calibrate.OFFSET: %5s"
% (nau7802.channel, nau7802.calibrate("OFFSET"))
)
zero_offset = read(100) # Read average of 100 samples to establish zero offset
print("...channel zeroed")
return zero_offset
def read(samples=100):
# Read and average consecutive raw sample values; return average raw value
sample_sum = 0
sample_count = samples
while sample_count > 0:
if nau7802.available:
sample_sum = sample_sum + nau7802.read()
sample_count -= 1
return int(sample_sum / samples)
# Instantiate and calibrate load cell inputs
print("*** Instantiate and calibrate load cells")
clue.pixel[0] = (16, 16, 0) # Set status indicator to yellow
print(" enable NAU7802 digital and analog power: %5s" % (nau7802.enable(True)))
nau7802.gain = DEFAULT_GAIN # Use default gain
nau7802.channel = 1
zero = zero_channel() # Calibrate and get raw zero offset value
nau7802.channel = 2
zero = zero_channel() # Calibrate and get raw zero offset value
clue.pixel[0] = (0, 16, 0) # Set status indicator to green
clue.play_tone(1660, 0.15)
clue.play_tone(1440, 0.15)
print("GAIN:", DEFAULT_GAIN)
print("Place the calibration weight on the load cell")
print("To re-zero the load cells, remove all weights and press B")
### Main loop: Read load cells and display raw values
# Monitor Zeroing button
while True:
print("=====")
nau7802.channel = 1
value = read(SAMPLE_AVG)
print(
"CHAN_%1.0f RAW VALUE: %7.0f Percent of full-scale at gain x%3.0f : %3.2f: "
% (nau7802.channel, value, DEFAULT_GAIN, (value / ((2**23) - 1)) * 100)
)
nau7802.channel = 2
value = read(SAMPLE_AVG)
print(
"CHAN_%1.0f RAW VALUE: %7.0f Percent of full-scale at gain x%3.0f : %3.2f: "
% (nau7802.channel, value, DEFAULT_GAIN, (value / ((2**23) - 1)) * 100)
)
time.sleep(0.1)
if clue.button_b:
# Zero and recalibrate both channels
clue.play_tone(1660, 0.3)
clue.pixel[0] = (16, 0, 0)
nau7802.channel = 1
zero = zero_channel()
nau7802.channel = 2
zero = zero_channel()
while clue.button_b:
time.sleep(0.1)
clue.pixel[0] = (0, 16, 0)
clue.play_tone(1440, 0.5)

View file

@ -1,242 +0,0 @@
# SPDX-FileCopyrightText: 2021, 2022 Cedar Grove Maker Studios
# SPDX-License-Identifier: MIT
# clue_scale_dual_chan_code.py 2022-07-26 1.2.0 Cedar Grove Maker Studios
# Clue Scale -- dual channel version
# Cedar Grove NAU7802 FeatherWing example
# import clue_scale_dual_calibrate # uncomment to run calibration method for both channels
import time
import board
from simpleio import map_range
from adafruit_clue import clue
from adafruit_display_shapes.circle import Circle
from adafruit_display_text.label import Label
from adafruit_bitmap_font import bitmap_font
import displayio
from cedargrove_nau7802 import NAU7802
clue.pixel[0] = (16, 0, 16) # Set status indicator to purple during instantiation phase
MAX_GR = 100 # Maximum (full-scale) display range in grams
MIN_GR = (MAX_GR // 5) * -1 # Calculated minimum display value
DEFAULT_GAIN = 128 # Default gain for internal PGA
SAMPLE_AVG = 100 # Number of sample values to average
CHAN_1_LABEL = "SHOT" # 6 characters maximum
CHAN_2_LABEL = "BEANS" # 6 characters maximum
# Load cell dime-weight calibration ratio; 2.268 grams / ADC_raw_measurement
# Obtained emperically; individual load cell dependent
CALIB_RATIO_1 = (
100 / 215300
) # 100g at gain x128 for load cell serial#4540-02 attached to chan A
CALIB_RATIO_2 = (
100 / 215300
) # 100g at gain x128 for load cell serial#4540-02 attached to chan B
# Instantiate 24-bit load sensor ADC
nau7802 = NAU7802(board.I2C(), address=0x2A, active_channels=2)
# Instantiate display and fonts
print("*** Instantiate the display and fonts")
display = board.DISPLAY
scale_group = displayio.Group()
