TFTLCD-Library/Adafruit_TFTLCD.cpp
2018-06-21 22:29:18 -07:00

1375 lines
39 KiB
C++

// IMPORTANT: LIBRARY MUST BE SPECIFICALLY CONFIGURED FOR EITHER TFT SHIELD
// OR BREAKOUT BOARD USAGE. SEE RELEVANT COMMENTS IN Adafruit_TFTLCD.h
// Graphics library by ladyada/adafruit with init code from Rossum
// MIT license
#if defined(__SAM3X8E__)
#include <include/pio.h>
#define PROGMEM
#define pgm_read_byte(addr) (*(const unsigned char *)(addr))
#define pgm_read_word(addr) (*(const unsigned short *)(addr))
#endif
#ifdef __AVR__
#include <avr/pgmspace.h>
#endif
#include "pins_arduino.h"
#include "wiring_private.h"
#include "Adafruit_TFTLCD.h"
#include "pin_magic.h"
//#define TFTWIDTH 320
//#define TFTHEIGHT 480
#define TFTWIDTH 240
#define TFTHEIGHT 320
// LCD controller chip identifiers
#define ID_932X 0
#define ID_7575 1
#define ID_9341 2
#define ID_HX8357D 3
#define ID_UNKNOWN 0xFF
#include "registers.h"
#if defined(__SAMD51__)
#include <Adafruit_ZeroDMA.h>
#include "utility/dma.h"
#define TIMERNUM 3
#if TIMERNUM == 0
#define TIMER TC0
#define IRQN TC0_IRQn
#define IRQ_HANDLER TC0_Handler
#define TIMER_GCLK_ID TC0_GCLK_ID
#define TIMER_EVU EVSYS_ID_USER_TC0_EVU
#elif TIMERNUM == 1
#define TIMER TC1
#define IRQN TC1_IRQn
#define IRQ_HANDLER TC1_Handler
#define TIMER_GCLK_ID TC1_GCLK_ID
#define TIMER_EVU EVSYS_ID_USER_TC1_EVU
#elif TIMERNUM == 2
#define TIMER TC2
#define IRQN TC2_IRQn
#define IRQ_HANDLER TC2_Handler
#define TIMER_GCLK_ID TC2_GCLK_ID
#define TIMER_EVU EVSYS_ID_USER_TC2_EVU
#elif TIMERNUM == 3
#define TIMER TC3
#define IRQN TC3_IRQn
#define IRQ_HANDLER TC3_Handler
#define TIMER_GCLK_ID TC3_GCLK_ID
#define TIMER_EVU EVSYS_ID_USER_TC3_EVU
#endif
#define clockpin 4 // ItsyBitsy M4
static Adafruit_ZeroDMA myDMA;
static ZeroDMAstatus stat;
static DmacDescriptor *desc;
static volatile bool transfer_is_done = true;
static void dma_callback(Adafruit_ZeroDMA *dma) {
transfer_is_done = true;
}
#endif
// Constructor for breakout board (configurable LCD control lines).
// Can still use this w/shield, but parameters are ignored.
Adafruit_TFTLCD::Adafruit_TFTLCD(
uint8_t cs, uint8_t cd, uint8_t wr, uint8_t rd, uint8_t reset) :
Adafruit_GFX(TFTWIDTH, TFTHEIGHT) {
#ifndef USE_ADAFRUIT_SHIELD_PINOUT
// Convert pin numbers to registers and bitmasks
_reset = reset;
#ifdef __AVR__
csPort = portOutputRegister(digitalPinToPort(cs));
cdPort = portOutputRegister(digitalPinToPort(cd));
wrPort = portOutputRegister(digitalPinToPort(wr));
rdPort = portOutputRegister(digitalPinToPort(rd));
#elif defined(__SAM3X8E__)
csPort = digitalPinToPort(cs);
cdPort = digitalPinToPort(cd);
wrPort = digitalPinToPort(wr);
rdPort = digitalPinToPort(rd);
#elif defined(__SAMD51__)
csPortSet = &(PORT->Group[g_APinDescription[cs].ulPort].OUTSET.reg);
csPortClr = &(PORT->Group[g_APinDescription[cs].ulPort].OUTCLR.reg);
