Compare commits

..

7 commits

Author SHA1 Message Date
Phillip Burgess
167e9364be Trying to get CCL working, not there yet 2018-06-21 22:29:18 -07:00
Phillip Burgess
bdcfb20734 Tweak pushColors() for SAMD51, add non-DMA option to wobble example 2018-06-21 18:40:57 -07:00
Phillip Burgess
c542e168f3 Added 'wobble' example -- better example of pushColorsDMA() 2018-06-21 18:22:10 -07:00
Phillip Burgess
d5390a973a Add pushColorsDMA() and example use in tftbmp.pde 2018-06-21 17:42:36 -07:00
Phillip Burgess
aef2d6d469 DMA working, BUT with gotchas, see comments in examples! 2018-06-21 13:43:51 -07:00
Phillip Burgess
c69ffb9866 DMA working for flood() function if hi & lo bytes match 2018-06-20 17:38:11 -07:00
Phillip Burgess
b0debeeeef Initial SAMD51 work
Breakout only (no shield), data pins are hardcoded, works on ItsyBitsy M4.
2018-06-19 22:10:25 -07:00
17 changed files with 1869 additions and 2547 deletions

File diff suppressed because it is too large Load diff

View file

@ -7,9 +7,9 @@
#define _ADAFRUIT_TFTLCD_H_
#if ARDUINO >= 100
#include "Arduino.h"
#include "Arduino.h"
#else
#include "WProgram.h"
#include "WProgram.h"
#endif
#include <Adafruit_GFX.h>
@ -21,7 +21,8 @@
class Adafruit_TFTLCD : public Adafruit_GFX {
public:
public:
Adafruit_TFTLCD(uint8_t cs, uint8_t cd, uint8_t wr, uint8_t rd, uint8_t rst);
Adafruit_TFTLCD(void);
@ -37,13 +38,22 @@ public:
void setRotation(uint8_t x);
// These methods are public in order for BMP examples to work:
void setAddrWindow(int x1, int y1, int x2, int y2);
#if defined(__SAMD51__)
void pushColors(uint16_t *data, uint16_t len, boolean first);
#else
void pushColors(uint16_t *data, uint8_t len, boolean first);
#endif
void pushColorsDMA(uint32_t totalBytes, uint8_t *buffer,
uint16_t bufSize, void (*callback)(uint8_t *dest, uint16_t len));
uint16_t color565(uint8_t r, uint8_t g, uint8_t b),
readPixel(int16_t x, int16_t y), readID(void);
readPixel(int16_t x, int16_t y),
readID(void);
uint32_t readReg(uint8_t r);
private:
private:
void init(),
// These items may have previously been defined as macros
// in pin_magic.h. If not, function versions are declared:
@ -67,26 +77,35 @@ private:
#ifndef writeRegisterPair
writeRegisterPair(uint8_t aH, uint8_t aL, uint16_t d),
#endif
setLR(void), flood(uint16_t color, uint32_t len);
setLR(void),
flood(uint16_t color, uint32_t len);
uint8_t driver;
#ifndef read8
uint8_t read8fn(void);
#define read8isFunctionalized
#define read8isFunctionalized
#endif
#ifndef USE_ADAFRUIT_SHIELD_PINOUT
#ifdef __AVR__
volatile uint8_t *csPort, *cdPort, *wrPort, *rdPort;
uint8_t csPinSet, cdPinSet, wrPinSet, rdPinSet, csPinUnset, cdPinUnset,
wrPinUnset, rdPinUnset, _reset;
#endif
#if defined(__SAM3X8E__)
Pio *csPort, *cdPort, *wrPort, *rdPort;
uint32_t csPinSet, cdPinSet, wrPinSet, rdPinSet, csPinUnset, cdPinUnset,
wrPinUnset, rdPinUnset, _reset;
#endif
#ifdef __AVR__
volatile uint8_t *csPort , *cdPort , *wrPort , *rdPort;
uint8_t csPinSet , cdPinSet , wrPinSet , rdPinSet ,
csPinUnset, cdPinUnset, wrPinUnset, rdPinUnset,
_reset;
#elif defined(__SAM3X8E__)
Pio *csPort , *cdPort , *wrPort , *rdPort;
uint32_t csPinSet , cdPinSet , wrPinSet , rdPinSet ,
csPinUnset, cdPinUnset, wrPinUnset, rdPinUnset,
_reset;
#elif defined(__SAMD51__)
volatile uint32_t *csPortSet , *cdPortSet , *wrPortSet , *rdPortSet,
*csPortClr , *cdPortClr , *wrPortClr , *rdPortClr;
uint32_t csPinMask , cdPinMask , wrPinMask , rdPinMask,
_reset;
volatile uint8_t *writePort, *readPort, *dirSet, *dirClr;
#endif
#endif
};

View file

@ -1,19 +0,0 @@
# Adafruit library for 8-bit TFT LCDs such as ILI9325, ILI9328, etc
This is a library for our Adafruit 16-channel PWM & Servo driver, shield or FeatherWing
<a href="https://www.adafruit.com/products/335"><img src="assets/image.jpg" height="300"/></a>
Pick one up today in the adafruit shop!
* https://www.adafruit.com/product/335
* https://www.adafruit.com/product/376
These displays use 8-bit parallel to communicate, 12 or 13 pins are required to interface (RST is optional).
Adafruit invests time and resources providing this open source code, please support Adafruit and open-source hardware by purchasing products from Adafruit!
Written by Limor Fried/Ladyada for Adafruit Industries. BSD license, check license.txt for more information.
All text above must be included in any redistribution
To install, use the Arduino Library Manager and search for "Adafruit 2.8" TFT display Library" and install the library.

21
README.txt Normal file
View file

@ -0,0 +1,21 @@
This is a library for the Adafruit 2.8" TFT display.
This library works with the Adafruit 2.8" TFT Breakout w/SD card
----> http://www.adafruit.com/products/335
as well as Adafruit TFT Touch Shield
----> http://www.adafruit.com/products/376
Check out the links above for our tutorials and wiring diagrams.
These displays use 8-bit parallel to communicate, 12 or 13 pins are required
to interface (RST is optional).
Adafruit invests time and resources providing this open source code,
please support Adafruit and open-source hardware by purchasing
products from Adafruit!
Written by Limor Fried/Ladyada for Adafruit Industries.
MIT license, all text above must be included in any redistribution
To download. click the DOWNLOADS button in the top right corner, rename the uncompressed folder Adafruit_TFTLCD. Check that the Adafruit_TFTLCD folder contains Adafruit_TFTLCD.cpp and Adafruit_TFTLCD.
Place the Adafruit_TFT library folder your <arduinosketchfolder>/libraries/ folder. You may need to create the libraries subfolder if its your first library. Restart the IDE
Also requires the Adafruit_GFX library for Arduino. https://github.com/adafruit/Adafruit-GFX-Library

Binary file not shown.

Before

Width:  |  Height:  |  Size: 129 KiB

View file

@ -1,32 +1,39 @@
// IMPORTANT: Adafruit_TFTLCD LIBRARY MUST BE SPECIFICALLY
// CONFIGURED FOR EITHER THE TFT SHIELD OR THE BREAKOUT BOARD.
// SEE RELEVANT COMMENTS IN Adafruit_TFTLCD.h FOR SETUP.
// Graphics test rigged specifically for the SAMD21 branch
// of TFTLCD and the ItsyBitsy M4 board. TFTLCD lib MUST be
// configured for the breakout board option, plus there's
// some wiring shenanigans...
// LCD_WR MUST go to pin D4, because we're using a specific
// timer/counter for PWM output. The pin # could be changed
// IF a corresponding timer change is made in the SAMD21 TFTLIB.
// One of two additional wiring changes MUST be made. Either:
// LCD_WR MUST go through an inverter (e.g. 74HC04)
// -or-
// The TFT 'CS' pin MUST be tied HIGH (ignoring LCD_CS setting)
// If you opt for this latter arrangement, you CANNOT read the
// device ID from the display (or anything else) -- see setup()
// where 'identifier' is hardcoded;
// Data pins are as follows:
// D0 connects to digital pin 0 (Notice these are
// D1 connects to digital pin 1 NOT in order!)
// D2 connects to digital pin 7
// D3 connects to digital pin 9
// D4 connects to digital pin 10
// D5 connects to digital pin 11
// D6 connects to digital pin 13
// D7 connects to digital pin 12
#include <Adafruit_GFX.h> // Core graphics library
#include <Adafruit_TFTLCD.h> // Hardware-specific library
// The control pins for the LCD can be assigned to any digital or
// analog pins...but we'll use the analog pins as this allows us to
// double up the pins with the touch screen (see the TFT paint example).
#define LCD_CS A3 // Chip Select goes to Analog 3
#define LCD_CD A2 // Command/Data goes to Analog 2
#define LCD_WR A1 // LCD Write goes to Analog 1
#define LCD_RD A0 // LCD Read goes to Analog 0
#define LCD_CS A3 // Chip Select (see notes above)
#define LCD_CD A2 // Command/Data
#define LCD_RD A0 // LCD Read strobe
#define LCD_WR 4 // LCD Write strobe (see notes above)
#define LCD_RESET A4 // Can alternately just connect to Arduino's reset pin
// When using the BREAKOUT BOARD only, use these 8 data lines to the LCD:
// For the Arduino Uno, Duemilanove, Diecimila, etc.:
// D0 connects to digital pin 8 (Notice these are
// D1 connects to digital pin 9 NOT in order!)
// D2 connects to digital pin 2
// D3 connects to digital pin 3
// D4 connects to digital pin 4
// D5 connects to digital pin 5
// D6 connects to digital pin 6
// D7 connects to digital pin 7
// For the Arduino Mega, use digital pins 22 through 29
// (on the 2-row header at the end of the board).
#define LCD_RESET A4 // Alternately just connect to Arduino's reset pin
// Assign human-readable names to some common 16-bit color values:
#define BLACK 0x0000
@ -39,14 +46,10 @@
#define WHITE 0xFFFF
Adafruit_TFTLCD tft(LCD_CS, LCD_CD, LCD_WR, LCD_RD, LCD_RESET);
// If using the shield, all control and data lines are fixed, and
// a simpler declaration can optionally be used:
// Adafruit_TFTLCD tft;
void setup(void) {
Serial.begin(9600);
Serial.println(F("TFT LCD test"));
#ifdef USE_ADAFRUIT_SHIELD_PINOUT
Serial.println(F("Using Adafruit 2.8\" TFT Arduino Shield Pinout"));
#else
@ -59,6 +62,10 @@ void setup(void) {
uint16_t identifier = tft.readID();
// SEE NOTES ABOVE - this is necessary IF using the
// hard-wired CS (and no inverter) option.
identifier = 0x9341;
if(identifier == 0x9325) {
Serial.println(F("Found ILI9325 LCD driver"));
} else if(identifier == 0x9328) {
@ -78,11 +85,30 @@ void setup(void) {
Serial.println(F("If using the breakout board, it should NOT be #defined!"));
Serial.println(F("Also if using the breakout, double-check that all wiring"));
Serial.println(F("matches the tutorial."));
return;
}
tft.begin(identifier);
#if 0
// Test frame rate:
uint32_t startTime = millis();
uint32_t frames = 0;
for(;;) {
tft.fillScreen(0x0000);
frames++;
// delay(500);
tft.fillScreen(0xFFFF);
frames++;
// delay(500);
if(!(frames & 0xFF)) {
uint32_t elapsed = (millis() - startTime) / 1000;
if(elapsed > 0) {
Serial.println(frames / elapsed);
}
}
}
#endif
Serial.println(F("Benchmark Time (microseconds)"));
Serial.print(F("Screen fill "));

View file

@ -1,223 +0,0 @@
// IMPORTANT: Adafruit_TFTLCD LIBRARY MUST BE SPECIFICALLY
// CONFIGURED FOR EITHER THE TFT SHIELD OR THE BREAKOUT BOARD.
// SEE RELEVANT COMMENTS IN Adafruit_TFTLCD.h FOR SETUP.
#include <Adafruit_GFX.h> // Core graphics library
#include <Adafruit_TFTLCD.h> // Hardware-specific library
// The control pins for the LCD can be assigned to any digital or
// analog pins...but we'll use the analog pins as this allows us to
// double up the pins with the touch screen (see the TFT paint example).
#define LCD_CS A3 // Chip Select goes to Analog 3
#define LCD_CD A2 // Command/Data goes to Analog 2
#define LCD_WR A1 // LCD Write goes to Analog 1
#define LCD_RD A0 // LCD Read goes to Analog 0
#define LCD_RESET A4 // Can alternately just connect to Arduino's reset pin
// When using the BREAKOUT BOARD only, use these 8 data lines to the LCD:
// For the Arduino Uno, Duemilanove, Diecimila, etc.:
// D0 connects to digital pin 8 (Notice these are
// D1 connects to digital pin 9 NOT in order!)
// D2 connects to digital pin 2
// D3 connects to digital pin 3
// D4 connects to digital pin 4
// D5 connects to digital pin 5
// D6 connects to digital pin 6
// D7 connects to digital pin 7
// For the Arduino Mega, use digital pins 22 through 29
// (on the 2-row header at the end of the board).
// Assign human-readable names to some common 16-bit color values:
#define BLACK 0x0000
#define BLUE 0x001F
#define RED 0xF800
#define GREEN 0x07E0
#define CYAN 0x07FF
#define MAGENTA 0xF81F
#define YELLOW 0xFFE0
#define WHITE 0xFFFF
Adafruit_TFTLCD tft(LCD_CS, LCD_CD, LCD_WR, LCD_RD, LCD_RESET);
// If using the shield, all control and data lines are fixed, and
// a simpler declaration can optionally be used:
// Adafruit_TFTLCD tft;
void setup(void) {
Serial.begin(9600);
Serial.println(F("TFT LCD test"));
#ifdef USE_ADAFRUIT_SHIELD_PINOUT
Serial.println(F("Using Adafruit 2.8\" TFT Arduino Shield Pinout"));
#else
Serial.println(F("Using Adafruit 2.8\" TFT Breakout Board Pinout"));
#endif
tft.reset();
uint16_t identifier = tft.readID();
if(identifier == 0x9325) {
Serial.println(F("Found ILI9325 LCD driver"));
} else if(identifier == 0x9328) {
Serial.println(F("Found ILI9328 LCD driver"));
} else if(identifier == 0x7575) {
Serial.println(F("Found HX8347G LCD driver"));
} else if(identifier == 0x9341) {
Serial.println(F("Found ILI9341 LCD driver"));
} else if(identifier == 0x8357) {
Serial.println(F("Found HX8357D LCD driver"));
} else {
Serial.print(F("Unknown LCD driver chip: "));
Serial.println(identifier, HEX);
Serial.println(F("If using the Adafruit 2.8\" TFT Arduino shield, the line:"));
Serial.println(F(" #define USE_ADAFRUIT_SHIELD_PINOUT"));
Serial.println(F("should appear in the library header (Adafruit_TFT.h)."));
Serial.println(F("If using the breakout board, it should NOT be #defined!"));
Serial.println(F("Also if using the breakout, double-check that all wiring"));
Serial.println(F("matches the tutorial."));
return;
}
tft.begin(identifier);
tft.fillScreen(BLACK);
Serial.println(F("This is a test of the rotation capabilities of the TFT library!"));
Serial.println(F("Press <SEND> (or type a character) to advance"));
}
void loop(void) {
rotatePixel();
rotateLine();
rotateFastline();
rotateDrawrect();
rotateFillrect();
rotateDrawcircle();
rotateFillcircle();
rotateText();
}
void rotateText() {
for (uint8_t i=0; i<4; i++) {
tft.fillScreen(BLACK);
Serial.println(tft.getRotation(), DEC);
tft.setCursor(0, 30);
tft.setTextColor(RED);
tft.setTextSize(1);
tft.println("Hello World!");
tft.setTextColor(YELLOW);
tft.setTextSize(2);
tft.println("Hello World!");
tft.setTextColor(GREEN);
tft.setTextSize(3);
tft.println("Hello World!");
tft.setTextColor(BLUE);
tft.setTextSize(4);
tft.print(1234.567);
while (!Serial.available());
Serial.read(); Serial.read(); Serial.read();
tft.setRotation(tft.getRotation()+1);
}
}
void rotateFillcircle(void) {
for (uint8_t i=0; i<4; i++) {
tft.fillScreen(BLACK);
Serial.println(tft.getRotation(), DEC);
tft.fillCircle(10, 30, 10, YELLOW);
while (!Serial.available());
Serial.read(); Serial.read(); Serial.read();
tft.setRotation(tft.getRotation()+1);
}
}
void rotateDrawcircle(void) {
for (uint8_t i=0; i<4; i++) {
tft.fillScreen(BLACK);
Serial.println(tft.getRotation(), DEC);
tft.drawCircle(10, 30, 10, YELLOW);
while (!Serial.available());
Serial.read(); Serial.read(); Serial.read();
tft.setRotation(tft.getRotation()+1);
}
}
void rotateFillrect(void) {
for (uint8_t i=0; i<4; i++) {
tft.fillScreen(BLACK);
Serial.println(tft.getRotation(), DEC);
tft.fillRect(10, 20, 10, 20, GREEN);
while (!Serial.available());
Serial.read(); Serial.read(); Serial.read();
tft.setRotation(tft.getRotation()+1);
}
}
void rotateDrawrect(void) {
for (uint8_t i=0; i<4; i++) {
tft.fillScreen(BLACK);
Serial.println(tft.getRotation(), DEC);
tft.drawRect(10, 20, 10, 20, GREEN);
while (!Serial.available());
Serial.read(); Serial.read(); Serial.read();
tft.setRotation(tft.getRotation()+1);
}
}
void rotateFastline(void) {
for (uint8_t i=0; i<4; i++) {
tft.fillScreen(BLACK);
Serial.println(tft.getRotation(), DEC);
tft.drawFastHLine(0, 20, tft.width(), RED);
tft.drawFastVLine(20, 0, tft.height(), BLUE);
while (!Serial.available());
Serial.read(); Serial.read(); Serial.read();
tft.setRotation(tft.getRotation()+1);
}
}
void rotateLine(void) {
for (uint8_t i=0; i<4; i++) {
tft.fillScreen(BLACK);
Serial.println(tft.getRotation(), DEC);
tft.drawLine(tft.width()/2, tft.height()/2, 0, 0, RED);
while (!Serial.available());
Serial.read(); Serial.read(); Serial.read();
tft.setRotation(tft.getRotation()+1);
}
}
void rotatePixel(void) {
for (uint8_t i=0; i<4; i++) {
tft.fillScreen(BLACK);
Serial.println(tft.getRotation(), DEC);
tft.drawPixel(10,20, RED);
while (!Serial.available());
Serial.read(); Serial.read(); Serial.read();
tft.setRotation(tft.getRotation()+1);
}
}