FONT_0 = bitmap_font.load_font("/fonts/Helvetica-Bold-24.bdf")
FONT_1 = bitmap_font.load_font("/fonts/OpenSans-16.bdf")
FONT_2 = bitmap_font.load_font("/fonts/OpenSans-9.bdf")
# Define displayio background and group elements
print("*** Define displayio background and group elements")
bkg = displayio.OnDiskBitmap("/clue_scale_bkg.bmp")
_background = displayio.TileGrid(bkg, pixel_shader=bkg.pixel_shader, x=0, y=0)
scale_group.append(_background)
chan_1_label = Label(FONT_1, text=CHAN_1_LABEL, color=clue.CYAN)
chan_1_label.anchor_point = (0.5, 0.5)
chan_1_label.anchored_position = (40, 96)
scale_group.append(chan_1_label)
chan_2_label = Label(FONT_1, text=CHAN_2_LABEL, color=clue.CYAN)
chan_2_label.anchor_point = (0.5, 0.5)
chan_2_label.anchored_position = (199, 96)
scale_group.append(chan_2_label)
zero_1_button_label = Label(FONT_1, text="Z", color=clue.RED)
zero_1_button_label.x = 8
zero_1_button_label.y = 150
scale_group.append(zero_1_button_label)
zero_2_button_label = Label(FONT_1, text="Z", color=clue.RED)
zero_2_button_label.x = 219
zero_2_button_label.y = 150
scale_group.append(zero_2_button_label)
zero_1_button_circle = Circle(14, 149, 14, fill=None, outline=clue.RED, stroke=2)
scale_group.append(zero_1_button_circle)
zero_2_button_circle = Circle(225, 149, 14, fill=None, outline=clue.RED, stroke=2)
scale_group.append(zero_2_button_circle)
zero_value = Label(FONT_2, text="0", color=clue.CYAN)
zero_value.anchor_point = (1.0, 0.5)
zero_value.anchored_position = (97, 200)
scale_group.append(zero_value)
min_value = Label(FONT_2, text=str(MIN_GR), color=clue.CYAN)
min_value.anchor_point = (1.0, 1.0)
min_value.anchored_position = (99, 239)
scale_group.append(min_value)
max_value = Label(FONT_2, text=str(MAX_GR), color=clue.CYAN)
max_value.anchor_point = (1.0, 0)
max_value.anchored_position = (99, 0)
scale_group.append(max_value)
plus_1_value = Label(FONT_2, text=str(1 * (MAX_GR // 5)), color=clue.CYAN)
plus_1_value.anchor_point = (1.0, 0.5)
plus_1_value.anchored_position = (99, 160)
scale_group.append(plus_1_value)
plus_2_value = Label(FONT_2, text=str(2 * (MAX_GR // 5)), color=clue.CYAN)
plus_2_value.anchor_point = (1.0, 0.5)
plus_2_value.anchored_position = (99, 120)
scale_group.append(plus_2_value)
plus_3_value = Label(FONT_2, text=str(3 * (MAX_GR // 5)), color=clue.CYAN)
plus_3_value.anchor_point = (1.0, 0.5)
plus_3_value.anchored_position = (99, 80)
scale_group.append(plus_3_value)
plus_4_value = Label(FONT_2, text=str(4 * (MAX_GR // 5)), color=clue.CYAN)
plus_4_value.anchor_point = (1.0, 0.5)
plus_4_value.anchored_position = (99, 40)
scale_group.append(plus_4_value)
chan_1_label = Label(FONT_0, text="grams", color=clue.BLUE)
chan_1_label.anchor_point = (1.0, 0)
chan_1_label.anchored_position = (80, 216)
scale_group.append(chan_1_label)
chan_2_label = Label(FONT_0, text="grams", color=clue.BLUE)
chan_2_label.anchor_point = (1.0, 0)
chan_2_label.anchored_position = (230, 216)
scale_group.append(chan_2_label)
chan_1_value = Label(FONT_0, text="0.0", color=clue.WHITE)
chan_1_value.anchor_point = (1.0, 0.5)
chan_1_value.anchored_position = (80, 200)
scale_group.append(chan_1_value)
chan_2_value = Label(FONT_0, text="0.0", color=clue.WHITE)
chan_2_value.anchor_point = (1.0, 0.5)
chan_2_value.anchored_position = (230, 200)
scale_group.append(chan_2_value)
# Define moveable bubble
indicator_group = displayio.Group()
chan_1_bubble = Circle(112, 200, 8, fill=clue.YELLOW, outline=clue.YELLOW, stroke=3)
indicator_group.append(chan_1_bubble)
chan_2_bubble = Circle(131, 200, 8, fill=clue.GREEN, outline=clue.GREEN, stroke=3)
indicator_group.append(chan_2_bubble)