cdPortSet = &(PORT->Group[g_APinDescription[cd].ulPort].OUTSET.reg);
cdPortClr = &(PORT->Group[g_APinDescription[cd].ulPort].OUTCLR.reg);
wrPortSet = &(PORT->Group[g_APinDescription[wr].ulPort].OUTSET.reg);
wrPortClr = &(PORT->Group[g_APinDescription[wr].ulPort].OUTCLR.reg);
rdPortSet = &(PORT->Group[g_APinDescription[rd].ulPort].OUTSET.reg);
rdPortClr = &(PORT->Group[g_APinDescription[rd].ulPort].OUTCLR.reg);
// Temporary - pin 0 determines which PORT register to use
volatile uint32_t *r = &(PORT->Group[g_APinDescription[0].ulPort].OUT.reg);
writePort = (volatile uint8_t *)r + 2;
r = &(PORT->Group[g_APinDescription[0].ulPort].IN.reg);
readPort = (volatile uint8_t *)r + 2;
r = &(PORT->Group[g_APinDescription[0].ulPort].DIRSET.reg);
dirSet = (volatile uint8_t *)r + 2;
r = &(PORT->Group[g_APinDescription[0].ulPort].DIRCLR.reg);
dirClr = (volatile uint8_t *)r + 2;
#endif
#if defined(__SAMD51__)
csPinMask = digitalPinToBitMask(cs);
cdPinMask = digitalPinToBitMask(cd);
wrPinMask = digitalPinToBitMask(wr);
rdPinMask = digitalPinToBitMask(rd);
#else
csPinSet = digitalPinToBitMask(cs);
cdPinSet = digitalPinToBitMask(cd);
wrPinSet = digitalPinToBitMask(wr);
rdPinSet = digitalPinToBitMask(rd);
csPinUnset = ~csPinSet;
cdPinUnset = ~cdPinSet;
wrPinUnset = ~wrPinSet;
rdPinUnset = ~rdPinSet;
#endif
#ifdef __AVR__
*csPort |= csPinSet; // Set all control bits to HIGH (idle)
*cdPort |= cdPinSet; // Signals are ACTIVE LOW
*wrPort |= wrPinSet;
*rdPort |= rdPinSet;
#elif defined(__SAM3X8E__)
csPort->PIO_SODR |= csPinSet; // Set all control bits to HIGH (idle)
cdPort->PIO_SODR |= cdPinSet; // Signals are ACTIVE LOW
wrPort->PIO_SODR |= wrPinSet;
rdPort->PIO_SODR |= rdPinSet;
#elif defined(__SAMD51__)
*csPortSet = csPinMask; // Set all control bits to HIGH (idle)
*cdPortSet = cdPinMask; // Signals are ACTIVE LOW
*wrPortSet = wrPinMask;
// *wrPortClr = wrPinMask;
*rdPortSet = rdPinMask;
#endif
pinMode(cs, OUTPUT); // Enable outputs
pinMode(wr, OUTPUT);
pinMode(rd, OUTPUT);
pinMode(cd, OUTPUT);
if(reset) {
digitalWrite(reset, HIGH);
pinMode(reset, OUTPUT);
}
#endif
init();
}
// Constructor for shield (fixed LCD control lines)
Adafruit_TFTLCD::Adafruit_TFTLCD(void) : Adafruit_GFX(TFTWIDTH, TFTHEIGHT) {
init();
}
// Initialization common to both shield & breakout configs
void Adafruit_TFTLCD::init(void) {
#ifdef USE_ADAFRUIT_SHIELD_PINOUT
CS_IDLE; // Set all control bits to idle state
WR_IDLE;
RD_IDLE;
CD_DATA;
digitalWrite(5, HIGH); // Reset line
pinMode(A3, OUTPUT); // Enable outputs
pinMode(A2, OUTPUT);
pinMode(A1, OUTPUT);
pinMode(A0, OUTPUT);
pinMode( 5, OUTPUT);
#endif
setWriteDir(); // Set up LCD data port(s) for WRITE operations
rotation = 0;
cursor_y = cursor_x = 0;
textsize = 1;
textcolor = 0xFFFF;
_width = TFTWIDTH;
_height = TFTHEIGHT;
}