View file

@ -1,248 +0,0 @@
// BMP-loading example specifically for the TFTLCD breakout board.
// If using the Arduino shield, use the tftbmp_shield.pde sketch instead!
// If using an Arduino Mega make sure to use its hardware SPI pins, OR make
// sure the SD library is configured for 'soft' SPI in the file Sd2Card.h.
#include <Adafruit_GFX.h> // Core graphics library
#include <Adafruit_TFTLCD.h> // Hardware-specific library
#include <SD.h>
#include <SPI.h>
// The control pins for the LCD can be assigned to any digital or
// analog pins...but we'll use the analog pins as this allows us to
// double up the pins with the touch screen (see the TFT paint example).
#define LCD_CS A3 // Chip Select goes to Analog 3
#define LCD_CD A2 // Command/Data goes to Analog 2
#define LCD_WR A1 // LCD Write goes to Analog 1
#define LCD_RD A0 // LCD Read goes to Analog 0
// When using the BREAKOUT BOARD only, use these 8 data lines to the LCD:
// For the Arduino Uno, Duemilanove, Diecimila, etc.:
// D0 connects to digital pin 8 (Notice these are
// D1 connects to digital pin 9 NOT in order!)
// D2 connects to digital pin 2
// D3 connects to digital pin 3
// D4 connects to digital pin 4
// D5 connects to digital pin 5
// D6 connects to digital pin 6
// D7 connects to digital pin 7
// For the Arduino Mega, use digital pins 22 through 29
// (on the 2-row header at the end of the board).
// For Arduino Uno/Duemilanove, etc
// connect the SD card with DI going to pin 11, DO going to pin 12 and SCK going to pin 13 (standard)
// Then pin 10 goes to CS (or whatever you have set up)
#define SD_CS 10 // Set the chip select line to whatever you use (10 doesnt conflict with the library)
// In the SD card, place 24 bit color BMP files (be sure they are 24-bit!)
// There are examples in the sketch folder
// our TFT wiring
Adafruit_TFTLCD tft(LCD_CS, LCD_CD, LCD_WR, LCD_RD, A4);
void setup()
{
Serial.begin(9600);
tft.reset();
uint16_t identifier = tft.readID();
if(identifier == 0x9325) {
Serial.println(F("Found ILI9325 LCD driver"));
} else if(identifier == 0x9328) {
Serial.println(F("Found ILI9328 LCD driver"));
} else if(identifier == 0x7575) {
Serial.println(F("Found HX8347G LCD driver"));
} else if(identifier == 0x9341) {
Serial.println(F("Found ILI9341 LCD driver"));
} else if(identifier == 0x8357) {
Serial.println(F("Found HX8357D LCD driver"));
} else {
Serial.print(F("Unknown LCD driver chip: "));
Serial.println(identifier, HEX);
Serial.println(F("If using the Adafruit 2.8\" TFT Arduino shield, the line:"));
Serial.println(F(" #define USE_ADAFRUIT_SHIELD_PINOUT"));
Serial.println(F("should appear in the library header (Adafruit_TFT.h)."));
Serial.println(F("If using the breakout board, it should NOT be #defined!"));
Serial.println(F("Also if using the breakout, double-check that all wiring"));
Serial.println(F("matches the tutorial."));
return;
}
tft.begin(identifier);
Serial.print(F("Initializing SD card..."));
if (!SD.begin(SD_CS)) {
Serial.println(F("failed!"));
return;
}
Serial.println(F("OK!"));
bmpDraw("woof.bmp", 0, 0);
delay(1000);
}
void loop()
{
for(int i = 0; i<4; i++) {
tft.setRotation(i);
tft.fillScreen(0);
for(int j=0; j <= 200; j += 50) {
bmpDraw("miniwoof.bmp", j, j);
}
delay(1000);
}
}
// This function opens a Windows Bitmap (BMP) file and
// displays it at the given coordinates. It's sped up
// by reading many pixels worth of data at a time
// (rather than pixel by pixel). Increasing the buffer
// size takes more of the Arduino's precious RAM but
// makes loading a little faster. 20 pixels seems a
// good balance.
#define BUFFPIXEL 20
void bmpDraw(char *filename, int x, int y) {
File bmpFile;
int bmpWidth, bmpHeight; // W+H in pixels
uint8_t bmpDepth; // Bit depth (currently must be 24)
uint32_t bmpImageoffset; // Start of image data in file
uint32_t rowSize; // Not always = bmpWidth; may have padding
uint8_t sdbuffer[3*BUFFPIXEL]; // pixel in buffer (R+G+B per pixel)
uint16_t lcdbuffer[BUFFPIXEL]; // pixel out buffer (16-bit per pixel)
uint8_t buffidx = sizeof(sdbuffer); // Current position in sdbuffer
boolean goodBmp = false; // Set to true on valid header parse
boolean flip = true; // BMP is stored bottom-to-top
int w, h, row, col;
uint8_t r, g, b;
uint32_t pos = 0, startTime = millis();
uint8_t lcdidx = 0;
boolean first = true;
if((x >= tft.width()) || (y >= tft.height())) return;
Serial.println();
Serial.print(F("Loading image '"));
Serial.print(filename);
Serial.println('\'');
// Open requested file on SD card
if ((bmpFile = SD.open(filename)) == NULL) {
Serial.println(F("File not found"));
return;
}
// Parse BMP header
if(read16(bmpFile) == 0x4D42) { // BMP signature
Serial.println(F("File size: ")); Serial.println(read32(bmpFile));
(void)read32(bmpFile); // Read & ignore creator bytes
bmpImageoffset = read32(bmpFile); // Start of image data
Serial.print(F("Image Offset: ")); Serial.println(bmpImageoffset, DEC);
// Read DIB header
Serial.print(F("Header size: ")); Serial.println(read32(bmpFile));
bmpWidth = read32(bmpFile);
bmpHeight = read32(bmpFile);
if(read16(bmpFile) == 1) { // # planes -- must be '1'
bmpDepth = read16(bmpFile); // bits per pixel
Serial.print(F("Bit Depth: ")); Serial.println(bmpDepth);
if((bmpDepth == 24) && (read32(bmpFile) == 0)) { // 0 = uncompressed
goodBmp = true; // Supported BMP format -- proceed!
Serial.print(F("Image size: "));
Serial.print(bmpWidth);
Serial.print('x');
Serial.println(bmpHeight);
// BMP rows are padded (if needed) to 4-byte boundary
rowSize = (bmpWidth * 3 + 3) & ~3;
// If bmpHeight is negative, image is in top-down order.
// This is not canon but has been observed in the wild.
if(bmpHeight < 0) {
bmpHeight = -bmpHeight;
flip = false;
}
// Crop area to be loaded
w = bmpWidth;
h = bmpHeight;
if((x+w-1) >= tft.width()) w = tft.width() - x;
if((y+h-1) >= tft.height()) h = tft.height() - y;
// Set TFT address window to clipped image bounds
tft.setAddrWindow(x, y, x+w-1, y+h-1);
for (row=0; row<h; row++) { // For each scanline...
// Seek to start of scan line. It might seem labor-
// intensive to be doing this on every line, but this
// method covers a lot of gritty details like cropping
// and scanline padding. Also, the seek only takes
// place if the file position actually needs to change
// (avoids a lot of cluster math in SD library).
if(flip) // Bitmap is stored bottom-to-top order (normal BMP)
pos = bmpImageoffset + (bmpHeight - 1 - row) * rowSize;
else // Bitmap is stored top-to-bottom
pos = bmpImageoffset + row * rowSize;
if(bmpFile.position() != pos) { // Need seek?
bmpFile.seek(pos);
buffidx = sizeof(sdbuffer); // Force buffer reload
}
for (col=0; col<w; col++) { // For each column...
// Time to read more pixel data?
if (buffidx >= sizeof(sdbuffer)) { // Indeed
// Push LCD buffer to the display first
if(lcdidx > 0) {
tft.pushColors(lcdbuffer, lcdidx, first);
lcdidx = 0;
first = false;
}
bmpFile.read(sdbuffer, sizeof(sdbuffer));
buffidx = 0; // Set index to beginning
}
// Convert pixel from BMP to TFT format
b = sdbuffer[buffidx++];
g = sdbuffer[buffidx++];
r = sdbuffer[buffidx++];
lcdbuffer[lcdidx++] = tft.color565(r,g,b);
} // end pixel
} // end scanline
// Write any remaining data to LCD
if(lcdidx > 0) {
tft.pushColors(lcdbuffer, lcdidx, first);
}
Serial.print(F("Loaded in "));
Serial.print(millis() - startTime);
Serial.println(" ms");
} // end goodBmp
}
}
bmpFile.close();
if(!goodBmp) Serial.println(F("BMP format not recognized."));
}
// These read 16- and 32-bit types from the SD card file.
// BMP data is stored little-endian, Arduino is little-endian too.
// May need to reverse subscript order if porting elsewhere.
uint16_t read16(File f) {
uint16_t result;
((uint8_t *)&result)[0] = f.read(); // LSB
((uint8_t *)&result)[1] = f.read(); // MSB
return result;
}
uint32_t read32(File f) {
uint32_t result;
((uint8_t *)&result)[0] = f.read(); // LSB
((uint8_t *)&result)[1] = f.read();
((uint8_t *)&result)[2] = f.read();
((uint8_t *)&result)[3] = f.read(); // MSB
return result;
}