scale_group.append(indicator_group)
display.show(scale_group)
def zero_channel():
# Initiate internal calibration for current channel
# Use when scale is started, a new channel is selected, or to adjust for measurement drift
# Remove weight and tare from load cell before executing
print(
"channel %1d calibrate.INTERNAL: %5s"
% (nau7802.channel, nau7802.calibrate("INTERNAL"))
)
print(
"channel %1d calibrate.OFFSET: %5s"
% (nau7802.channel, nau7802.calibrate("OFFSET"))
)
print("...channel zeroed")
def read(samples=100):
# Read and average consecutive raw sample values; return average raw value
sample_sum = 0
sample_count = samples
while sample_count > 0:
if nau7802.available:
sample_sum = sample_sum + nau7802.read()
sample_count -= 1
return int(sample_sum / samples)
# Instantiate and calibrate load cell inputs
print("*** Instantiate and calibrate load cells")
clue.pixel[0] = (16, 16, 0) # Set status indicator to yellow
print(" enable NAU7802 digital and analog power: %5s" % (nau7802.enable(True)))
nau7802.gain = DEFAULT_GAIN # Use default gain
nau7802.channel = 1 # Set to second channel
zero_channel() # Re-calibrate and zero
nau7802.channel = 2 # Set to first channel
zero_channel() # Re-calibrate and zero
clue.pixel[0] = (0, 16, 0) # Set status indicator to green
clue.play_tone(1660, 0.15)
clue.play_tone(1440, 0.15)
### Main loop: Read sample, move bubble, and display values
while True:
nau7802.channel = 1
value = read(SAMPLE_AVG)
chan_1_mass_gr = round(value * CALIB_RATIO_1, 1)
chan_1_mass_oz = round(chan_1_mass_gr * 0.03527, 2)
chan_1_value.text = "%5.1f" % (chan_1_mass_gr)
chan_1_bubble.y = int(map_range(chan_1_mass_gr, MIN_GR, MAX_GR, 240, 0)) - 8
if chan_1_mass_gr > MAX_GR or chan_1_mass_gr < MIN_GR:
chan_1_bubble.fill = clue.RED
else:
chan_1_bubble.fill = None
nau7802.channel = 2
value = read(SAMPLE_AVG)
chan_2_mass_gr = round(value * CALIB_RATIO_2, 1)
chan_2_mass_oz = round(chan_2_mass_gr * 0.03527, 2)
chan_2_value.text = "%5.1f" % (chan_2_mass_gr)
chan_2_bubble.y = int(map_range(chan_2_mass_gr, MIN_GR, MAX_GR, 240, 0)) - 8
if chan_2_mass_gr > MAX_GR or chan_2_mass_gr < MIN_GR:
chan_2_bubble.fill = clue.RED
else:
chan_2_bubble.fill = None
print("(%+5.1f, %+5.1f)" % (chan_1_mass_gr, chan_2_mass_gr))
if clue.button_a:
# Zero and recalibrate channel 1
clue.play_tone(1660, 0.3)
clue.pixel[0] = (16, 0, 0)
chan_1_bubble.fill = clue.RED
nau7802.channel = 1
zero_channel()
while clue.button_a:
time.sleep(0.1)
chan_1_bubble.fill = None
clue.pixel[0] = (0, 16, 0)
clue.play_tone(1440, 0.5)
if clue.button_b:
# Zero and recalibrate channel 2
clue.play_tone(1660, 0.3)
clue.pixel[0] = (16, 0, 0)
chan_2_bubble.fill = clue.RED
nau7802.channel = 2
zero_channel()
while clue.button_b:
time.sleep(0.1)
chan_2_bubble.fill = None
clue.pixel[0] = (0, 16, 0)
clue.play_tone(1440, 0.5)

View file

@ -0,0 +1,96 @@
# SPDX-FileCopyrightText: 2021, 2022 Cedar Grove Maker Studios
# SPDX-License-Identifier: MIT
#
# dual_clue_scale_calibrator.py
# 2022-07-27 v1.1.0
#
# Clue Scale Calibrator - Dual Channel Version
# Cedar Grove NAU7802 FeatherWing example
import time
import board
from adafruit_clue import clue
from cedargrove_nau7802 import NAU7802
clue.pixel[0] = 0x202000 # Set status indicator to yellow (initializing)
SAMPLE_AVG = 1000 # Number of sample values to average
DEFAULT_GAIN = 128 # Default gain for internal PGA
# Instantiate 24-bit load sensor ADC
nau7802 = NAU7802(board.I2C(), address=0x2A, active_channels=2)
def zero_channel():
"""Initiate internal calibration and zero the current channel. Use after
power-up, a new channel is selected, or to adjust for measurement drift.