// Initialization command tables for different LCD controllers
#define TFTLCD_DELAY 0xFF
static const uint8_t HX8347G_regValues[] PROGMEM = {
0x2E , 0x89,
0x29 , 0x8F,
0x2B , 0x02,
0xE2 , 0x00,
0xE4 , 0x01,
0xE5 , 0x10,
0xE6 , 0x01,
0xE7 , 0x10,
0xE8 , 0x70,
0xF2 , 0x00,
0xEA , 0x00,
0xEB , 0x20,
0xEC , 0x3C,
0xED , 0xC8,
0xE9 , 0x38,
0xF1 , 0x01,
// skip gamma, do later
0x1B , 0x1A,
0x1A , 0x02,
0x24 , 0x61,
0x25 , 0x5C,
0x18 , 0x36,
0x19 , 0x01,
0x1F , 0x88,
TFTLCD_DELAY , 5 , // delay 5 ms
0x1F , 0x80,
TFTLCD_DELAY , 5 ,
0x1F , 0x90,
TFTLCD_DELAY , 5 ,
0x1F , 0xD4,
TFTLCD_DELAY , 5 ,
0x17 , 0x05,
0x36 , 0x09,
0x28 , 0x38,
TFTLCD_DELAY , 40 ,
0x28 , 0x3C,
0x02 , 0x00,
0x03 , 0x00,
0x04 , 0x00,
0x05 , 0xEF,
0x06 , 0x00,
0x07 , 0x00,
0x08 , 0x01,
0x09 , 0x3F
};
static const uint8_t HX8357D_regValues[] PROGMEM = {
HX8357_SWRESET, 0,
HX8357D_SETC, 3, 0xFF, 0x83, 0x57,
TFTLCD_DELAY, 250,
HX8357_SETRGB, 4, 0x00, 0x00, 0x06, 0x06,
HX8357D_SETCOM, 1, 0x25, // -1.52V
HX8357_SETOSC, 1, 0x68, // Normal mode 70Hz, Idle mode 55 Hz
HX8357_SETPANEL, 1, 0x05, // BGR, Gate direction swapped
HX8357_SETPWR1, 6, 0x00, 0x15, 0x1C, 0x1C, 0x83, 0xAA,
HX8357D_SETSTBA, 6, 0x50, 0x50, 0x01, 0x3C, 0x1E, 0x08,
// MEME GAMMA HERE
HX8357D_SETCYC, 7, 0x02, 0x40, 0x00, 0x2A, 0x2A, 0x0D, 0x78,
HX8357_COLMOD, 1, 0x55,
HX8357_MADCTL, 1, 0xC0,
HX8357_TEON, 1, 0x00,
HX8357_TEARLINE, 2, 0x00, 0x02,
HX8357_SLPOUT, 0,
TFTLCD_DELAY, 150,
HX8357_DISPON, 0,
TFTLCD_DELAY, 50,
};
static const uint16_t ILI932x_regValues[] PROGMEM = {
ILI932X_START_OSC , 0x0001, // Start oscillator
TFTLCD_DELAY , 50, // 50 millisecond delay
ILI932X_DRIV_OUT_CTRL , 0x0100,
ILI932X_DRIV_WAV_CTRL , 0x0700,
ILI932X_ENTRY_MOD , 0x1030,
ILI932X_RESIZE_CTRL , 0x0000,
ILI932X_DISP_CTRL2 , 0x0202,
ILI932X_DISP_CTRL3 , 0x0000,
ILI932X_DISP_CTRL4 , 0x0000,
ILI932X_RGB_DISP_IF_CTRL1, 0x0,
ILI932X_FRM_MARKER_POS , 0x0,
ILI932X_RGB_DISP_IF_CTRL2, 0x0,
ILI932X_POW_CTRL1 , 0x0000,
ILI932X_POW_CTRL2 , 0x0007,
ILI932X_POW_CTRL3 , 0x0000,
ILI932X_POW_CTRL4 , 0x0000,
TFTLCD_DELAY , 200,
ILI932X_POW_CTRL1 , 0x1690,
ILI932X_POW_CTRL2 , 0x0227,
TFTLCD_DELAY , 50,
ILI932X_POW_CTRL3 , 0x001A,
TFTLCD_DELAY , 50,
ILI932X_POW_CTRL4 , 0x1800,
ILI932X_POW_CTRL7 , 0x002A,
TFTLCD_DELAY , 50,
ILI932X_GAMMA_CTRL1 , 0x0000,
ILI932X_GAMMA_CTRL2 , 0x0000,
ILI932X_GAMMA_CTRL3 , 0x0000,
ILI932X_GAMMA_CTRL4 , 0x0206,
ILI932X_GAMMA_CTRL5 , 0x0808,
ILI932X_GAMMA_CTRL6 , 0x0007,
ILI932X_GAMMA_CTRL7 , 0x0201,
ILI932X_GAMMA_CTRL8 , 0x0000,
ILI932X_GAMMA_CTRL9 , 0x0000,
ILI932X_GAMMA_CTRL10 , 0x0000,
ILI932X_GRAM_HOR_AD , 0x0000,
ILI932X_GRAM_VER_AD , 0x0000,
ILI932X_HOR_START_AD , 0x0000,
ILI932X_HOR_END_AD , 0x00EF,
ILI932X_VER_START_AD , 0X0000,
ILI932X_VER_END_AD , 0x013F,
ILI932X_GATE_SCAN_CTRL1 , 0xA700, // Driver Output Control (R60h)