419
examples/tftbmp/tftbmp.pde Normal file
View file

@ -0,0 +1,419 @@
// BMP-loading demo rigged specifically for the SAMD21 branch
// of TFTLCD and the ItsyBitsy M4 board. TFTLCD lib MUST be
// configured for the breakout board option, plus there's
// some wiring shenanigans...
// LCD_WR MUST go to pin D4, because we're using a specific
// timer/counter for PWM output. The pin # could be changed
// IF a corresponding timer change is made in the SAMD21 TFTLIB.
// One of two additional wiring changes MUST be made. Either:
// LCD_WR MUST go through an inverter (e.g. 74HC04)
// -or-
// The TFT 'CS' pin MUST be tied HIGH (ignoring LCD_CS setting)
// If you opt for this latter arrangement, you CANNOT read the
// device ID from the display (or anything else) -- see setup()
// where 'identifier' is hardcoded;
// Data pins are as follows:
// D0 connects to digital pin 0 (Notice these are
// D1 connects to digital pin 1 NOT in order!)
// D2 connects to digital pin 7
// D3 connects to digital pin 9
// D4 connects to digital pin 10
// D5 connects to digital pin 11
// D6 connects to digital pin 13
// D7 connects to digital pin 12
#include <SD.h>
#include <Adafruit_GFX.h> // Core graphics library
#include <Adafruit_TFTLCD.h> // Hardware-specific library
#define LCD_CS A3 // Chip Select (see notes above)
#define LCD_CD A2 // Command/Data
#define LCD_RD A0 // LCD Read strobe
#define LCD_WR 4 // LCD Write strobe (see notes above)
#define LCD_RESET A4 // Alternately just connect to Arduino's reset pin
// DO NOT use the SD card slot on the TFT breakout -- it doesn't
// appear to work when using the parallel interface. Instead, a
// separate SD breakout is needed.
#define SD_CS A5 // SD card delect
// A switch or jumper on A1 selects DMA vs non-DMA BMP loading.
// There's really not a huge performance difference in this case
// just because the bottleneck is in the SD card access and color
// conversion operations...BUT...it does demonstrate how the
// pushColorsDMA() function works, and how to use a callback to
// load the next block of data while the current block is sent.
#define DMA_SELECT A1 // Hi/lo chooses DMA vs non-DMA DMA loader
// In the SD card, place 24 bit color BMP files (be sure they are 24-bit!)
// There are examples in the sketch folder
// our TFT wiring
Adafruit_TFTLCD tft(LCD_CS, LCD_CD, LCD_WR, LCD_RD, LCD_RESET);
void setup()
{
Serial.begin(9600);
while(!Serial);
pinMode(DMA_SELECT, INPUT_PULLUP);
tft.reset();
uint16_t identifier = tft.readID();
// SEE NOTES ABOVE - this is necessary IF using the
// hard-wired CS (and no inverter) option.
identifier = 0x9341;
if(identifier == 0x9325) {
Serial.println(F("Found ILI9325 LCD driver"));
} else if(identifier == 0x9328) {
Serial.println(F("Found ILI9328 LCD driver"));
} else if(identifier == 0x7575) {
Serial.println(F("Found HX8347G LCD driver"));
} else if(identifier == 0x9341) {
Serial.println(F("Found ILI9341 LCD driver"));
} else if(identifier == 0x8357) {
Serial.println(F("Found HX8357D LCD driver"));
} else {
Serial.print(F("Unknown LCD driver chip: "));
Serial.println(identifier, HEX);
Serial.println(F("If using the Adafruit 2.8\" TFT Arduino shield, the line:"));
Serial.println(F(" #define USE_ADAFRUIT_SHIELD_PINOUT"));
Serial.println(F("should appear in the library header (Adafruit_TFT.h)."));
Serial.println(F("If using the breakout board, it should NOT be #defined!"));
Serial.println(F("Also if using the breakout, double-check that all wiring"));
Serial.println(F("matches the tutorial."));
return;
}
tft.begin(identifier);
tft.fillScreen(0);
Serial.print(F("Initializing SD card..."));
if (!SD.begin(SD_CS)) {
Serial.println(F("failed!"));
tft.fillScreen(0xF800);
for(;;);
}
Serial.println(F("OK!"));
tft.fillScreen(0x001F);
if(digitalRead(DMA_SELECT))
bmpDrawDMA("woof.bmp", 0, 0);
else
bmpDraw("woof.bmp", 0, 0);
// delay(1000);
}
void loop()
{
for(int i = 0; i<4; i++) {
tft.setRotation(i);
tft.fillScreen(0);
for(int j=0; j <= 200; j += 50) {
if(digitalRead(DMA_SELECT))
bmpDrawDMA("miniwoof.bmp", j, j);
else
bmpDraw("miniwoof.bmp", j, j);
}
// delay(1000);
}
}
// Common functions/vars for both BMP loaders ------------------------------
// These read 16- and 32-bit types from the SD card file.
// BMP data is stored little-endian, Arduino is little-endian too.
// May need to reverse subscript order if porting elsewhere.
uint16_t read16(File f) {
uint16_t result;
((uint8_t *)&result)[0] = f.read(); // LSB
((uint8_t *)&result)[1] = f.read(); // MSB
return result;
}
uint32_t read32(File f) {
uint32_t result;
((uint8_t *)&result)[0] = f.read(); // LSB
((uint8_t *)&result)[1] = f.read();
((uint8_t *)&result)[2] = f.read();
((uint8_t *)&result)[3] = f.read(); // MSB
return result;
}
// "Vanilla" (non-DMA) BMP Loader ------------------------------------------
// This function opens a Windows Bitmap (BMP) file and
// displays it at the given coordinates. It's sped up
// by reading many pixels worth of data at a time
// (rather than pixel by pixel). Increasing the buffer
// size takes more of the Arduino's precious RAM but
// makes loading a little faster. 20 pixels seems a
// good balance.
#define BUFFPIXEL 64
void bmpDraw(char *filename, int x, int y) {
File bmpFile;
int bmpWidth, bmpHeight; // W+H in pixels
uint8_t bmpDepth; // Bit depth (currently must be 24)
uint32_t bmpImageoffset; // Start of image data in file
uint32_t rowSize; // Not always = bmpWidth; may have padding
uint8_t sdbuffer[3*BUFFPIXEL]; // pixel in buffer (R+G+B per pixel)
uint16_t lcdbuffer[BUFFPIXEL]; // pixel out buffer (16-bit per pixel)
uint8_t buffidx = sizeof(sdbuffer); // Current position in sdbuffer
boolean goodBmp = false; // Set to true on valid header parse
boolean flip = true; // BMP is stored bottom-to-top
int w, h, row, col;
uint8_t r, g, b;
uint32_t pos = 0, startTime = millis();
uint8_t lcdidx = 0;
boolean first = true;
uint16_t col16;
if((x >= tft.width()) || (y >= tft.height())) return;
Serial.println();
Serial.print(F("Loading image '"));
Serial.print(filename);
Serial.println('\'');
// Open requested file on SD card
if ((bmpFile = SD.open(filename)) == NULL) {
Serial.println(F("File not found"));
return;
}
// Parse BMP header
if(read16(bmpFile) == 0x4D42) { // BMP signature
Serial.println(F("File size: ")); Serial.println(read32(bmpFile));
(void)read32(bmpFile); // Read & ignore creator bytes
bmpImageoffset = read32(bmpFile); // Start of image data
Serial.print(F("Image Offset: ")); Serial.println(bmpImageoffset, DEC);
// Read DIB header
Serial.print(F("Header size: ")); Serial.println(read32(bmpFile));
bmpWidth = read32(bmpFile);
bmpHeight = read32(bmpFile);
if(read16(bmpFile) == 1) { // # planes -- must be '1'
bmpDepth = read16(bmpFile); // bits per pixel
Serial.print(F("Bit Depth: ")); Serial.println(bmpDepth);
if((bmpDepth == 24) && (read32(bmpFile) == 0)) { // 0 = uncompressed
goodBmp = true; // Supported BMP format -- proceed!
Serial.print(F("Image size: "));
Serial.print(bmpWidth);
Serial.print('x');
Serial.println(bmpHeight);
// BMP rows are padded (if needed) to 4-byte boundary
rowSize = (bmpWidth * 3 + 3) & ~3;
// If bmpHeight is negative, image is in top-down order.
// This is not canon but has been observed in the wild.
if(bmpHeight < 0) {
bmpHeight = -bmpHeight;
flip = false;
}
// Crop area to be loaded
w = bmpWidth;
h = bmpHeight;
if((x+w-1) >= tft.width()) w = tft.width() - x;
if((y+h-1) >= tft.height()) h = tft.height() - y;
// Set TFT address window to clipped image bounds
tft.setAddrWindow(x, y, x+w-1, y+h-1);
for (row=0; row<h; row++) { // For each scanline...
// Seek to start of scan line. It might seem labor-
// intensive to be doing this on every line, but this
// method covers a lot of gritty details like cropping
// and scanline padding. Also, the seek only takes
// place if the file position actually needs to change
// (avoids a lot of cluster math in SD library).
if(flip) // Bitmap is stored bottom-to-top order (normal BMP)
pos = bmpImageoffset + (bmpHeight - 1 - row) * rowSize;
else // Bitmap is stored top-to-bottom
pos = bmpImageoffset + row * rowSize;
if(bmpFile.position() != pos) { // Need seek?
bmpFile.seek(pos);
buffidx = sizeof(sdbuffer); // Force buffer reload
}
for (col=0; col<w; col++) { // For each column...
// Time to read more pixel data?
if (buffidx >= sizeof(sdbuffer)) { // Indeed
// Push LCD buffer to the display first
if(lcdidx > 0) {
tft.pushColors(lcdbuffer, lcdidx, first);
lcdidx = 0;
first = false;
}
bmpFile.read(sdbuffer, sizeof(sdbuffer));
buffidx = 0; // Set index to beginning
}
// Convert pixel from BMP to TFT format
b = sdbuffer[buffidx++];
g = sdbuffer[buffidx++];
r = sdbuffer[buffidx++];
col16 = tft.color565(r,g,b);
lcdbuffer[lcdidx++] = (col16 * 0x00010001) >> 8; // Flip hi/lo bytes
} // end pixel
} // end scanline
// Write any remaining data to LCD
if(lcdidx > 0) {
tft.pushColors(lcdbuffer, lcdidx, first);
}
Serial.print(F("Loaded in "));
Serial.print(millis() - startTime);
Serial.println(" ms");
} // end goodBmp
}
}
tft.setAddrWindow(0, 0, tft.width() - 1, tft.height() - 1);
bmpFile.close();
if(!goodBmp) Serial.println(F("BMP format not recognized."));
}
// DMA BMP Loader ----------------------------------------------------------
// DMA buffer: 320 pixels max width, DMALINES height, 2 bytes/pixel, 2 bufs
// SD buffer: 320 pixels max width, one scanline
#define DMALINES 16
uint8_t dmabuf[DMALINES * 320 * 2 * 2];
uint8_t sdbuf[320 * 3];
File bmpFile;
uint32_t bmpImageoffset; // Start of image data in file
int lineNum, linesToGo; // Current, remaining lines to load
boolean flip; // BMP is stored bottom-to-top
int bmpHeight; // Uncropped height in pixels
int croppedWidth; // Cropped width in pixels
uint32_t rowSize; // Not always bmpWidth; may have padding
void bmpCallback(uint8_t *dest, uint16_t len) {
int row, col, linesThisPass;
uint8_t r, g, b, *ptr;
uint16_t col16;
uint32_t pos;
linesThisPass = (linesToGo > DMALINES) ? DMALINES : linesToGo;
for(row=0; row<linesThisPass; row++, lineNum++) { // For each scanline...
// Seek to start of scan line. It might seem labor-
// intensive to be doing this on every line, but this
// method covers a lot of gritty details like cropping
// and scanline padding. Also, the seek only takes
// place if the file position actually needs to change
// (avoids a lot of cluster math in SD library).
if(flip) // Bitmap is stored bottom-to-top order (normal BMP)
pos = bmpImageoffset + (bmpHeight - 1 - lineNum) * rowSize;
else // Bitmap is stored top-to-bottom
pos = bmpImageoffset + lineNum * rowSize;
if(bmpFile.position() != pos) { // Need seek?
bmpFile.seek(pos);
}
bmpFile.read(sdbuf, croppedWidth * 3); // Read scanline
ptr = sdbuf;
for(col=0; col<croppedWidth; col++) { // For each column...
// Convert pixel from BMP to TFT format
b = *ptr++;
g = *ptr++;
r = *ptr++;
col16 = tft.color565(r,g,b);
*dest++ = col16 >> 8; // High byte
*dest++ = col16; // Low byte
} // end pixel
} // end scanline
linesToGo -= linesThisPass;
}
void bmpDrawDMA(char *filename, int x, int y) {
int bmpWidth; // Image width in pixels
uint8_t bmpDepth; // Bit depth (currently must be 24)
boolean goodBmp = false; // Set to true on valid header parse
int w, h;
uint32_t startTime = millis();
if((x >= tft.width()) || (y >= tft.height())) return;
Serial.println();
Serial.print(F("Loading image '"));
Serial.print(filename);
Serial.println('\'');
// Open requested file on SD card
if ((bmpFile = SD.open(filename)) == NULL) {
Serial.println(F("File not found"));
return;
}
// Parse BMP header
if(read16(bmpFile) == 0x4D42) { // BMP signature
Serial.println(F("File size: ")); Serial.println(read32(bmpFile));
(void)read32(bmpFile); // Read & ignore creator bytes
bmpImageoffset = read32(bmpFile); // Start of image data
Serial.print(F("Image Offset: ")); Serial.println(bmpImageoffset, DEC);
// Read DIB header
Serial.print(F("Header size: ")); Serial.println(read32(bmpFile));
bmpWidth = read32(bmpFile);
bmpHeight = read32(bmpFile);
if(read16(bmpFile) == 1) { // # planes -- must be '1'
bmpDepth = read16(bmpFile); // bits per pixel
Serial.print(F("Bit Depth: ")); Serial.println(bmpDepth);
if((bmpDepth == 24) && (read32(bmpFile) == 0)) { // 0 = uncompressed
goodBmp = true; // Supported BMP format -- proceed!
Serial.print(F("Image size: "));
Serial.print(bmpWidth);
Serial.print('x');
Serial.println(bmpHeight);
// BMP rows are padded (if needed) to 4-byte boundary
rowSize = (bmpWidth * 3 + 3) & ~3;
// If bmpHeight is negative, image is in top-down order.
// This is not canon but has been observed in the wild.
if(bmpHeight < 0) {
bmpHeight = -bmpHeight;
flip = false;
} else {
flip = true;
}
// Crop area to be loaded
w = bmpWidth;
h = bmpHeight;
if((x+w-1) >= tft.width()) w = tft.width() - x;
if((y+h-1) >= tft.height()) h = tft.height() - y;
// Set TFT address window to clipped image bounds
tft.setAddrWindow(x, y, x+w-1, y+h-1);
croppedWidth = w;
lineNum = 0;
linesToGo = h;
tft.pushColorsDMA(w * h * 2, dmabuf, w * DMALINES * 2, bmpCallback);
Serial.print(F("Loaded in "));
Serial.print(millis() - startTime);
Serial.println(" ms");
} // end goodBmp
}
}
tft.setAddrWindow(0, 0, tft.width() - 1, tft.height() - 1);
bmpFile.close();
if(!goodBmp) Serial.println(F("BMP format not recognized."));
}