Can be used to zero the scale with a tare weight."""
nau7802.calibrate("INTERNAL")
nau7802.calibrate("OFFSET")
def read(samples=100):
# Read and average consecutive raw sample values; return average raw value
sample_sum = 0
sample_count = samples
while sample_count > 0:
if nau7802.available:
sample_sum = sample_sum + nau7802.read()
sample_count -= 1
return int(sample_sum / samples)
# Activate the NAU780 internal analog circuitry, set gain, and calibrate/zero
nau7802.enable(True)
nau7802.gain = DEFAULT_GAIN # Use default gain
nau7802.channel = 1
zero_channel() # Calibrate and zero
nau7802.channel = 2
zero_channel() # Calibrate and zero
print("-----------------------------------")
print(" NAU7802 DUAL CHANNEL CALIBRATOR")
print("-----------------------------------")
print("Place a calibration weight on each")
print("load cell.")
print("To re-zero the load cells, remove")
print("any weights then press and hold A.")
print("-----------------------------------")
print("")
# Play "welcome" tones
clue.play_tone(1660, 0.15)
clue.play_tone(1440, 0.15)
# Main loop: Read samples and display values
while True:
clue.pixel[0] = 0x002000 # Set status indicator to green
# Read the raw value; print raw value, gain setting, and % of full-scale
nau7802.channel = 1
value = read(SAMPLE_AVG)
print(f"CHAN_{nau7802.channel:1.0f} RAW VALUE: {value:7.0f}")
print(f"GAIN: x{DEFAULT_GAIN} full-scale: {(value / ((2**23) - 1)) * 100:3.2f}%")
print("===================================")
nau7802.channel = 2
value = read(SAMPLE_AVG)
print(f"CHAN_{nau7802.channel:1.0f} RAW VALUE: {value:7.0f}")
print(f"GAIN: x{DEFAULT_GAIN} full-scale: {(value / ((2**23) - 1)) * 100:3.2f}%")
print("===================================")
time.sleep(0.1)
if clue.button_a:
# Zero and recalibrate both channels
clue.play_tone(1660, 0.3) # Play "button pressed" tone
clue.pixel[0] = 0x200000 # Set status indicator to red (stopped)
nau7802.channel = 1
zero_channel()
nau7802.channel = 2
zero_channel()
while clue.button_a:
# Wait until button is released
time.sleep(0.1)
print("RECALIBRATED")
clue.play_tone(1440, 0.5) # Play "reset completed" tone

219
examples/dual_clue_scale_code.py Executable file
View file

@ -0,0 +1,219 @@
# SPDX-FileCopyrightText: 2021, 2022 Cedar Grove Maker Studios
# SPDX-License-Identifier: MIT
#
# dual_clue_scale_code.py
# 2022-07-27 v1.2.0
#
# Clue Scale - Dual Channel Version
# Cedar Grove NAU7802 FeatherWing example
# import dual_clue_scale_calibrator # Uncomment to run calibrator method
import time
import board
from simpleio import map_range
from adafruit_clue import clue
from adafruit_display_shapes.circle import Circle
from adafruit_display_text.label import Label
from adafruit_bitmap_font import bitmap_font
import displayio
from cedargrove_nau7802 import NAU7802
clue.pixel[0] = 0x202000 # Set status indicator to yellow (initializing)
MAX_GR = 100 # Maximum (full-scale) display range in grams
DEFAULT_GAIN = 128 # Default gain for internal PGA
SAMPLE_AVG = 100 # Number of sample values to average
CHAN_1_LABEL = "SHOT" # 6 characters maximum
CHAN_2_LABEL = "BEANS" # 6 characters maximum
min_gr = (MAX_GR // 5) * -1 # Calculated minimum display value
"""Enter the calibration ratio for the individual load cell in-use. The ratio is
composed of the reference weight in grams divided by the raw reading. For
example, a raw reading of 215300 for a 100 gram weight results in a calibration
ratio of 100 / 215300. Use the clue_scale_single_calibrate method to obtain the
raw value.