ILI932X_GATE_SCAN_CTRL2 , 0x0003, // Driver Output Control (R61h)
ILI932X_GATE_SCAN_CTRL3 , 0x0000, // Driver Output Control (R62h)
ILI932X_PANEL_IF_CTRL1 , 0X0010, // Panel Interface Control 1 (R90h)
ILI932X_PANEL_IF_CTRL2 , 0X0000,
ILI932X_PANEL_IF_CTRL3 , 0X0003,
ILI932X_PANEL_IF_CTRL4 , 0X1100,
ILI932X_PANEL_IF_CTRL5 , 0X0000,
ILI932X_PANEL_IF_CTRL6 , 0X0000,
ILI932X_DISP_CTRL1 , 0x0133, // Main screen turn on
};
void Adafruit_TFTLCD::begin(uint16_t id) {
uint8_t i = 0;
reset();
delay(200);
if((id == 0x9325) || (id == 0x9328)) {
uint16_t a, d;
driver = ID_932X;
CS_ACTIVE;
while(i < sizeof(ILI932x_regValues) / sizeof(uint16_t)) {
a = pgm_read_word(&ILI932x_regValues[i++]);
d = pgm_read_word(&ILI932x_regValues[i++]);
if(a == TFTLCD_DELAY) delay(d);
else writeRegister16(a, d);
}
setRotation(rotation);
setAddrWindow(0, 0, TFTWIDTH-1, TFTHEIGHT-1);
} else if (id == 0x9341) {
uint16_t a, d;
driver = ID_9341;
CS_ACTIVE;
writeRegister8(ILI9341_SOFTRESET, 0);
delay(50);
writeRegister8(ILI9341_DISPLAYOFF, 0);
writeRegister8(ILI9341_POWERCONTROL1, 0x23);
writeRegister8(ILI9341_POWERCONTROL2, 0x10);
writeRegister16(ILI9341_VCOMCONTROL1, 0x2B2B);
writeRegister8(ILI9341_VCOMCONTROL2, 0xC0);
writeRegister8(ILI9341_MEMCONTROL, ILI9341_MADCTL_MY | ILI9341_MADCTL_BGR);
writeRegister8(ILI9341_PIXELFORMAT, 0x55);
writeRegister16(ILI9341_FRAMECONTROL, 0x001B);
writeRegister8(ILI9341_ENTRYMODE, 0x07);
/* writeRegister32(ILI9341_DISPLAYFUNC, 0x0A822700);*/
writeRegister8(ILI9341_SLEEPOUT, 0);
delay(150);
writeRegister8(ILI9341_DISPLAYON, 0);
delay(500);
setAddrWindow(0, 0, TFTWIDTH-1, TFTHEIGHT-1);
// return;
} else if (id == 0x8357) {
// HX8357D
driver = ID_HX8357D;
CS_ACTIVE;
while(i < sizeof(HX8357D_regValues)) {
uint8_t r = pgm_read_byte(&HX8357D_regValues[i++]);
uint8_t len = pgm_read_byte(&HX8357D_regValues[i++]);
if(r == TFTLCD_DELAY) {
delay(len);
} else {
//Serial.print("Register $"); Serial.print(r, HEX);
//Serial.print(" datalen "); Serial.println(len);
CS_ACTIVE;
CD_COMMAND;
write8(r);
CD_DATA;
for (uint8_t d=0; d<len; d++) {
uint8_t x = pgm_read_byte(&HX8357D_regValues[i++]);
write8(x);
}
CS_IDLE;
}
}
// return;
} else if(id == 0x7575) {
uint8_t a, d;
driver = ID_7575;
CS_ACTIVE;
while(i < sizeof(HX8347G_regValues)) {
a = pgm_read_byte(&HX8347G_regValues[i++]);
d = pgm_read_byte(&HX8347G_regValues[i++]);
if(a == TFTLCD_DELAY) delay(d);
else writeRegister8(a, d);
}
setRotation(rotation);
setLR(); // Lower-right corner of address window
} else {
driver = ID_UNKNOWN;
// return;
}
#if defined(__SAMD51__)
// Do insane timer/PWM/DMA init here
// Write-strobe pin will NEED to be on a PWM-suitable output!
// TIMER STUFF
// Set up generic clock gen 2 as source for TC4
// Datasheet recommends setting GENCTRL register in a single write,
// so a temp value is used here to more easily construct a value.