View file

@ -1,228 +0,0 @@
// BMP-loading example specifically for the TFTLCD Arduino shield.
// If using the breakout board, use the tftbmp.pde sketch instead!
// If using an Arduino Mega and your sheild does not use the ICSP header for
// SPI, make sure the SD library is configured for 'soft' SPI in the file Sd2Card.h.
// If in doubt, update the library to use 'soft' SPI.
#include <Adafruit_GFX.h> // Core graphics library
#include <Adafruit_TFTLCD.h> // Hardware-specific library
#include <SD.h>
// In the SD card, place 24 bit color BMP files (be sure they are 24-bit!)
// There are examples in the sketch folder
#define SD_CS 5 // Card select for shield use
Adafruit_TFTLCD tft;
uint8_t spi_save;
void setup()
{
Serial.begin(9600);
tft.reset();
uint16_t identifier = tft.readID();
if(identifier == 0x9325) {
Serial.println(F("Found ILI9325 LCD driver"));
} else if(identifier == 0x9328) {
Serial.println(F("Found ILI9328 LCD driver"));
} else if(identifier == 0x7575) {
Serial.println(F("Found HX8347G LCD driver"));
} else if(identifier == 0x9341) {
Serial.println(F("Found ILI9341 LCD driver"));
} else {
Serial.print(F("Unknown LCD driver chip: "));
Serial.println(identifier, HEX);
Serial.println(F("If using the Adafruit 2.8\" TFT Arduino shield, the line:"));
Serial.println(F(" #define USE_ADAFRUIT_SHIELD_PINOUT"));
Serial.println(F("should appear in the library header (Adafruit_TFT.h)."));
Serial.println(F("If using the breakout board, it should NOT be #defined!"));
Serial.println(F("Also if using the breakout, double-check that all wiring"));
Serial.println(F("matches the tutorial."));
return;
}
tft.begin(identifier);
Serial.print(F("Initializing SD card..."));
if (!SD.begin(SD_CS)) {
Serial.println(F("failed!"));
return;
}
Serial.println(F("OK!"));
spi_save = SPCR;
bmpDraw("woof.bmp", 0, 0);
delay(1000);
}
void loop()
{
for(int i = 0; i<4; i++) {
tft.setRotation(i);
tft.fillScreen(0);
for(int j=0; j <= 200; j += 50) {
bmpDraw("miniwoof.bmp", j, j);
}
delay(1000);
}
}
// This function opens a Windows Bitmap (BMP) file and
// displays it at the given coordinates. It's sped up
// by reading many pixels worth of data at a time
// (rather than pixel by pixel). Increasing the buffer
// size takes more of the Arduino's precious RAM but
// makes loading a little faster. 20 pixels seems a
// good balance.
#define BUFFPIXEL 20
void bmpDraw(char *filename, int x, int y) {
File bmpFile;
int bmpWidth, bmpHeight; // W+H in pixels
uint8_t bmpDepth; // Bit depth (currently must be 24)
uint32_t bmpImageoffset; // Start of image data in file
uint32_t rowSize; // Not always = bmpWidth; may have padding
uint8_t sdbuffer[3*BUFFPIXEL]; // pixel in buffer (R+G+B per pixel)
uint16_t lcdbuffer[BUFFPIXEL]; // pixel out buffer (16-bit per pixel)
uint8_t buffidx = sizeof(sdbuffer); // Current position in sdbuffer
boolean goodBmp = false; // Set to true on valid header parse
boolean flip = true; // BMP is stored bottom-to-top
int w, h, row, col;
uint8_t r, g, b;
uint32_t pos = 0, startTime = millis();
uint8_t lcdidx = 0;
boolean first = true;
if((x >= tft.width()) || (y >= tft.height())) return;
Serial.println();
Serial.print("Loading image '");
Serial.print(filename);
Serial.println('\'');
// Open requested file on SD card
SPCR = spi_save;
if ((bmpFile = SD.open(filename)) == NULL) {
Serial.print("File not found");
return;
}
// Parse BMP header
if(read16(bmpFile) == 0x4D42) { // BMP signature
Serial.print(F("File size: ")); Serial.println(read32(bmpFile));
(void)read32(bmpFile); // Read & ignore creator bytes
bmpImageoffset = read32(bmpFile); // Start of image data
Serial.print(F("Image Offset: ")); Serial.println(bmpImageoffset, DEC);
// Read DIB header
Serial.print(F("Header size: ")); Serial.println(read32(bmpFile));
bmpWidth = read32(bmpFile);
bmpHeight = read32(bmpFile);
if(read16(bmpFile) == 1) { // # planes -- must be '1'
bmpDepth = read16(bmpFile); // bits per pixel
Serial.print(F("Bit Depth: ")); Serial.println(bmpDepth);
if((bmpDepth == 24) && (read32(bmpFile) == 0)) { // 0 = uncompressed
goodBmp = true; // Supported BMP format -- proceed!
Serial.print(F("Image size: "));
Serial.print(bmpWidth);
Serial.print('x');
Serial.println(bmpHeight);
// BMP rows are padded (if needed) to 4-byte boundary
rowSize = (bmpWidth * 3 + 3) & ~3;
// If bmpHeight is negative, image is in top-down order.
// This is not canon but has been observed in the wild.
if(bmpHeight < 0) {
bmpHeight = -bmpHeight;
flip = false;
}
// Crop area to be loaded
w = bmpWidth;
h = bmpHeight;
if((x+w-1) >= tft.width()) w = tft.width() - x;
if((y+h-1) >= tft.height()) h = tft.height() - y;
// Set TFT address window to clipped image bounds
SPCR = 0;
tft.setAddrWindow(x, y, x+w-1, y+h-1);
for (row=0; row<h; row++) { // For each scanline...
// Seek to start of scan line. It might seem labor-
// intensive to be doing this on every line, but this
// method covers a lot of gritty details like cropping
// and scanline padding. Also, the seek only takes
// place if the file position actually needs to change
// (avoids a lot of cluster math in SD library).
if(flip) // Bitmap is stored bottom-to-top order (normal BMP)
pos = bmpImageoffset + (bmpHeight - 1 - row) * rowSize;
else // Bitmap is stored top-to-bottom
pos = bmpImageoffset + row * rowSize;
SPCR = spi_save;
if(bmpFile.position() != pos) { // Need seek?
bmpFile.seek(pos);
buffidx = sizeof(sdbuffer); // Force buffer reload
}
for (col=0; col<w; col++) { // For each column...
// Time to read more pixel data?
if (buffidx >= sizeof(sdbuffer)) { // Indeed
// Push LCD buffer to the display first
if(lcdidx > 0) {
SPCR = 0;
tft.pushColors(lcdbuffer, lcdidx, first);
lcdidx = 0;
first = false;
}
SPCR = spi_save;
bmpFile.read(sdbuffer, sizeof(sdbuffer));
buffidx = 0; // Set index to beginning
}
// Convert pixel from BMP to TFT format
b = sdbuffer[buffidx++];
g = sdbuffer[buffidx++];
r = sdbuffer[buffidx++];
lcdbuffer[lcdidx++] = tft.color565(r,g,b);
} // end pixel
} // end scanline
// Write any remaining data to LCD
if(lcdidx > 0) {
SPCR = 0;
tft.pushColors(lcdbuffer, lcdidx, first);
}
Serial.print(F("Loaded in "));
Serial.print(millis() - startTime);
Serial.println(" ms");
} // end goodBmp
}
}
bmpFile.close();
if(!goodBmp) Serial.println("BMP format not recognized.");
}
// These read 16- and 32-bit types from the SD card file.
// BMP data is stored little-endian, Arduino is little-endian too.
// May need to reverse subscript order if porting elsewhere.
uint16_t read16(File f) {
uint16_t result;
((uint8_t *)&result)[0] = f.read(); // LSB
((uint8_t *)&result)[1] = f.read(); // MSB
return result;
}
uint32_t read32(File f) {
uint32_t result;
((uint8_t *)&result)[0] = f.read(); // LSB
((uint8_t *)&result)[1] = f.read();
((uint8_t *)&result)[2] = f.read();
((uint8_t *)&result)[3] = f.read(); // MSB
return result;
}

View file

@ -1,209 +0,0 @@
// Paint example specifically for the TFTLCD breakout board.
// If using the Arduino shield, use the tftpaint_shield.pde sketch instead!
// DOES NOT CURRENTLY WORK ON ARDUINO LEONARDO
#include <Adafruit_GFX.h> // Core graphics library
#include <Adafruit_TFTLCD.h> // Hardware-specific library
#include <TouchScreen.h>
#if defined(__SAM3X8E__)
#undef __FlashStringHelper::F(string_literal)
#define F(string_literal) string_literal
#endif
// When using the BREAKOUT BOARD only, use these 8 data lines to the LCD:
// For the Arduino Uno, Duemilanove, Diecimila, etc.:
// D0 connects to digital pin 8 (Notice these are
// D1 connects to digital pin 9 NOT in order!)
// D2 connects to digital pin 2
// D3 connects to digital pin 3
// D4 connects to digital pin 4
// D5 connects to digital pin 5
// D6 connects to digital pin 6
// D7 connects to digital pin 7
// For the Arduino Mega, use digital pins 22 through 29
// (on the 2-row header at the end of the board).
// D0 connects to digital pin 22
// D1 connects to digital pin 23
// D2 connects to digital pin 24
// D3 connects to digital pin 25
// D4 connects to digital pin 26
// D5 connects to digital pin 27
// D6 connects to digital pin 28
// D7 connects to digital pin 29
// For the Arduino Due, use digital pins 33 through 40
// (on the 2-row header at the end of the board).
// D0 connects to digital pin 33
// D1 connects to digital pin 34
// D2 connects to digital pin 35
// D3 connects to digital pin 36
// D4 connects to digital pin 37
// D5 connects to digital pin 38
// D6 connects to digital pin 39
// D7 connects to digital pin 40
#define YP A3 // must be an analog pin, use "An" notation!
#define XM A2 // must be an analog pin, use "An" notation!
#define YM 9 // can be a digital pin
#define XP 8 // can be a digital pin
#define TS_MINX 150
#define TS_MINY 120
#define TS_MAXX 920
#define TS_MAXY 940
// For better pressure precision, we need to know the resistance
// between X+ and X- Use any multimeter to read it
// For the one we're using, its 300 ohms across the X plate
TouchScreen ts = TouchScreen(XP, YP, XM, YM, 300);
#define LCD_CS A3
#define LCD_CD A2
#define LCD_WR A1
#define LCD_RD A0
// optional
#define LCD_RESET A4
// Assign human-readable names to some common 16-bit color values:
#define BLACK 0x0000
#define BLUE 0x001F
#define RED 0xF800
#define GREEN 0x07E0
#define CYAN 0x07FF
#define MAGENTA 0xF81F
#define YELLOW 0xFFE0
#define WHITE 0xFFFF
Adafruit_TFTLCD tft(LCD_CS, LCD_CD, LCD_WR, LCD_RD, LCD_RESET);
#define BOXSIZE 40
#define PENRADIUS 3
int oldcolor, currentcolor;
void setup(void) {
Serial.begin(9600);
Serial.println(F("Paint!"));
tft.reset();
uint16_t identifier = tft.readID();
if(identifier == 0x9325) {
Serial.println(F("Found ILI9325 LCD driver"));
} else if(identifier == 0x9328) {
Serial.println(F("Found ILI9328 LCD driver"));
} else if(identifier == 0x7575) {
Serial.println(F("Found HX8347G LCD driver"));
} else if(identifier == 0x9341) {
Serial.println(F("Found ILI9341 LCD driver"));
} else if(identifier == 0x8357) {
Serial.println(F("Found HX8357D LCD driver"));
} else {
Serial.print(F("Unknown LCD driver chip: "));
Serial.println(identifier, HEX);
Serial.println(F("If using the Adafruit 2.8\" TFT Arduino shield, the line:"));
Serial.println(F(" #define USE_ADAFRUIT_SHIELD_PINOUT"));
Serial.println(F("should appear in the library header (Adafruit_TFT.h)."));
Serial.println(F("If using the breakout board, it should NOT be #defined!"));
Serial.println(F("Also if using the breakout, double-check that all wiring"));
Serial.println(F("matches the tutorial."));
return;
}
tft.begin(identifier);
tft.fillScreen(BLACK);
tft.fillRect(0, 0, BOXSIZE, BOXSIZE, RED);
tft.fillRect(BOXSIZE, 0, BOXSIZE, BOXSIZE, YELLOW);
tft.fillRect(BOXSIZE*2, 0, BOXSIZE, BOXSIZE, GREEN);
tft.fillRect(BOXSIZE*3, 0, BOXSIZE, BOXSIZE, CYAN);
tft.fillRect(BOXSIZE*4, 0, BOXSIZE, BOXSIZE, BLUE);
tft.fillRect(BOXSIZE*5, 0, BOXSIZE, BOXSIZE, MAGENTA);
// tft.fillRect(BOXSIZE*6, 0, BOXSIZE, BOXSIZE, WHITE);
tft.drawRect(0, 0, BOXSIZE, BOXSIZE, WHITE);
currentcolor = RED;
pinMode(13, OUTPUT);
}
#define MINPRESSURE 10
#define MAXPRESSURE 1000
void loop()
{
digitalWrite(13, HIGH);
TSPoint p = ts.getPoint();
digitalWrite(13, LOW);
// if sharing pins, you'll need to fix the directions of the touchscreen pins
//pinMode(XP, OUTPUT);
pinMode(XM, OUTPUT);
pinMode(YP, OUTPUT);
//pinMode(YM, OUTPUT);
// we have some minimum pressure we consider 'valid'
// pressure of 0 means no pressing!
if (p.z > MINPRESSURE && p.z < MAXPRESSURE) {
/*
Serial.print("X = "); Serial.print(p.x);
Serial.print("\tY = "); Serial.print(p.y);
Serial.print("\tPressure = "); Serial.println(p.z);
*/
if (p.y < (TS_MINY-5)) {
Serial.println("erase");
// press the bottom of the screen to erase
tft.fillRect(0, BOXSIZE, tft.width(), tft.height()-BOXSIZE, BLACK);
}
// scale from 0->1023 to tft.width
p.x = map(p.x, TS_MINX, TS_MAXX, tft.width(), 0);
p.y = map(p.y, TS_MINY, TS_MAXY, tft.height(), 0);
/*
Serial.print("("); Serial.print(p.x);
Serial.print(", "); Serial.print(p.y);
Serial.println(")");
*/
if (p.y < BOXSIZE) {
oldcolor = currentcolor;
if (p.x < BOXSIZE) {
currentcolor = RED;
tft.drawRect(0, 0, BOXSIZE, BOXSIZE, WHITE);
} else if (p.x < BOXSIZE*2) {
currentcolor = YELLOW;
tft.drawRect(BOXSIZE, 0, BOXSIZE, BOXSIZE, WHITE);
} else if (p.x < BOXSIZE*3) {
currentcolor = GREEN;
tft.drawRect(BOXSIZE*2, 0, BOXSIZE, BOXSIZE, WHITE);
} else if (p.x < BOXSIZE*4) {
currentcolor = CYAN;
tft.drawRect(BOXSIZE*3, 0, BOXSIZE, BOXSIZE, WHITE);
} else if (p.x < BOXSIZE*5) {
currentcolor = BLUE;
tft.drawRect(BOXSIZE*4, 0, BOXSIZE, BOXSIZE, WHITE);
} else if (p.x < BOXSIZE*6) {
currentcolor = MAGENTA;
tft.drawRect(BOXSIZE*5, 0, BOXSIZE, BOXSIZE, WHITE);
}
if (oldcolor != currentcolor) {
if (oldcolor == RED) tft.fillRect(0, 0, BOXSIZE, BOXSIZE, RED);
if (oldcolor == YELLOW) tft.fillRect(BOXSIZE, 0, BOXSIZE, BOXSIZE, YELLOW);
if (oldcolor == GREEN) tft.fillRect(BOXSIZE*2, 0, BOXSIZE, BOXSIZE, GREEN);
if (oldcolor == CYAN) tft.fillRect(BOXSIZE*3, 0, BOXSIZE, BOXSIZE, CYAN);
if (oldcolor == BLUE) tft.fillRect(BOXSIZE*4, 0, BOXSIZE, BOXSIZE, BLUE);
if (oldcolor == MAGENTA) tft.fillRect(BOXSIZE*5, 0, BOXSIZE, BOXSIZE, MAGENTA);
}
}
if (((p.y-PENRADIUS) > BOXSIZE) && ((p.y+PENRADIUS) < tft.height())) {
tft.fillCircle(p.x, p.y, PENRADIUS, currentcolor);
}
}
}