FYI: A US dime coin weighs 2.268 ounces or 64.3 grams."""
CALIB_RATIO_1 = 100 / 215300 # load cell serial#4540-01 attached to chan 1
CALIB_RATIO_2 = 100 / 215300 # load cell serial#4540-02 attached to chan 2
# Instantiate 24-bit load sensor ADC
nau7802 = NAU7802(board.I2C(), address=0x2A, active_channels=2)
# Instantiate display and fonts
display = board.DISPLAY
scale_group = displayio.Group()
FONT_0 = bitmap_font.load_font("/fonts/Helvetica-Bold-24.bdf")
FONT_1 = bitmap_font.load_font("/fonts/OpenSans-16.bdf")
FONT_2 = bitmap_font.load_font("/fonts/OpenSans-9.bdf")
# Define displayio background and group elements
bkg = displayio.OnDiskBitmap("/clue_scale_bkg.bmp")
_background = displayio.TileGrid(bkg, pixel_shader=bkg.pixel_shader, x=0, y=0)
scale_group.append(_background)
chan_1_name = Label(FONT_1, text=CHAN_1_LABEL, color=clue.CYAN)
chan_1_name.anchor_point = (0.5, 0.5)
chan_1_name.anchored_position = (40, 96)
scale_group.append(chan_1_name)
chan_2_name = Label(FONT_1, text=CHAN_2_LABEL, color=clue.CYAN)
chan_2_name.anchor_point = (0.5, 0.5)
chan_2_name.anchored_position = (199, 96)
scale_group.append(chan_2_name)
# Define the graphics for the zeroing buttons
zero_1_button_circle = Circle(14, 152, 14, fill=None, outline=clue.RED, stroke=2)
scale_group.append(zero_1_button_circle)
zero_1_button_label = Label(FONT_1, text="Z", color=clue.RED)
zero_1_button_label.x = 8
zero_1_button_label.y = 150
scale_group.append(zero_1_button_label)
zero_2_button_circle = Circle(225, 152, 14, fill=None, outline=clue.RED, stroke=2)
scale_group.append(zero_2_button_circle)
zero_2_button_label = Label(FONT_1, text="Z", color=clue.RED)
zero_2_button_label.x = 219
zero_2_button_label.y = 150
scale_group.append(zero_2_button_label)
# Place tickmarks next to the graduated scale
for i in range(-1, 6):
tick_value = Label(FONT_2, text=str((MAX_GR) // 5 * i), color=clue.CYAN)
if i == -1:
tick_value.anchor_point = (1.0, 1.1)
elif i == 5:
tick_value.anchor_point = (1.0, 0.0)
else:
tick_value.anchor_point = (1.0, 0.5)
tick_value.anchored_position = (99, 201 - (i * 40))
scale_group.append(tick_value)
# Place the weight units and values near the bottom of the display
chan_1_name = Label(FONT_0, text="grams", color=clue.BLUE)
chan_1_name.anchor_point = (1.0, 0)
chan_1_name.anchored_position = (80, 216)
scale_group.append(chan_1_name)
chan_2_name = Label(FONT_0, text="grams", color=clue.BLUE)
chan_2_name.anchor_point = (1.0, 0)
chan_2_name.anchored_position = (230, 216)
scale_group.append(chan_2_name)
chan_1_value = Label(FONT_0, text="0.0", color=clue.WHITE)
chan_1_value.anchor_point = (1.0, 0.5)
chan_1_value.anchored_position = (80, 200)
scale_group.append(chan_1_value)
chan_2_value = Label(FONT_0, text="0.0", color=clue.WHITE)
chan_2_value.anchor_point = (1.0, 0.5)
chan_2_value.anchored_position = (230, 200)
scale_group.append(chan_2_value)
# Define the moveable indicator bubbles
indicator_group = displayio.Group()
chan_1_bubble = Circle(112, 200, 8, fill=clue.YELLOW, outline=clue.YELLOW, stroke=3)
indicator_group.append(chan_1_bubble)
chan_2_bubble = Circle(131, 200, 8, fill=clue.GREEN, outline=clue.GREEN, stroke=3)
indicator_group.append(chan_2_bubble)
scale_group.append(indicator_group)
display.show(scale_group)
def zero_channel():
"""Initiate internal calibration and zero the current channel. Use after
power-up, a new channel is selected, or to adjust for measurement drift.