GCLK_GENCTRL_Type genctrl;
genctrl.bit.SRC = GCLK_GENCTRL_SRC_DPLL0_Val; // 120 MHz source
genctrl.bit.GENEN = 1; // Enable
genctrl.bit.OE = 1;
genctrl.bit.DIVSEL = 0; // Do not divide clock source
genctrl.bit.DIV = 0;
GCLK->GENCTRL[2].reg = genctrl.reg;
while(GCLK->SYNCBUSY.bit.GENCTRL1 == 1);
GCLK->PCHCTRL[TIMER_GCLK_ID].bit.CHEN = 0;
while(GCLK->PCHCTRL[TIMER_GCLK_ID].bit.CHEN); // Wait for disable
GCLK_PCHCTRL_Type pchctrl;
pchctrl.bit.GEN = GCLK_PCHCTRL_GEN_GCLK2_Val;
pchctrl.bit.CHEN = 1;
GCLK->PCHCTRL[TIMER_GCLK_ID].reg = pchctrl.reg;
while(!GCLK->PCHCTRL[TIMER_GCLK_ID].bit.CHEN); // Wait for enable
// Set up event system off same clock
GCLK->PCHCTRL[EVSYS_GCLK_ID_0].bit.CHEN = 0;
while(GCLK->PCHCTRL[EVSYS_GCLK_ID_0].bit.CHEN); // Wait for disable
pchctrl.bit.GEN = GCLK_PCHCTRL_GEN_GCLK2_Val;
pchctrl.bit.CHEN = 1;
GCLK->PCHCTRL[EVSYS_GCLK_ID_0].reg = pchctrl.reg;
while(!GCLK->PCHCTRL[EVSYS_GCLK_ID_0].bit.CHEN); // Wait for enable
MCLK->APBBMASK.bit.EVSYS_ = 1; // Enable event system clock
// Configure timer for 8-bit normal PWM mode
// Counter must first be disabled to configure it
TIMER->COUNT8.CTRLA.bit.ENABLE = 0;
while(TIMER->COUNT8.SYNCBUSY.bit.STATUS);
TIMER->COUNT8.WAVE.bit.WAVEGEN = 2; // Normal PWM mode (NPWM)
TIMER->COUNT8.CTRLA.bit.MODE = 1; // 8-bit counter mode
TIMER->COUNT8.CTRLA.bit.PRESCALER = 0; // 1:1 clock prescale
while(TIMER->COUNT8.SYNCBUSY.bit.STATUS);
//TIMER->COUNT8.CTRLBSET.bit.DIR = 1; // Count DOWN
TIMER->COUNT8.CTRLBCLR.bit.DIR = 1; // Count UP
while(TIMER->COUNT8.SYNCBUSY.bit.CTRLB);
TIMER->COUNT8.CTRLBSET.bit.ONESHOT = 1; // One-shot operation
while(TIMER->COUNT8.SYNCBUSY.bit.CTRLB);
TIMER->COUNT8.PER.reg = 3; // PWM top value
while(TIMER->COUNT8.SYNCBUSY.bit.PER);
TIMER->COUNT8.CC[0].reg = 2; // Compare value for channel 0
while(TIMER->COUNT8.SYNCBUSY.bit.CC0);
TIMER->COUNT8.EVCTRL.bit.TCEI = 1; // Enable async input events
TIMER->COUNT8.EVCTRL.bit.EVACT = 1; // Event action = start/restart/retrigger
//TIMER->COUNT8.DRVCTRL.bit.INVEN0 = 1; // Invert output
// Enable TCx
TIMER->COUNT8.CTRLA.reg |= TC_CTRLA_ENABLE;
while(TIMER->COUNT8.SYNCBUSY.bit.STATUS);
// CCL STUFF
// Enable CCL bus clock (CLK_CCL_APB)
MCLK->APBCMASK.bit.CCL_ = 1; // Enable CCL clock
// Generic clock (GCLK_CCL) is needed for input events, filter,
// edge detection or sequential logic (i.e. not needed here?)