View file

@ -1,264 +0,0 @@
#ifndef FONT5X7_H
#define FONT5X7_H
// standard ascii 5x7 font
static unsigned char font[] = {
0x00, 0x00, 0x00, 0x00, 0x00,
0x3E, 0x5B, 0x4F, 0x5B, 0x3E,
0x3E, 0x6B, 0x4F, 0x6B, 0x3E,
0x1C, 0x3E, 0x7C, 0x3E, 0x1C,
0x18, 0x3C, 0x7E, 0x3C, 0x18,
0x1C, 0x57, 0x7D, 0x57, 0x1C,
0x1C, 0x5E, 0x7F, 0x5E, 0x1C,
0x00, 0x18, 0x3C, 0x18, 0x00,
0xFF, 0xE7, 0xC3, 0xE7, 0xFF,
0x00, 0x18, 0x24, 0x18, 0x00,
0xFF, 0xE7, 0xDB, 0xE7, 0xFF,
0x30, 0x48, 0x3A, 0x06, 0x0E,
0x26, 0x29, 0x79, 0x29, 0x26,
0x40, 0x7F, 0x05, 0x05, 0x07,
0x40, 0x7F, 0x05, 0x25, 0x3F,
0x5A, 0x3C, 0xE7, 0x3C, 0x5A,
0x7F, 0x3E, 0x1C, 0x1C, 0x08,
0x08, 0x1C, 0x1C, 0x3E, 0x7F,
0x14, 0x22, 0x7F, 0x22, 0x14,
0x5F, 0x5F, 0x00, 0x5F, 0x5F,
0x06, 0x09, 0x7F, 0x01, 0x7F,
0x00, 0x66, 0x89, 0x95, 0x6A,
0x60, 0x60, 0x60, 0x60, 0x60,
0x94, 0xA2, 0xFF, 0xA2, 0x94,
0x08, 0x04, 0x7E, 0x04, 0x08,
0x10, 0x20, 0x7E, 0x20, 0x10,
0x08, 0x08, 0x2A, 0x1C, 0x08,
0x08, 0x1C, 0x2A, 0x08, 0x08,
0x1E, 0x10, 0x10, 0x10, 0x10,
0x0C, 0x1E, 0x0C, 0x1E, 0x0C,
0x30, 0x38, 0x3E, 0x38, 0x30,
0x06, 0x0E, 0x3E, 0x0E, 0x06,
0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x5F, 0x00, 0x00,
0x00, 0x07, 0x00, 0x07, 0x00,
0x14, 0x7F, 0x14, 0x7F, 0x14,
0x24, 0x2A, 0x7F, 0x2A, 0x12,
0x23, 0x13, 0x08, 0x64, 0x62,
0x36, 0x49, 0x56, 0x20, 0x50,
0x00, 0x08, 0x07, 0x03, 0x00,
0x00, 0x1C, 0x22, 0x41, 0x00,
0x00, 0x41, 0x22, 0x1C, 0x00,
0x2A, 0x1C, 0x7F, 0x1C, 0x2A,
0x08, 0x08, 0x3E, 0x08, 0x08,
0x00, 0x80, 0x70, 0x30, 0x00,
0x08, 0x08, 0x08, 0x08, 0x08,
0x00, 0x00, 0x60, 0x60, 0x00,
0x20, 0x10, 0x08, 0x04, 0x02,
0x3E, 0x51, 0x49, 0x45, 0x3E,
0x00, 0x42, 0x7F, 0x40, 0x00,
0x72, 0x49, 0x49, 0x49, 0x46,
0x21, 0x41, 0x49, 0x4D, 0x33,
0x18, 0x14, 0x12, 0x7F, 0x10,
0x27, 0x45, 0x45, 0x45, 0x39,
0x3C, 0x4A, 0x49, 0x49, 0x31,
0x41, 0x21, 0x11, 0x09, 0x07,
0x36, 0x49, 0x49, 0x49, 0x36,
0x46, 0x49, 0x49, 0x29, 0x1E,
0x00, 0x00, 0x14, 0x00, 0x00,
0x00, 0x40, 0x34, 0x00, 0x00,
0x00, 0x08, 0x14, 0x22, 0x41,
0x14, 0x14, 0x14, 0x14, 0x14,
0x00, 0x41, 0x22, 0x14, 0x08,
0x02, 0x01, 0x59, 0x09, 0x06,
0x3E, 0x41, 0x5D, 0x59, 0x4E,
0x7C, 0x12, 0x11, 0x12, 0x7C,
0x7F, 0x49, 0x49, 0x49, 0x36,
0x3E, 0x41, 0x41, 0x41, 0x22,
0x7F, 0x41, 0x41, 0x41, 0x3E,
0x7F, 0x49, 0x49, 0x49, 0x41,
0x7F, 0x09, 0x09, 0x09, 0x01,
0x3E, 0x41, 0x41, 0x51, 0x73,
0x7F, 0x08, 0x08, 0x08, 0x7F,
0x00, 0x41, 0x7F, 0x41, 0x00,
0x20, 0x40, 0x41, 0x3F, 0x01,
0x7F, 0x08, 0x14, 0x22, 0x41,
0x7F, 0x40, 0x40, 0x40, 0x40,
0x7F, 0x02, 0x1C, 0x02, 0x7F,
0x7F, 0x04, 0x08, 0x10, 0x7F,
0x3E, 0x41, 0x41, 0x41, 0x3E,
0x7F, 0x09, 0x09, 0x09, 0x06,
0x3E, 0x41, 0x51, 0x21, 0x5E,
0x7F, 0x09, 0x19, 0x29, 0x46,
0x26, 0x49, 0x49, 0x49, 0x32,
0x03, 0x01, 0x7F, 0x01, 0x03,
0x3F, 0x40, 0x40, 0x40, 0x3F,
0x1F, 0x20, 0x40, 0x20, 0x1F,
0x3F, 0x40, 0x38, 0x40, 0x3F,
0x63, 0x14, 0x08, 0x14, 0x63,
0x03, 0x04, 0x78, 0x04, 0x03,
0x61, 0x59, 0x49, 0x4D, 0x43,
0x00, 0x7F, 0x41, 0x41, 0x41,
0x02, 0x04, 0x08, 0x10, 0x20,
0x00, 0x41, 0x41, 0x41, 0x7F,
0x04, 0x02, 0x01, 0x02, 0x04,
0x40, 0x40, 0x40, 0x40, 0x40,
0x00, 0x03, 0x07, 0x08, 0x00,
0x20, 0x54, 0x54, 0x78, 0x40,
0x7F, 0x28, 0x44, 0x44, 0x38,
0x38, 0x44, 0x44, 0x44, 0x28,
0x38, 0x44, 0x44, 0x28, 0x7F,
0x38, 0x54, 0x54, 0x54, 0x18,
0x00, 0x08, 0x7E, 0x09, 0x02,
0x18, 0xA4, 0xA4, 0x9C, 0x78,
0x7F, 0x08, 0x04, 0x04, 0x78,
0x00, 0x44, 0x7D, 0x40, 0x00,
0x20, 0x40, 0x40, 0x3D, 0x00,
0x7F, 0x10, 0x28, 0x44, 0x00,
0x00, 0x41, 0x7F, 0x40, 0x00,
0x7C, 0x04, 0x78, 0x04, 0x78,
0x7C, 0x08, 0x04, 0x04, 0x78,
0x38, 0x44, 0x44, 0x44, 0x38,
0xFC, 0x18, 0x24, 0x24, 0x18,
0x18, 0x24, 0x24, 0x18, 0xFC,
0x7C, 0x08, 0x04, 0x04, 0x08,
0x48, 0x54, 0x54, 0x54, 0x24,
0x04, 0x04, 0x3F, 0x44, 0x24,
0x3C, 0x40, 0x40, 0x20, 0x7C,
0x1C, 0x20, 0x40, 0x20, 0x1C,
0x3C, 0x40, 0x30, 0x40, 0x3C,
0x44, 0x28, 0x10, 0x28, 0x44,
0x4C, 0x90, 0x90, 0x90, 0x7C,
0x44, 0x64, 0x54, 0x4C, 0x44,
0x00, 0x08, 0x36, 0x41, 0x00,
0x00, 0x00, 0x77, 0x00, 0x00,
0x00, 0x41, 0x36, 0x08, 0x00,
0x02, 0x01, 0x02, 0x04, 0x02,
0x3C, 0x26, 0x23, 0x26, 0x3C,
0x1E, 0xA1, 0xA1, 0x61, 0x12,
0x3A, 0x40, 0x40, 0x20, 0x7A,
0x38, 0x54, 0x54, 0x55, 0x59,
0x21, 0x55, 0x55, 0x79, 0x41,
0x21, 0x54, 0x54, 0x78, 0x41,
0x21, 0x55, 0x54, 0x78, 0x40,
0x20, 0x54, 0x55, 0x79, 0x40,
0x0C, 0x1E, 0x52, 0x72, 0x12,
0x39, 0x55, 0x55, 0x55, 0x59,
0x39, 0x54, 0x54, 0x54, 0x59,
0x39, 0x55, 0x54, 0x54, 0x58,
0x00, 0x00, 0x45, 0x7C, 0x41,
0x00, 0x02, 0x45, 0x7D, 0x42,
0x00, 0x01, 0x45, 0x7C, 0x40,
0xF0, 0x29, 0x24, 0x29, 0xF0,
0xF0, 0x28, 0x25, 0x28, 0xF0,
0x7C, 0x54, 0x55, 0x45, 0x00,
0x20, 0x54, 0x54, 0x7C, 0x54,
0x7C, 0x0A, 0x09, 0x7F, 0x49,
0x32, 0x49, 0x49, 0x49, 0x32,
0x32, 0x48, 0x48, 0x48, 0x32,
0x32, 0x4A, 0x48, 0x48, 0x30,
0x3A, 0x41, 0x41, 0x21, 0x7A,
0x3A, 0x42, 0x40, 0x20, 0x78,
0x00, 0x9D, 0xA0, 0xA0, 0x7D,
0x39, 0x44, 0x44, 0x44, 0x39,
0x3D, 0x40, 0x40, 0x40, 0x3D,
0x3C, 0x24, 0xFF, 0x24, 0x24,
0x48, 0x7E, 0x49, 0x43, 0x66,
0x2B, 0x2F, 0xFC, 0x2F, 0x2B,
0xFF, 0x09, 0x29, 0xF6, 0x20,
0xC0, 0x88, 0x7E, 0x09, 0x03,
0x20, 0x54, 0x54, 0x79, 0x41,
0x00, 0x00, 0x44, 0x7D, 0x41,
0x30, 0x48, 0x48, 0x4A, 0x32,
0x38, 0x40, 0x40, 0x22, 0x7A,
0x00, 0x7A, 0x0A, 0x0A, 0x72,
0x7D, 0x0D, 0x19, 0x31, 0x7D,
0x26, 0x29, 0x29, 0x2F, 0x28,
0x26, 0x29, 0x29, 0x29, 0x26,
0x30, 0x48, 0x4D, 0x40, 0x20,
0x38, 0x08, 0x08, 0x08, 0x08,
0x08, 0x08, 0x08, 0x08, 0x38,
0x2F, 0x10, 0xC8, 0xAC, 0xBA,
0x2F, 0x10, 0x28, 0x34, 0xFA,
0x00, 0x00, 0x7B, 0x00, 0x00,
0x08, 0x14, 0x2A, 0x14, 0x22,
0x22, 0x14, 0x2A, 0x14, 0x08,
0xAA, 0x00, 0x55, 0x00, 0xAA,
0xAA, 0x55, 0xAA, 0x55, 0xAA,
0x00, 0x00, 0x00, 0xFF, 0x00,
0x10, 0x10, 0x10, 0xFF, 0x00,
0x14, 0x14, 0x14, 0xFF, 0x00,
0x10, 0x10, 0xFF, 0x00, 0xFF,
0x10, 0x10, 0xF0, 0x10, 0xF0,
0x14, 0x14, 0x14, 0xFC, 0x00,
0x14, 0x14, 0xF7, 0x00, 0xFF,
0x00, 0x00, 0xFF, 0x00, 0xFF,
0x14, 0x14, 0xF4, 0x04, 0xFC,
0x14, 0x14, 0x17, 0x10, 0x1F,
0x10, 0x10, 0x1F, 0x10, 0x1F,
0x14, 0x14, 0x14, 0x1F, 0x00,
0x10, 0x10, 0x10, 0xF0, 0x00,
0x00, 0x00, 0x00, 0x1F, 0x10,
0x10, 0x10, 0x10, 0x1F, 0x10,
0x10, 0x10, 0x10, 0xF0, 0x10,
0x00, 0x00, 0x00, 0xFF, 0x10,
0x10, 0x10, 0x10, 0x10, 0x10,
0x10, 0x10, 0x10, 0xFF, 0x10,
0x00, 0x00, 0x00, 0xFF, 0x14,
0x00, 0x00, 0xFF, 0x00, 0xFF,
0x00, 0x00, 0x1F, 0x10, 0x17,
0x00, 0x00, 0xFC, 0x04, 0xF4,
0x14, 0x14, 0x17, 0x10, 0x17,
0x14, 0x14, 0xF4, 0x04, 0xF4,
0x00, 0x00, 0xFF, 0x00, 0xF7,
0x14, 0x14, 0x14, 0x14, 0x14,
0x14, 0x14, 0xF7, 0x00, 0xF7,
0x14, 0x14, 0x14, 0x17, 0x14,
0x10, 0x10, 0x1F, 0x10, 0x1F,
0x14, 0x14, 0x14, 0xF4, 0x14,
0x10, 0x10, 0xF0, 0x10, 0xF0,
0x00, 0x00, 0x1F, 0x10, 0x1F,
0x00, 0x00, 0x00, 0x1F, 0x14,
0x00, 0x00, 0x00, 0xFC, 0x14,
0x00, 0x00, 0xF0, 0x10, 0xF0,
0x10, 0x10, 0xFF, 0x10, 0xFF,
0x14, 0x14, 0x14, 0xFF, 0x14,
0x10, 0x10, 0x10, 0x1F, 0x00,
0x00, 0x00, 0x00, 0xF0, 0x10,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xF0, 0xF0, 0xF0, 0xF0, 0xF0,
0xFF, 0xFF, 0xFF, 0x00, 0x00,
0x00, 0x00, 0x00, 0xFF, 0xFF,
0x0F, 0x0F, 0x0F, 0x0F, 0x0F,
0x38, 0x44, 0x44, 0x38, 0x44,
0x7C, 0x2A, 0x2A, 0x3E, 0x14,
0x7E, 0x02, 0x02, 0x06, 0x06,
0x02, 0x7E, 0x02, 0x7E, 0x02,
0x63, 0x55, 0x49, 0x41, 0x63,
0x38, 0x44, 0x44, 0x3C, 0x04,
0x40, 0x7E, 0x20, 0x1E, 0x20,
0x06, 0x02, 0x7E, 0x02, 0x02,
0x99, 0xA5, 0xE7, 0xA5, 0x99,
0x1C, 0x2A, 0x49, 0x2A, 0x1C,
0x4C, 0x72, 0x01, 0x72, 0x4C,
0x30, 0x4A, 0x4D, 0x4D, 0x30,
0x30, 0x48, 0x78, 0x48, 0x30,
0xBC, 0x62, 0x5A, 0x46, 0x3D,
0x3E, 0x49, 0x49, 0x49, 0x00,
0x7E, 0x01, 0x01, 0x01, 0x7E,
0x2A, 0x2A, 0x2A, 0x2A, 0x2A,
0x44, 0x44, 0x5F, 0x44, 0x44,
0x40, 0x51, 0x4A, 0x44, 0x40,
0x40, 0x44, 0x4A, 0x51, 0x40,
0x00, 0x00, 0xFF, 0x01, 0x03,
0xE0, 0x80, 0xFF, 0x00, 0x00,
0x08, 0x08, 0x6B, 0x6B, 0x08,
0x36, 0x12, 0x36, 0x24, 0x36,
0x06, 0x0F, 0x09, 0x0F, 0x06,
0x00, 0x00, 0x18, 0x18, 0x00,
0x00, 0x00, 0x10, 0x10, 0x00,
0x30, 0x40, 0xFF, 0x01, 0x01,
0x00, 0x1F, 0x01, 0x01, 0x1E,
0x00, 0x19, 0x1D, 0x17, 0x12,
0x00, 0x3C, 0x3C, 0x3C, 0x3C,
0x00, 0x00, 0x00, 0x00, 0x00,
};
#endif