Can be used to zero the scale with a tare weight."""
nau7802.calibrate("INTERNAL")
nau7802.calibrate("OFFSET")
def read(samples=100):
# Read and average consecutive raw sample values; return average raw value
sample_sum = 0
sample_count = samples
while sample_count > 0:
if nau7802.available:
sample_sum = sample_sum + nau7802.read()
sample_count -= 1
return int(sample_sum / samples)
# Activate the NAU780 internal analog circuitry, set gain, and calibrate/zero
nau7802.enable(True)
nau7802.gain = DEFAULT_GAIN
nau7802.channel = 1
zero_channel()
nau7802.channel = 2
zero_channel()
# Play "welcome" tones
clue.play_tone(1660, 0.15)
clue.play_tone(1440, 0.15)
# Main loop: Read samples, move bubbles, and display values
while True:
clue.pixel[0] = 0x002000 # Set status indicator to green (ready)
nau7802.channel = 1
value = read(SAMPLE_AVG)
chan_1_mass_gr = round(value * CALIB_RATIO_1, 1)
chan_1_mass_oz = round(chan_1_mass_gr * 0.03527, 2)
chan_1_value.text = f"{chan_1_mass_gr:5.1f}"
chan_1_bubble.y = int(map_range(chan_1_mass_gr, min_gr, MAX_GR, 240, 0)) - 8
if chan_1_mass_gr > MAX_GR or chan_1_mass_gr < min_gr:
chan_1_bubble.fill = clue.RED
else:
chan_1_bubble.fill = None
nau7802.channel = 2
value = read(SAMPLE_AVG)
chan_2_mass_gr = round(value * CALIB_RATIO_2, 1)
chan_2_mass_oz = round(chan_2_mass_gr * 0.03527, 2)
chan_2_value.text = f"{chan_2_mass_gr:5.1f}"
chan_2_bubble.y = int(map_range(chan_2_mass_gr, min_gr, MAX_GR, 240, 0)) - 8
if chan_2_mass_gr > MAX_GR or chan_2_mass_gr < min_gr:
chan_2_bubble.fill = clue.RED
else:
chan_2_bubble.fill = None
print(f"chan_1:{chan_1_mass_gr:5.1f} gr chan_2:{chan_2_mass_gr:5.1f} gr")
if clue.button_a:
# Zero and recalibrate channel 1
clue.pixel[0] = 0x200000 # Set status indicator to red (stopped)
chan_1_bubble.fill = clue.RED
clue.play_tone(1660, 0.3) # Play "button pressed" tone
nau7802.channel = 1
zero_channel()
while clue.button_a:
# Wait until button is released
time.sleep(0.1)
clue.play_tone(1440, 0.5) # Play "reset completed" tone
chan_1_bubble.fill = None
if clue.button_b:
# Zero and recalibrate channel 2
clue.pixel[0] = 0x200000 # Set status indicator to red (stopped)
chan_2_bubble.fill = clue.RED
clue.play_tone(1660, 0.3) # Play "button pressed" tone
nau7802.channel = 2
zero_channel()
while clue.button_a:
# Wait until button is released
time.sleep(0.1)
clue.play_tone(1440, 0.5) # Play "reset completed" tone
chan_2_bubble.fill = None