GCLK->PCHCTRL[CCL_GCLK_ID].bit.CHEN = 0;
while(GCLK->PCHCTRL[CCL_GCLK_ID].bit.CHEN); // Wait for disable
pchctrl.bit.GEN = GCLK_PCHCTRL_GEN_GCLK2_Val;
pchctrl.bit.CHEN = 1;
GCLK->PCHCTRL[CCL_GCLK_ID].reg = pchctrl.reg;
while(!GCLK->PCHCTRL[CCL_GCLK_ID].bit.CHEN); // Wait for enable
// CCL/OUT[0] = PA07 (D2), PA19 (D9), PB02 (NA), PB23 (MISO)
// CCL/OUT[1] = PA11 (NA), PA31 (SWDIO), PB11 (NA)
// CCL/OUT[2] = PB09 (A3), PA25 (NA)
// CCL/OUT[3] = PB17 (NA)
CCL->CTRL.bit.SWRST = 1; // Reset CCL registers to defaults
CCL->CTRL.bit.ENABLE = 1; // Enable CCL
// LUT control X register can only be written when disabled
CCL->LUTCTRL[TIMERNUM].bit.ENABLE = 0;
//CCL->LUTCTRL[TIMERNUM].bit.FILTSEL = 2; // Filter enabled
CCL->LUTCTRL[TIMERNUM].bit.FILTSEL = 0; // No filter
CCL->LUTCTRL[TIMERNUM].bit.INSEL0 = 6; // TC input source
CCL->LUTCTRL[TIMERNUM].bit.INSEL1 = 0; // MASK
CCL->LUTCTRL[TIMERNUM].bit.INSEL2 = 0; // MASK
CCL->LUTCTRL[TIMERNUM].bit.TRUTH = 0b01010101; // Invert
CCL->LUTCTRL[TIMERNUM].bit.ENABLE = 1;
#if TIMERNUM == 0
pinMode(2, OUTPUT);
pinPeripheral(2, PIO_CCL);
#elif TIMERNUM == 2
pinMode(A3, OUTPUT);
pinPeripheral(A3, PIO_CCL);
#endif
// EVENTS STUFF
EVSYS->USER[TIMER_EVU].reg = 1; // Connect Timer EVU to ch 0 (value is +1)
// Datasheet recommends single write operation; reg instead of bit
// Also datasheet: PATH bits must be zero when using async!
EVSYS_CHANNEL_Type ev;
ev.reg = 0;
ev.bit.PATH = 2; // Asynchronous
ev.bit.EVGEN = 0x22; // DMA channel 0
EVSYS->Channel[0].CHANNEL.reg = ev.reg;
// DMA STUFF
stat = myDMA.allocate();
myDMA.printStatus(stat);
uint8_t foo;
desc = myDMA.addDescriptor(
(void *)&foo, // move data from here
(void *)writePort, // to here
256, // this many...
DMA_BEAT_SIZE_BYTE, // bytes/hword/words
false, // increment source addr?
false); // increment dest addr?
desc->BTCTRL.bit.EVOSEL = 0x3; // Event strobe on beat transfer
DMAC->Channel[0].CHEVCTRL.bit.EVOE = 1; // Enable event output
DMAC->Channel[0].CHEVCTRL.bit.EVOMODE = 0; // Use EVOSEL output selection
myDMA.setCallback(dma_callback);
#endif
}
void Adafruit_TFTLCD::reset(void) {
CS_IDLE;
// CD_DATA;
WR_IDLE;
RD_IDLE;
#ifdef USE_ADAFRUIT_SHIELD_PINOUT
digitalWrite(5, LOW);
delay(2);
digitalWrite(5, HIGH);
#else
if(_reset) {
digitalWrite(_reset, LOW);
delay(2);
digitalWrite(_reset, HIGH);
}
#endif
// Data transfer sync
CS_ACTIVE;
CD_COMMAND;
write8(0x00);
for(uint8_t i=0; i<3; i++) WR_STROBE; // Three extra 0x00s
CS_IDLE;
}
// Sets the LCD address window (and address counter, on 932X).
// Relevant to rect/screen fills and H/V lines. Input coordinates are
// assumed pre-sorted (e.g. x2 >= x1).
void Adafruit_TFTLCD::setAddrWindow(int x1, int y1, int x2, int y2) {
CS_ACTIVE;
if(driver == ID_932X) {
// Values passed are in current (possibly rotated) coordinate
// system. 932X requires hardware-native coords regardless of
// MADCTL, so rotate inputs as needed. The address counter is
// set to the top-left corner -- although fill operations can be
// done in any direction, the current screen rotation is applied
// because some users find it disconcerting when a fill does not
// occur top-to-bottom.