View file

@ -1,175 +0,0 @@
// Paint example specifically for the TFTLCD Arduino shield.
// If using the breakout board, use the tftpaint.pde sketch instead!
#include <Adafruit_GFX.h> // Core graphics library
#include <Adafruit_TFTLCD.h> // Hardware-specific library
#include <TouchScreen.h>
#if defined(__SAM3X8E__)
#undef __FlashStringHelper::F(string_literal)
#define F(string_literal) string_literal
#endif
#ifndef USE_ADAFRUIT_SHIELD_PINOUT
#error "This sketch is intended for use with the TFT LCD Shield. Make sure that USE_ADAFRUIT_SHIELD_PINOUT is #defined in the Adafruit_TFTLCD.h library file."
#endif
// These are the pins for the shield!
#define YP A1 // must be an analog pin, use "An" notation!
#define XM A2 // must be an analog pin, use "An" notation!
#define YM 7 // can be a digital pin
#define XP 6 // can be a digital pin
#ifdef __SAM3X8E__
#define TS_MINX 125
#define TS_MINY 170
#define TS_MAXX 880
#define TS_MAXY 940
#else
#define TS_MINX 150
#define TS_MINY 120
#define TS_MAXX 920
#define TS_MAXY 940
#endif
// For better pressure precision, we need to know the resistance
// between X+ and X- Use any multimeter to read it
// For the one we're using, its 300 ohms across the X plate
TouchScreen ts = TouchScreen(XP, YP, XM, YM, 300);
#define LCD_CS A3
#define LCD_CD A2
#define LCD_WR A1
#define LCD_RD A0
// Assign human-readable names to some common 16-bit color values:
#define BLACK 0x0000
#define BLUE 0x001F
#define RED 0xF800
#define GREEN 0x07E0
#define CYAN 0x07FF
#define MAGENTA 0xF81F
#define YELLOW 0xFFE0
#define WHITE 0xFFFF
Adafruit_TFTLCD tft;
#define BOXSIZE 40
#define PENRADIUS 4
int oldcolor, currentcolor;
void setup(void) {
Serial.begin(9600);
Serial.println(F("Paint!"));
tft.reset();
uint16_t identifier = tft.readID();
if(identifier == 0x9325) {
Serial.println(F("Found ILI9325 LCD driver"));
} else if(identifier == 0x9328) {
Serial.println(F("Found ILI9328 LCD driver"));
} else if(identifier == 0x7575) {
Serial.println(F("Found HX8347G LCD driver"));
} else {
Serial.print(F("Unknown LCD driver chip: "));
Serial.println(identifier, HEX);
return;
}
tft.begin(identifier);
tft.fillScreen(BLACK);
tft.fillRect(0, 0, BOXSIZE, BOXSIZE, RED);
tft.fillRect(BOXSIZE, 0, BOXSIZE, BOXSIZE, YELLOW);
tft.fillRect(BOXSIZE*2, 0, BOXSIZE, BOXSIZE, GREEN);
tft.fillRect(BOXSIZE*3, 0, BOXSIZE, BOXSIZE, CYAN);
tft.fillRect(BOXSIZE*4, 0, BOXSIZE, BOXSIZE, BLUE);
tft.fillRect(BOXSIZE*5, 0, BOXSIZE, BOXSIZE, MAGENTA);
// tft.fillRect(BOXSIZE*6, 0, BOXSIZE, BOXSIZE, WHITE);
tft.drawRect(0, 0, BOXSIZE, BOXSIZE, WHITE);
currentcolor = RED;
pinMode(13, OUTPUT);
}
#define MINPRESSURE 10
#define MAXPRESSURE 1000
void loop()
{
digitalWrite(13, HIGH);
TSPoint p = ts.getPoint();
digitalWrite(13, LOW);
// if sharing pins, you'll need to fix the directions of the touchscreen pins
//pinMode(XP, OUTPUT);
pinMode(XM, OUTPUT);
pinMode(YP, OUTPUT);
//pinMode(YM, OUTPUT);
// we have some minimum pressure we consider 'valid'
// pressure of 0 means no pressing!
if (p.z > MINPRESSURE && p.z < MAXPRESSURE) {
/*
Serial.print("X = "); Serial.print(p.x);
Serial.print("\tY = "); Serial.print(p.y);
Serial.print("\tPressure = "); Serial.println(p.z);
*/
if (p.y < (TS_MINY-5)) {
Serial.println("erase");
// press the bottom of the screen to erase
tft.fillRect(0, BOXSIZE, tft.width(), tft.height()-BOXSIZE, BLACK);
}
// scale from 0->1023 to tft.width
p.x = map(p.x, TS_MINX, TS_MAXX, tft.width(), 0);
p.y = map(p.y, TS_MINY, TS_MAXY, tft.height(), 0);
/*
Serial.print("("); Serial.print(p.x);
Serial.print(", "); Serial.print(p.y);
Serial.println(")");
*/
if (p.y < BOXSIZE) {
oldcolor = currentcolor;
if (p.x < BOXSIZE) {
currentcolor = RED;
tft.drawRect(0, 0, BOXSIZE, BOXSIZE, WHITE);
} else if (p.x < BOXSIZE*2) {
currentcolor = YELLOW;
tft.drawRect(BOXSIZE, 0, BOXSIZE, BOXSIZE, WHITE);
} else if (p.x < BOXSIZE*3) {
currentcolor = GREEN;
tft.drawRect(BOXSIZE*2, 0, BOXSIZE, BOXSIZE, WHITE);
} else if (p.x < BOXSIZE*4) {
currentcolor = CYAN;
tft.drawRect(BOXSIZE*3, 0, BOXSIZE, BOXSIZE, WHITE);
} else if (p.x < BOXSIZE*5) {
currentcolor = BLUE;
tft.drawRect(BOXSIZE*4, 0, BOXSIZE, BOXSIZE, WHITE);
} else if (p.x < BOXSIZE*6) {
currentcolor = MAGENTA;
tft.drawRect(BOXSIZE*5, 0, BOXSIZE, BOXSIZE, WHITE);
}
if (oldcolor != currentcolor) {
if (oldcolor == RED) tft.fillRect(0, 0, BOXSIZE, BOXSIZE, RED);
if (oldcolor == YELLOW) tft.fillRect(BOXSIZE, 0, BOXSIZE, BOXSIZE, YELLOW);
if (oldcolor == GREEN) tft.fillRect(BOXSIZE*2, 0, BOXSIZE, BOXSIZE, GREEN);
if (oldcolor == CYAN) tft.fillRect(BOXSIZE*3, 0, BOXSIZE, BOXSIZE, CYAN);
if (oldcolor == BLUE) tft.fillRect(BOXSIZE*4, 0, BOXSIZE, BOXSIZE, BLUE);
if (oldcolor == MAGENTA) tft.fillRect(BOXSIZE*5, 0, BOXSIZE, BOXSIZE, MAGENTA);
}
}
if (((p.y-PENRADIUS) > BOXSIZE) && ((p.y+PENRADIUS) < tft.height())) {
tft.fillCircle(p.x, p.y, PENRADIUS, currentcolor);
}
}
}

View file

@ -0,0 +1,105 @@
#include <SD.h>
#include <Adafruit_GFX.h> // Core graphics library
#include <Adafruit_TFTLCD.h> // Hardware-specific library
#define LCD_CS A3 // Chip Select (see notes above)
#define LCD_CD A2 // Command/Data
#define LCD_RD A0 // LCD Read strobe
#define LCD_WR 4 // LCD Write strobe (see notes above)
#define LCD_RESET A4 // Alternately just connect to Arduino's reset pin
#define DMA_SELECT A1 // Hi/lo chooses DMA vs non-DMA effect
Adafruit_TFTLCD tft(LCD_CS, LCD_CD, LCD_WR, LCD_RD, LCD_RESET);
#define DMALINES 16
// DMA buffer is 320 pixels * DMALINES * 2 bytes/pixel * 2 buffers
uint8_t dmabuf[320 * DMALINES * 2 * 2];
// Pixel buffer is slightly wider than screen, for X-scrolling
uint16_t pixels[320 + 64];
uint32_t startTime;
void setup()
{
Serial.begin(9600);
while(!Serial);
pinMode(DMA_SELECT, INPUT_PULLUP);
// Initialize pixel buffer with alternating red and white bands,
// 32 pixels wide. 0x00F8 is 16-bit red (0xF800) endian-swapped
// so bytes can be copied directly to screen.
for(int i=0; i<320+64; i++)
pixels[i] = (i & 32) ? 0x00F8 : 0xFFFF;
tft.reset();
uint16_t identifier = tft.readID();
// SEE NOTES ABOVE - this is necessary IF using the
// hard-wired CS (and no inverter) option.
identifier = 0x9341;
if(identifier == 0x9325) {
Serial.println(F("Found ILI9325 LCD driver"));
} else if(identifier == 0x9328) {
Serial.println(F("Found ILI9328 LCD driver"));
} else if(identifier == 0x7575) {
Serial.println(F("Found HX8347G LCD driver"));
} else if(identifier == 0x9341) {
Serial.println(F("Found ILI9341 LCD driver"));
} else if(identifier == 0x8357) {
Serial.println(F("Found HX8357D LCD driver"));
} else {
Serial.print(F("Unknown LCD driver chip: "));
Serial.println(identifier, HEX);
return;
}
tft.begin(identifier);
tft.setRotation(1);
tft.fillScreen(0);
startTime = millis();
}
int lineNum;
int frame = 0;
// pushColorsDMA() callback function -- fills DMALINES scanlines with
// data from pixels[] array.
void myCallback(uint8_t *dest, uint16_t len) {
for(int i=0; i<DMALINES; i++) {
// Wave up to 64 pixels horizontally (extra width in pixels[] array)
int offset = (int)((sin((float)(lineNum + frame) / 40.0) + 1.0) * 31.5);
// Change offset every 32 lines for checkerboard effect
if((lineNum + frame/8) & 32) offset = (offset + 32) % 63;
memcpy(dest, &pixels[offset], len / DMALINES);
lineNum++;
dest += 320 * 2; // Offset to next scanline (2 bytes/pixel)
}
}
void loop() {
tft.setAddrWindow(0, 0, tft.width() - 1, tft.height() - 1);
lineNum = 0;
if(digitalRead(DMA_SELECT)) {
tft.pushColorsDMA(tft.width() * tft.height() * 2, dmabuf, tft.width() * DMALINES * 2, myCallback);
} else {
bool first = true;
while(lineNum < tft.height()) {
// Fill the DMA buffer, but don't issue it
myCallback(dmabuf, tft.width() * DMALINES * 2);
// Then send it using non-DMA function:
tft.pushColors((uint16_t *)dmabuf, tft.width() * DMALINES, first);
first = false;
}
}
frame++;
uint32_t elapsed = (millis() - startTime) / 1000;
if(elapsed > 0) {
Serial.print(frame / elapsed);
Serial.println(" fps");
}
}

View file

@ -1,10 +0,0 @@
name=Adafruit TFTLCD Library
version=1.0.3
author=Adafruit
maintainer=Adafruit <info@adafruit.com>
sentence=Adafruit 2.8" TFT display Library
paragraph=Adafruit 2.8" TFT display Library
category=Display
url=https://github.com/adafruit/TFTLCD-Library
architectures=*
depends=Adafruit GFX Library