int x, y, t;
switch(rotation) {
default:
x = x1;
y = y1;
break;
case 1:
t = y1;
y1 = x1;
x1 = TFTWIDTH - 1 - y2;
y2 = x2;
x2 = TFTWIDTH - 1 - t;
x = x2;
y = y1;
break;
case 2:
t = x1;
x1 = TFTWIDTH - 1 - x2;
x2 = TFTWIDTH - 1 - t;
t = y1;
y1 = TFTHEIGHT - 1 - y2;
y2 = TFTHEIGHT - 1 - t;
x = x2;
y = y2;
break;
case 3:
t = x1;
x1 = y1;
y1 = TFTHEIGHT - 1 - x2;
x2 = y2;
y2 = TFTHEIGHT - 1 - t;
x = x1;
y = y2;
break;
}
writeRegister16(0x0050, x1); // Set address window
writeRegister16(0x0051, x2);
writeRegister16(0x0052, y1);
writeRegister16(0x0053, y2);
writeRegister16(0x0020, x ); // Set address counter to top left
writeRegister16(0x0021, y );
} else if(driver == ID_7575) {
writeRegisterPair(HX8347G_COLADDRSTART_HI, HX8347G_COLADDRSTART_LO, x1);
writeRegisterPair(HX8347G_ROWADDRSTART_HI, HX8347G_ROWADDRSTART_LO, y1);
writeRegisterPair(HX8347G_COLADDREND_HI , HX8347G_COLADDREND_LO , x2);
writeRegisterPair(HX8347G_ROWADDREND_HI , HX8347G_ROWADDREND_LO , y2);
} else if ((driver == ID_9341) || (driver == ID_HX8357D)){
uint32_t t;
t = x1;
t <<= 16;
t |= x2;
writeRegister32(ILI9341_COLADDRSET, t); // HX8357D uses same registers!
t = y1;
t <<= 16;
t |= y2;
writeRegister32(ILI9341_PAGEADDRSET, t); // HX8357D uses same registers!
}
CS_IDLE;
}
// Unlike the 932X drivers that set the address window to the full screen
// by default (using the address counter for drawPixel operations), the
// 7575 needs the address window set on all graphics operations. In order
// to save a few register writes on each pixel drawn, the lower-right
// corner of the address window is reset after most fill operations, so
// that drawPixel only needs to change the upper left each time.
void Adafruit_TFTLCD::setLR(void) {
CS_ACTIVE;
writeRegisterPair(HX8347G_COLADDREND_HI, HX8347G_COLADDREND_LO, _width - 1);
writeRegisterPair(HX8347G_ROWADDREND_HI, HX8347G_ROWADDREND_LO, _height - 1);
CS_IDLE;
}
// Fast block fill operation for fillScreen, fillRect, H/V line, etc.
// Requires setAddrWindow() has previously been called to set the fill
// bounds. 'len' is inclusive, MUST be >= 1.
void Adafruit_TFTLCD::flood(uint16_t color, uint32_t len) {
uint16_t blocks;
uint8_t i, hi = color >> 8,
lo = color;
CS_ACTIVE;
CD_COMMAND;
if (driver == ID_9341) {
write8(0x2C);
} else if (driver == ID_932X) {
write8(0x00); // High byte of GRAM register...
write8(0x22); // Write data to GRAM
} else if (driver == ID_HX8357D) {
write8(HX8357_RAMWR);
} else {
write8(0x22); // Write data to GRAM
}
CD_DATA;
#if defined(__SAMD51__)
if(hi == lo) {
pinPeripheral(clockpin, PIO_TIMER);
desc->SRCADDR.reg = (uint32_t)&lo;
desc->BTCTRL.bit.SRCINC = 0;
uint32_t bytesToGo = len * 2;
uint16_t bytesThisPass;
// BTCNT is a 16-bit value, so large fills may require multiple DMA xfers
while(bytesToGo > 0) {
if(bytesToGo > 65535) bytesThisPass = 65535;
else bytesThisPass = bytesToGo;
desc->BTCNT.reg = bytesThisPass;
transfer_is_done = false;
stat = myDMA.startJob();
myDMA.trigger();
while(!transfer_is_done);
bytesToGo -= bytesThisPass;
}
pinPeripheral(clockpin, PIO_OUTPUT);
} else {
#endif
// Write first pixel normally, decrement counter by 1
//CD_DATA;
write8(hi);
write8(lo);
len--;
blocks = (uint16_t)(len / 64); // 64 pixels/block
if(hi == lo) {
// High and low bytes are identical. Leave prior data
// on the port(s) and just toggle the write strobe.