View file

@ -55,499 +55,394 @@
// equivalent to two NOPs each, final NOP burns the 7th cycle, and the
// last line is a radioactive mutant emoticon.
#define DELAY7 \
asm volatile("rjmp .+0" \
"\n\t" \
"rjmp .+0" \
"\n\t" \
"rjmp .+0" \
"\n\t" \
"nop" \
"\n" ::);
asm volatile( \
"rjmp .+0" "\n\t" \
"rjmp .+0" "\n\t" \
"rjmp .+0" "\n\t" \
"nop" "\n" \
::);
#if defined(__AVR_ATmega168__) || defined(__AVR_ATmega328P__) || \
defined(__AVR_ATmega328__) || defined(__AVR_ATmega8__)
#if defined(__AVR_ATmega168__) || defined(__AVR_ATmega328P__) || defined (__AVR_ATmega328__) || defined(__AVR_ATmega8__)
// Arduino Uno, Duemilanove, etc.
// Arduino Uno, Duemilanove, etc.
#ifdef USE_ADAFRUIT_SHIELD_PINOUT
#ifdef USE_ADAFRUIT_SHIELD_PINOUT
// LCD control lines:
// RD (read), WR (write), CD (command/data), CS (chip select)
#define RD_PORT PORTC /*pin A0 */
#define WR_PORT PORTC /*pin A1 */
#define CD_PORT PORTC /*pin A2 */
#define CS_PORT PORTC /*pin A3 */
#define RD_MASK B00000001
#define WR_MASK B00000010
#define CD_MASK B00000100
#define CS_MASK B00001000
// LCD control lines:
// RD (read), WR (write), CD (command/data), CS (chip select)
#define RD_PORT PORTC /*pin A0 */
#define WR_PORT PORTC /*pin A1 */
#define CD_PORT PORTC /*pin A2 */
#define CS_PORT PORTC /*pin A3 */
#define RD_MASK B00000001
#define WR_MASK B00000010
#define CD_MASK B00000100
#define CS_MASK B00001000
// These are macros for I/O operations...
// These are macros for I/O operations...
// Write 8-bit value to LCD data lines
#define write8inline(d) \
{ \
PORTD = (PORTD & B00101111) | ((d)&B11010000); \
PORTB = (PORTB & B11010000) | ((d)&B00101111); \
WR_STROBE; \
} // STROBEs are defined later
// Write 8-bit value to LCD data lines
#define write8inline(d) { \
PORTD = (PORTD & B00101111) | ((d) & B11010000); \
PORTB = (PORTB & B11010000) | ((d) & B00101111); \
WR_STROBE; } // STROBEs are defined later
// Read 8-bit value from LCD data lines. The signle argument
// is a destination variable; this isn't a function and doesn't
// return a value in the conventional sense.
#define read8inline(result) \
{ \
// Read 8-bit value from LCD data lines. The signle argument
// is a destination variable; this isn't a function and doesn't
// return a value in the conventional sense.
#define read8inline(result) { \
RD_ACTIVE; \
DELAY7; \
result = (PIND & B11010000) | (PINB & B00101111); \
RD_IDLE; \
}
RD_IDLE; }
// These set the PORT directions as required before the write and read
// operations. Because write operations are much more common than reads,
// the data-reading functions in the library code set the PORT(s) to
// input before a read, and restore them back to the write state before
// returning. This avoids having to set it for output inside every
// drawing method. The default state has them initialized for writes.
#define setWriteDirInline() \
{ \
DDRD |= B11010000; \
DDRB |= B00101111; \
}
#define setReadDirInline() \
{ \
DDRD &= ~B11010000; \
DDRB &= ~B00101111; \
}
// These set the PORT directions as required before the write and read
// operations. Because write operations are much more common than reads,
// the data-reading functions in the library code set the PORT(s) to
// input before a read, and restore them back to the write state before
// returning. This avoids having to set it for output inside every
// drawing method. The default state has them initialized for writes.
#define setWriteDirInline() { DDRD |= B11010000; DDRB |= B00101111; }
#define setReadDirInline() { DDRD &= ~B11010000; DDRB &= ~B00101111; }
#else // Uno w/Breakout board
#else // Uno w/Breakout board
#define write8inline(d) \
{ \
PORTD = (PORTD & B00000011) | ((d)&B11111100); \
PORTB = (PORTB & B11111100) | ((d)&B00000011); \
WR_STROBE; \
}
#define read8inline(result) \
{ \
#define write8inline(d) { \
PORTD = (PORTD & B00000011) | ((d) & B11111100); \
PORTB = (PORTB & B11111100) | ((d) & B00000011); \
WR_STROBE; }
#define read8inline(result) { \
RD_ACTIVE; \
DELAY7; \
result = (PIND & B11111100) | (PINB & B00000011); \
RD_IDLE; \
}
#define setWriteDirInline() \
{ \
DDRD |= B11111100; \
DDRB |= B00000011; \
}
#define setReadDirInline() \
{ \
DDRD &= ~B11111100; \
DDRB &= ~B00000011; \
}
RD_IDLE; }
#define setWriteDirInline() { DDRD |= B11111100; DDRB |= B00000011; }
#define setReadDirInline() { DDRD &= ~B11111100; DDRB &= ~B00000011; }
#endif
#endif
// As part of the inline control, macros reference other macros...if any
// of these are left undefined, an equivalent function version (non-inline)
// is declared later. The Uno has a moderate amount of program space, so
// only write8() is inlined -- that one provides the most performance
// benefit, but unfortunately also generates the most bloat. This is
// why only certain cases are inlined for each board.
#define write8 write8inline
// As part of the inline control, macros reference other macros...if any
// of these are left undefined, an equivalent function version (non-inline)
// is declared later. The Uno has a moderate amount of program space, so
// only write8() is inlined -- that one provides the most performance
// benefit, but unfortunately also generates the most bloat. This is
// why only certain cases are inlined for each board.
#define write8 write8inline
#elif defined(__AVR_ATmega1281__) || defined(__AVR_ATmega2561__) || \
defined(__AVR_ATmega2560__) || defined(__AVR_ATmega1280__)
#elif defined(__AVR_ATmega1281__) || defined(__AVR_ATmega2561__) || defined(__AVR_ATmega2560__) || defined(__AVR_ATmega1280__)
// Arduino Mega, ADK, etc.
// Arduino Mega, ADK, etc.
#ifdef USE_ADAFRUIT_SHIELD_PINOUT
#ifdef USE_ADAFRUIT_SHIELD_PINOUT
#define RD_PORT PORTF
#define WR_PORT PORTF
#define CD_PORT PORTF
#define CS_PORT PORTF
#define RD_MASK B00000001
#define WR_MASK B00000010
#define CD_MASK B00000100
#define CS_MASK B00001000
#define RD_PORT PORTF
#define WR_PORT PORTF
#define CD_PORT PORTF
#define CS_PORT PORTF
#define RD_MASK B00000001
#define WR_MASK B00000010
#define CD_MASK B00000100
#define CS_MASK B00001000
#define write8inline(d) \
{ \
PORTH = \
(PORTH & B10000111) | (((d)&B11000000) >> 3) | (((d)&B00000011) << 5); \
PORTB = (PORTB & B01001111) | (((d)&B00101100) << 2); \
PORTG = (PORTG & B11011111) | (((d)&B00010000) << 1); \
WR_STROBE; \
}
#define read8inline(result) \
{ \
#define write8inline(d) { \
PORTH = (PORTH&B10000111)|(((d)&B11000000)>>3)|(((d)&B00000011)<<5); \
PORTB = (PORTB&B01001111)|(((d)&B00101100)<<2); \
PORTG = (PORTG&B11011111)|(((d)&B00010000)<<1); \
WR_STROBE; }
#define read8inline(result) { \
RD_ACTIVE; \
DELAY7; \
result = ((PINH & B00011000) << 3) | ((PINB & B10110000) >> 2) | \
((PING & B00100000) >> 1) | ((PINH & B01100000) >> 5); \
RD_IDLE; \
}
#define setWriteDirInline() \
{ \
DDRH |= B01111000; \
DDRB |= B10110000; \
DDRG |= B00100000; \
}
#define setReadDirInline() \
{ \
DDRH &= ~B01111000; \
DDRB &= ~B10110000; \
DDRG &= ~B00100000; \
}
RD_IDLE; }
#define setWriteDirInline() { \
DDRH |= B01111000; DDRB |= B10110000; DDRG |= B00100000; }
#define setReadDirInline() { \
DDRH &= ~B01111000; DDRB &= ~B10110000; DDRG &= ~B00100000; }
#else // Mega w/Breakout board
#else // Mega w/Breakout board
#define write8inline(d) \
{ \
PORTA = (d); \
WR_STROBE; \
}
#define read8inline(result) \
{ \
#define write8inline(d) { PORTA = (d); WR_STROBE; }
#define read8inline(result) { \
RD_ACTIVE; \
DELAY7; \
result = PINA; \
RD_IDLE; \
}
#define setWriteDirInline() DDRA = 0xff
#define setReadDirInline() DDRA = 0
RD_IDLE; }
#define setWriteDirInline() DDRA = 0xff
#define setReadDirInline() DDRA = 0
#endif
#endif
// All of the functions are inlined on the Arduino Mega. When using the
// breakout board, the macro versions aren't appreciably larger than the
// function equivalents, and they're super simple and fast. When using
// the shield, the macros become pretty complicated...but this board has
// so much code space, the macros are used anyway. If you need to free
// up program space, some macros can be removed, at a minor cost in speed.
#define write8 write8inline
#define read8 read8inline
#define setWriteDir setWriteDirInline
#define setReadDir setReadDirInline
#define writeRegister8 writeRegister8inline
#define writeRegister16 writeRegister16inline
#define writeRegisterPair writeRegisterPairInline
// All of the functions are inlined on the Arduino Mega. When using the
// breakout board, the macro versions aren't appreciably larger than the
// function equivalents, and they're super simple and fast. When using
// the shield, the macros become pretty complicated...but this board has
// so much code space, the macros are used anyway. If you need to free
// up program space, some macros can be removed, at a minor cost in speed.
#define write8 write8inline
#define read8 read8inline
#define setWriteDir setWriteDirInline
#define setReadDir setReadDirInline
#define writeRegister8 writeRegister8inline
#define writeRegister16 writeRegister16inline
#define writeRegisterPair writeRegisterPairInline
#elif defined(__AVR_ATmega32U4__)
// Arduino Leonardo
// Arduino Leonardo
#ifdef USE_ADAFRUIT_SHIELD_PINOUT
#ifdef USE_ADAFRUIT_SHIELD_PINOUT
#define RD_PORT PORTF
#define WR_PORT PORTF
#define CD_PORT PORTF
#define CS_PORT PORTF
#define RD_MASK B10000000
#define WR_MASK B01000000
#define CD_MASK B00100000
#define CS_MASK B00010000
#define RD_PORT PORTF
#define WR_PORT PORTF
#define CD_PORT PORTF
#define CS_PORT PORTF
#define RD_MASK B10000000
#define WR_MASK B01000000
#define CD_MASK B00100000
#define CS_MASK B00010000
#define write8inline(d) \
{ \
PORTE = (PORTE & B10111111) | (((d)&B10000000) >> 1); \
PORTD = (PORTD & B01101111) | (((d)&B01000000) << 1) | ((d)&B00010000); \
PORTC = (PORTC & B01111111) | (((d)&B00100000) << 2); \
PORTB = (PORTB & B00001111) | (((d)&B00001111) << 4); \
WR_STROBE; \
}
#define read8inline(result) \
{ \
#define write8inline(d) { \
PORTE = (PORTE & B10111111) | (((d) & B10000000)>>1); \
PORTD = (PORTD & B01101111) | (((d) & B01000000)<<1) | ((d) & B00010000); \
PORTC = (PORTC & B01111111) | (((d) & B00100000)<<2); \
PORTB = (PORTB & B00001111) | (((d) & B00001111)<<4); \
WR_STROBE; }
#define read8inline(result) { \
RD_ACTIVE; \
DELAY7; \
result = ((PINE & B01000000) << 1) | ((PIND & B10000000) >> 1) | \
((PINC & B10000000) >> 2) | ((PINB & B11110000) >> 4) | \
(PIND & B00010000); \
RD_IDLE; \
}
#define setWriteDirInline() \
{ \
DDRE |= B01000000; \
DDRD |= B10010000; \
DDRC |= B10000000; \
DDRB |= B11110000; \
}
#define setReadDirInline() \
{ \
DDRE &= ~B01000000; \
DDRD &= ~B10010000; \
DDRC &= ~B10000000; \
DDRB &= ~B11110000; \
}
RD_IDLE; }
#define setWriteDirInline() { \
DDRE |= B01000000; DDRD |= B10010000; \
DDRC |= B10000000; DDRB |= B11110000; }
#define setReadDirInline() { \
DDRE &= ~B01000000; DDRD &= ~B10010000; \
DDRC &= ~B10000000; DDRB &= ~B11110000; }
#else // Leonardo w/Breakout board
#else // Leonardo w/Breakout board
#define write8inline(d) \
{ \
#define write8inline(d) { \
uint8_t dr1 = (d) >> 1, dl1 = (d) << 1; \
PORTE = (PORTE & B10111111) | (dr1 & B01000000); \
PORTD = (PORTD & B01101100) | (dl1 & B10000000) | (((d)&B00001000) >> 3) | \
(dr1 & B00000010) | ((d)&B00010000); \
PORTD = (PORTD & B01101100) | (dl1 & B10000000) | (((d) & B00001000)>>3) |\
(dr1 & B00000010) | ((d) & B00010000); \
PORTC = (PORTC & B10111111) | (dl1 & B01000000); \
PORTB = (PORTB & B11001111) | (((d)&B00000011) << 4); \
WR_STROBE; \
}
#define read8inline(result) \
{ \
PORTB = (PORTB & B11001111) |(((d) & B00000011)<<4); \
WR_STROBE; }
#define read8inline(result) { \
RD_ACTIVE; \
DELAY7; \
result = (((PINE & B01000000) | (PIND & B00000010)) << 1) | \
(((PINC & B01000000) | (PIND & B10000000)) >> 1) | \
((PIND & B00000001) << 3) | ((PINB & B00110000) >> 4) | \
(PIND & B00010000); \
RD_IDLE; \
}
#define setWriteDirInline() \
{ \
DDRE |= B01000000; \
DDRD |= B10010011; \
DDRC |= B01000000; \
DDRB |= B00110000; \
}
#define setReadDirInline() \
{ \
DDRE &= ~B01000000; \
DDRD &= ~B10010011; \
DDRC &= ~B01000000; \
DDRB &= ~B00110000; \
}
RD_IDLE; }
#define setWriteDirInline() { \
DDRE |= B01000000; DDRD |= B10010011; \
DDRC |= B01000000; DDRB |= B00110000; }
#define setReadDirInline() { \
DDRE &= ~B01000000; DDRD &= ~B10010011; \
DDRC &= ~B01000000; DDRB &= ~B00110000; }
#endif
#endif
// On the Leonardo, only the write8() macro is used -- though even that
// might be excessive given the code size and available program space
// on this board. You may need to disable this to get any sizable
// program to compile.
#define write8 write8inline
// On the Leonardo, only the write8() macro is used -- though even that
// might be excessive given the code size and available program space
// on this board. You may need to disable this to get any sizable
// program to compile.
#define write8 write8inline
#elif defined(__SAM3X8E__)
// Arduino Due
#ifdef USE_ADAFRUIT_SHIELD_PINOUT
#ifdef USE_ADAFRUIT_SHIELD_PINOUT
#define RD_PORT PIOA /*pin A0 */
#define WR_PORT PIOA /*pin A1 */
#define CD_PORT PIOA /*pin A2 */
#define CS_PORT PIOA /*pin A3 */
#define RD_MASK 0x00010000
#define WR_MASK 0x01000000
#define CD_MASK 0x00800000
#define CS_MASK 0x00400000
#define RD_PORT PIOA /*pin A0 */
#define WR_PORT PIOA /*pin A1 */
#define CD_PORT PIOA /*pin A2 */
#define CS_PORT PIOA /*pin A3 */
#define RD_MASK 0x00010000
#define WR_MASK 0x01000000
#define CD_MASK 0x00800000
#define CS_MASK 0x00400000
#define write8inline(d) \
{ \
PIO_Set(PIOD, (((d)&0x08) << (7 - 3))); \
PIO_Clear(PIOD, (((~d) & 0x08) << (7 - 3))); \
PIO_Set(PIOC, (((d)&0x01) << (22 - 0)) | (((d)&0x02) << (21 - 1)) | \
(((d)&0x04) << (29 - 2)) | (((d)&0x10) << (26 - 4)) | \
(((d)&0x40) << (24 - 6)) | (((d)&0x80) << (23 - 7))); \
PIO_Clear(PIOC, \
(((~d) & 0x01) << (22 - 0)) | (((~d) & 0x02) << (21 - 1)) | \
(((~d) & 0x04) << (29 - 2)) | (((~d) & 0x10) << (26 - 4)) | \
(((~d) & 0x40) << (24 - 6)) | (((~d) & 0x80) << (23 - 7))); \
PIO_Set(PIOB, (((d)&0x20) << (27 - 5))); \
PIO_Clear(PIOB, (((~d) & 0x20) << (27 - 5))); \
WR_STROBE; \
}
#define write8inline(d) { \
PIO_Set(PIOD, (((d) & 0x08)<<(7-3))); \
PIO_Clear(PIOD, (((~d) & 0x08)<<(7-3))); \
PIO_Set(PIOC, (((d) & 0x01)<<(22-0)) | (((d) & 0x02)<<(21-1))| (((d) & 0x04)<<(29-2))| (((d) & 0x10)<<(26-4))| (((d) & 0x40)<<(24-6))| (((d) & 0x80)<<(23-7))); \
PIO_Clear(PIOC, (((~d) & 0x01)<<(22-0)) | (((~d) & 0x02)<<(21-1))| (((~d) & 0x04)<<(29-2))| (((~d) & 0x10)<<(26-4))| (((~d) & 0x40)<<(24-6))| (((~d) & 0x80)<<(23-7))); \
PIO_Set(PIOB, (((d) & 0x20)<<(27-5))); \
PIO_Clear(PIOB, (((~d) & 0x20)<<(27-5))); \
WR_STROBE; }
#define read8inline(result) \
{ \
\
#define read8inline(result) { \
RD_ACTIVE; \
delayMicroseconds(1); \
result = (((PIOC->PIO_PDSR & (1 << 23)) >> (23 - 7)) | \
((PIOC->PIO_PDSR & (1 << 24)) >> (24 - 6)) | \
((PIOB->PIO_PDSR & (1 << 27)) >> (27 - 5)) | \
((PIOC->PIO_PDSR & (1 << 26)) >> (26 - 4)) | \
((PIOD->PIO_PDSR & (1 << 7)) >> (7 - 3)) | \
((PIOC->PIO_PDSR & (1 << 29)) >> (29 - 2)) | \
((PIOC->PIO_PDSR & (1 << 21)) >> (21 - 1)) | \
((PIOC->PIO_PDSR & (1 << 22)) >> (22 - 0))); \
RD_IDLE; \
}
result = (((PIOC->PIO_PDSR & (1<<23)) >> (23-7)) | ((PIOC->PIO_PDSR & (1<<24)) >> (24-6)) | \
((PIOB->PIO_PDSR & (1<<27)) >> (27-5)) | ((PIOC->PIO_PDSR & (1<<26)) >> (26-4)) | \
((PIOD->PIO_PDSR & (1<< 7)) >> ( 7-3)) | ((PIOC->PIO_PDSR & (1<<29)) >> (29-2)) | \
((PIOC->PIO_PDSR & (1<<21)) >> (21-1)) | ((PIOC->PIO_PDSR & (1<<22)) >> (22-0))); \
RD_IDLE;}
#define setWriteDirInline() \
{ \
PIOD->PIO_MDDR |= 0x00000080; /*PIOD->PIO_SODR = 0x00000080;*/ \
PIOD->PIO_OER |= 0x00000080; \
PIOD->PIO_PER |= 0x00000080; \
PIOC->PIO_MDDR |= 0x25E00000; /*PIOC->PIO_SODR = 0x25E00000;*/ \
PIOC->PIO_OER |= 0x25E00000; \
PIOC->PIO_PER |= 0x25E00000; \
PIOB->PIO_MDDR |= 0x08000000; /*PIOB->PIO_SODR = 0x08000000;*/ \
PIOB->PIO_OER |= 0x08000000; \
PIOB->PIO_PER |= 0x08000000; \
}
#define setWriteDirInline() { \
PIOD->PIO_MDDR |= 0x00000080; /*PIOD->PIO_SODR = 0x00000080;*/ PIOD->PIO_OER |= 0x00000080; PIOD->PIO_PER |= 0x00000080; \
PIOC->PIO_MDDR |= 0x25E00000; /*PIOC->PIO_SODR = 0x25E00000;*/ PIOC->PIO_OER |= 0x25E00000; PIOC->PIO_PER |= 0x25E00000; \
PIOB->PIO_MDDR |= 0x08000000; /*PIOB->PIO_SODR = 0x08000000;*/ PIOB->PIO_OER |= 0x08000000; PIOB->PIO_PER |= 0x08000000; }
#define setReadDirInline() \
{ \
pmc_enable_periph_clk(ID_PIOD); \
pmc_enable_periph_clk(ID_PIOC); \
pmc_enable_periph_clk(ID_PIOB); \
PIOD->PIO_PUDR |= 0x00000080; \
PIOD->PIO_IFDR |= 0x00000080; \
PIOD->PIO_ODR |= 0x00000080; \
PIOD->PIO_PER |= 0x00000080; \
PIOC->PIO_PUDR |= 0x25E00000; \
PIOC->PIO_IFDR |= 0x25E00000; \
PIOC->PIO_ODR |= 0x25E00000; \
PIOC->PIO_PER |= 0x25E00000; \
PIOB->PIO_PUDR |= 0x08000000; \
PIOB->PIO_IFDR |= 0x08000000; \
PIOB->PIO_ODR |= 0x08000000; \
PIOB->PIO_PER |= 0x08000000; \
}
#define setReadDirInline() { \
pmc_enable_periph_clk(ID_PIOD); pmc_enable_periph_clk(ID_PIOC); pmc_enable_periph_clk(ID_PIOB) ; \
PI OD->PIO_PUDR |= 0x00000080; PIOD->PIO_IFDR |= 0x00000080; PIOD->PIO_ODR |= 0x00000080; PIOD->PIO_PER |= 0x00000080; \
PIOC->PIO_PUDR |= 0x25E00000; PIOC->PIO_IFDR |= 0x25E00000; PIOC->PIO_ODR |= 0x25E00000; PIOC->PIO_PER |= 0x25E00000; \
PIOB->PIO_PUDR |= 0x08000000; PIOB->PIO_IFDR |= 0x08000000; PIOB->PIO_ODR |= 0x08000000; PIOB->PIO_PER |= 0x08000000; }
// Control signals are ACTIVE LOW (idle is HIGH)
// Command/Data: LOW = command, HIGH = data
// These are single-instruction operations and always inline
#define RD_ACTIVE RD_PORT->PIO_CODR |= RD_MASK
#define RD_IDLE RD_PORT->PIO_SODR |= RD_MASK
#define WR_ACTIVE WR_PORT->PIO_CODR |= WR_MASK
#define WR_IDLE WR_PORT->PIO_SODR |= WR_MASK
#define CD_COMMAND CD_PORT->PIO_CODR |= CD_MASK
#define CD_DATA CD_PORT->PIO_SODR |= CD_MASK
#define CS_ACTIVE CS_PORT->PIO_CODR |= CS_MASK
#define CS_IDLE CS_PORT->PIO_SODR |= CS_MASK
// Control signals are ACTIVE LOW (idle is HIGH)
// Command/Data: LOW = command, HIGH = data
// These are single-instruction operations and always inline
#define RD_ACTIVE RD_PORT->PIO_CODR |= RD_MASK
#define RD_IDLE RD_PORT->PIO_SODR |= RD_MASK
#define WR_ACTIVE WR_PORT->PIO_CODR |= WR_MASK
#define WR_IDLE WR_PORT->PIO_SODR |= WR_MASK
#define CD_COMMAND CD_PORT->PIO_CODR |= CD_MASK
#define CD_DATA CD_PORT->PIO_SODR |= CD_MASK
#define CS_ACTIVE CS_PORT->PIO_CODR |= CS_MASK
#define CS_IDLE CS_PORT->PIO_SODR |= CS_MASK
#else // Due w/Breakout board
#define write8inline(d) \
{ \
PIO_Set(PIOC, (((d)&0xFF) << 1)); \
PIO_Clear(PIOC, (((~d) & 0xFF) << 1)); \
WR_STROBE; \
}
#define write8inline(d) { \
PIO_Set(PIOC, (((d) & 0xFF)<<1)); \
PIO_Clear(PIOC, (((~d) & 0xFF)<<1)); \
WR_STROBE; }
#define read8inline(result) \
{ \
#define read8inline(result) { \
RD_ACTIVE; \
delayMicroseconds(1); \
result = ((PIOC->PIO_PDSR & 0x1FE) >> 1); \
RD_IDLE; \
}
RD_IDLE;}
#define setWriteDirInline() \
{ \
PIOC->PIO_MDDR |= 0x000001FE; /*PIOC->PIO_SODR |= 0x000001FE;*/ \
#define setWriteDirInline() { \
PIOC->PIO_MDDR |= 0x000001FE; \
PIOC->PIO_OER |= 0x000001FE; \
PIOC->PIO_PER |= 0x000001FE; \
}
PIOC->PIO_PER |= 0x000001FE; }
#define setReadDirInline() \
{ \
pmc_enable_periph_clk(ID_PIOC); \
#define setReadDirInline() { \
pmc_enable_periph_clk( ID_PIOC ) ; \
PIOC->PIO_PUDR |= 0x000001FE; \
PIOC->PIO_IFDR |= 0x000001FE; \
PIOC->PIO_ODR |= 0x000001FE; \
PIOC->PIO_PER |= 0x000001FE; \
}
PIOC->PIO_PER |= 0x000001FE; }
// When using the TFT breakout board, control pins are configurable.
#define RD_ACTIVE rdPort->PIO_CODR |= rdPinSet // PIO_Clear(rdPort, rdPinSet)
#define RD_IDLE rdPort->PIO_SODR |= rdPinSet // PIO_Set(rdPort, rdPinSet)
#define WR_ACTIVE wrPort->PIO_CODR |= wrPinSet // PIO_Clear(wrPort, wrPinSet)
#define WR_IDLE wrPort->PIO_SODR |= wrPinSet // PIO_Set(wrPort, wrPinSet)
#define CD_COMMAND cdPort->PIO_CODR |= cdPinSet // PIO_Clear(cdPort, cdPinSet)
#define CD_DATA cdPort->PIO_SODR |= cdPinSet // PIO_Set(cdPort, cdPinSet)
#define CS_ACTIVE csPort->PIO_CODR |= csPinSet // PIO_Clear(csPort, csPinSet)
#define CS_IDLE csPort->PIO_SODR |= csPinSet // PIO_Set(csPort, csPinSet)
// When using the TFT breakout board, control pins are configurable.
#define RD_ACTIVE rdPort->PIO_CODR |= rdPinSet //PIO_Clear(rdPort, rdPinSet)
#define RD_IDLE rdPort->PIO_SODR |= rdPinSet //PIO_Set(rdPort, rdPinSet)
#define WR_ACTIVE wrPort->PIO_CODR |= wrPinSet //PIO_Clear(wrPort, wrPinSet)
#define WR_IDLE wrPort->PIO_SODR |= wrPinSet //PIO_Set(wrPort, wrPinSet)
#define CD_COMMAND cdPort->PIO_CODR |= cdPinSet //PIO_Clear(cdPort, cdPinSet)
#define CD_DATA cdPort->PIO_SODR |= cdPinSet //PIO_Set(cdPort, cdPinSet)
#define CS_ACTIVE csPort->PIO_CODR |= csPinSet //PIO_Clear(csPort, csPinSet)
#define CS_IDLE csPort->PIO_SODR |= csPinSet //PIO_Set(csPort, csPinSet)
#endif
#endif
#elif defined(__SAMD51__) // Metro / Feather / ItsyBitsy M4
#ifdef USE_ADAFRUIT_SHIELD_PINOUT
// M4 w/shield: TBD
#else // M4 w/breakout
#define write8inline(d) { \
*writePort = d; \
WR_STROBE; }
#define read8inline(result) { \
RD_ACTIVE; \
delayMicroseconds(1); \
result = *readPort; \
RD_IDLE; }
#define setWriteDirInline() { *dirSet = 0xFF; }
#define setReadDirInline() { *dirClr = 0xFF; }
#define RD_ACTIVE *rdPortClr = rdPinMask
#define RD_IDLE *rdPortSet = rdPinMask
/*
#define WR_ACTIVE *wrPortClr = wrPinMask
#define WR_IDLE *wrPortSet = wrPinMask
*/
#define WR_ACTIVE *wrPortSet = wrPinMask
#define WR_IDLE *wrPortClr = wrPinMask
#define CD_COMMAND *cdPortClr = cdPinMask
#define CD_DATA *cdPortSet = cdPinMask
#define CS_ACTIVE *csPortClr = csPinMask
#define CS_IDLE *csPortSet = csPinMask
#endif
#else
#error "Board type unsupported / not recognized"
#error "Board type unsupported / not recognized"
#endif
#if !defined(__SAM3X8E__)
#if defined(__AVR__)
// Stuff common to all Arduino AVR board types:
#ifdef USE_ADAFRUIT_SHIELD_PINOUT
// Control signals are ACTIVE LOW (idle is HIGH)
// Command/Data: LOW = command, HIGH = data
// These are single-instruction operations and always inline
#define RD_ACTIVE RD_PORT &= ~RD_MASK
#define RD_IDLE RD_PORT |= RD_MASK
#define WR_ACTIVE WR_PORT &= ~WR_MASK
#define WR_IDLE WR_PORT |= WR_MASK
#define CD_COMMAND CD_PORT &= ~CD_MASK
#define CD_DATA CD_PORT |= CD_MASK
#define CS_ACTIVE CS_PORT &= ~CS_MASK
#define CS_IDLE CS_PORT |= CS_MASK
// Control signals are ACTIVE LOW (idle is HIGH)
// Command/Data: LOW = command, HIGH = data
// These are single-instruction operations and always inline
#define RD_ACTIVE RD_PORT &= ~RD_MASK
#define RD_IDLE RD_PORT |= RD_MASK
#define WR_ACTIVE WR_PORT &= ~WR_MASK
#define WR_IDLE WR_PORT |= WR_MASK
#define CD_COMMAND CD_PORT &= ~CD_MASK
#define CD_DATA CD_PORT |= CD_MASK
#define CS_ACTIVE CS_PORT &= ~CS_MASK
#define CS_IDLE CS_PORT |= CS_MASK
#else // Breakout board
// When using the TFT breakout board, control pins are configurable.
#define RD_ACTIVE *rdPort &= rdPinUnset
#define RD_IDLE *rdPort |= rdPinSet
#define WR_ACTIVE *wrPort &= wrPinUnset
#define WR_IDLE *wrPort |= wrPinSet
#define CD_COMMAND *cdPort &= cdPinUnset
#define CD_DATA *cdPort |= cdPinSet
#define CS_ACTIVE *csPort &= csPinUnset
#define CS_IDLE *csPort |= csPinSet
// When using the TFT breakout board, control pins are configurable.
#define RD_ACTIVE *rdPort &= rdPinUnset
#define RD_IDLE *rdPort |= rdPinSet
#define WR_ACTIVE *wrPort &= wrPinUnset
#define WR_IDLE *wrPort |= wrPinSet
#define CD_COMMAND *cdPort &= cdPinUnset
#define CD_DATA *cdPort |= cdPinSet
#define CS_ACTIVE *csPort &= csPinUnset
#define CS_IDLE *csPort |= csPinSet
#endif
#endif
// Data write strobe, ~2 instructions and always inline
#define WR_STROBE \
{ \
WR_ACTIVE; \
WR_IDLE; \
}
#define WR_STROBE { WR_ACTIVE; WR_IDLE; }
// These higher-level operations are usually functionalized,
// except on Mega where's there's gobs and gobs of program space.
// Set value of TFT register: 8-bit address, 8-bit value
#define writeRegister8inline(a, d) \
{ \
CD_COMMAND; \
write8(a); \
CD_DATA; \
write8(d); \
}
#define writeRegister8inline(a, d) { \
CD_COMMAND; write8(a); CD_DATA; write8(d); }
// Set value of TFT register: 16-bit address, 16-bit value
// See notes at top about macro expansion, hence hi & lo temp vars
#define writeRegister16inline(a, d) \
{ \
#define writeRegister16inline(a, d) { \
uint8_t hi, lo; \
hi = (a) >> 8; \
lo = (a); \
CD_COMMAND; \
write8(hi); \
write8(lo); \
hi = (d) >> 8; \
lo = (d); \
CD_DATA; \
write8(hi); \
write8(lo); \
}
hi = (a) >> 8; lo = (a); CD_COMMAND; write8(hi); write8(lo); \
hi = (d) >> 8; lo = (d); CD_DATA ; write8(hi); write8(lo); }
// Set value of 2 TFT registers: Two 8-bit addresses (hi & lo), 16-bit value
#define writeRegisterPairInline(aH, aL, d) \
{ \
#define writeRegisterPairInline(aH, aL, d) { \
uint8_t hi = (d) >> 8, lo = (d); \
CD_COMMAND; \
write8(aH); \
CD_DATA; \
write8(hi); \
CD_COMMAND; \
write8(aL); \
CD_DATA; \
write8(lo); \
}
CD_COMMAND; write8(aH); CD_DATA; write8(hi); \
CD_COMMAND; write8(aL); CD_DATA; write8(lo); }
#endif // _pin_magic_

View file

@ -60,6 +60,8 @@
#define HX8347G_ROWADDREND_LO 0x09
#define HX8347G_MEMACCESS 0x16
#define ILI9341_SOFTRESET 0x01
#define ILI9341_SLEEPIN 0x10
#define ILI9341_SLEEPOUT 0x11
@ -91,6 +93,8 @@
#define ILI9341_MADCTL_BGR 0x08
#define ILI9341_MADCTL_MH 0x04
#define HX8357_NOP 0x00
#define HX8357_SWRESET 0x01
#define HX8357_RDDID 0x04
@ -144,6 +148,7 @@
#define HX8357B_SETCABC 0xC9
#define HX8357_SETPANEL 0xCC
#define HX8357B_SETPOWER 0xD0
#define HX8357B_SETVCOM 0xD1
#define HX8357B_SETPWRNORMAL 0xD2