while(blocks--) {
i = 16; // 64 pixels/block / 4 pixels/pass
do {
WR_STROBE; WR_STROBE; WR_STROBE; WR_STROBE; // 2 bytes/pixel
WR_STROBE; WR_STROBE; WR_STROBE; WR_STROBE; // x 4 pixels
} while(--i);
}
// Fill any remaining pixels (1 to 64)
for(i = (uint8_t)len & 63; i--; ) {
WR_STROBE;
WR_STROBE;
}
} else {
while(blocks--) {
i = 16; // 64 pixels/block / 4 pixels/pass
do {
write8(hi); write8(lo); write8(hi); write8(lo);
write8(hi); write8(lo); write8(hi); write8(lo);
} while(--i);
}
for(i = (uint8_t)len & 63; i--; ) {
write8(hi);
write8(lo);
}
}
#if defined(__SAMD51__)
}
#endif
CS_IDLE;
}
void Adafruit_TFTLCD::drawFastHLine(int16_t x, int16_t y, int16_t length,
uint16_t color)
{
int16_t x2;
// Initial off-screen clipping
if((length <= 0 ) ||
(y < 0 ) || ( y >= _height) ||
(x >= _width) || ((x2 = (x+length-1)) < 0 )) return;
if(x < 0) { // Clip left
length += x;
x = 0;
}
if(x2 >= _width) { // Clip right
x2 = _width - 1;
length = x2 - x + 1;
}
setAddrWindow(x, y, x2, y);
flood(color, length);
if(driver == ID_932X) setAddrWindow(0, 0, _width - 1, _height - 1);
else setLR();
}
void Adafruit_TFTLCD::drawFastVLine(int16_t x, int16_t y, int16_t length,
uint16_t color)
{
int16_t y2;
// Initial off-screen clipping
if((length <= 0 ) ||
(x < 0 ) || ( x >= _width) ||
(y >= _height) || ((y2 = (y+length-1)) < 0 )) return;
if(y < 0) { // Clip top
length += y;
y = 0;
}
if(y2 >= _height) { // Clip bottom
y2 = _height - 1;
length = y2 - y + 1;
}
setAddrWindow(x, y, x, y2);
flood(color, length);
if(driver == ID_932X) setAddrWindow(0, 0, _width - 1, _height - 1);
else setLR();
}
void Adafruit_TFTLCD::fillRect(int16_t x1, int16_t y1, int16_t w, int16_t h,
uint16_t fillcolor) {
int16_t x2, y2;
// Initial off-screen clipping
if( (w <= 0 ) || (h <= 0 ) ||
(x1 >= _width) || (y1 >= _height) ||
((x2 = x1+w-1) < 0 ) || ((y2 = y1+h-1) < 0 )) return;
if(x1 < 0) { // Clip left
w += x1;
x1 = 0;
}
if(y1 < 0) { // Clip top
h += y1;
y1 = 0;
}
if(x2 >= _width) { // Clip right
x2 = _width - 1;
w = x2 - x1 + 1;
}
if(y2 >= _height) { // Clip bottom
y2 = _height - 1;
h = y2 - y1 + 1;
}
setAddrWindow(x1, y1, x2, y2);
flood(fillcolor, (uint32_t)w * (uint32_t)h);
if(driver == ID_932X) setAddrWindow(0, 0, _width - 1, _height - 1);
else setLR();
}
void Adafruit_TFTLCD::fillScreen(uint16_t color) {
if(driver == ID_932X) {
// For the 932X, a full-screen address window is already the default
// state, just need to set the address pointer to the top-left corner.
// Although we could fill in any direction, the code uses the current
// screen rotation because some users find it disconcerting when a
// fill does not occur top-to-bottom.
uint16_t x, y;
switch(rotation) {
default: x = 0 ; y = 0 ; break;
case 1 : x = TFTWIDTH - 1; y = 0 ; break;
case 2 : x = TFTWIDTH - 1; y = TFTHEIGHT - 1; break;
case 3 : x = 0 ; y = TFTHEIGHT - 1; break;
}
CS_ACTIVE;
writeRegister16(0x0020, x);
writeRegister16(0x0021, y);
} else if ((driver == ID_9341) || (driver == ID_7575) || (driver == ID_HX8357D)) {
// For these, there is no settable address pointer, instead the
// address window must be set for each drawing operation. However,
// this display takes rotation into account for the parameters, no
// need to do extra rotation math here.
setAddrWindow(0, 0, _width - 1, _height - 1);
}
flood(color, (long)TFTWIDTH * (long)TFTHEIGHT);
}
void Adafruit_TFTLCD::drawPixel(int16_t x, int16_t y, uint16_t color) {
// Clip
if((x < 0) || (y < 0) || (x >= _width) || (y >= _height)) return;
CS_ACTIVE;
if(driver == ID_932X) {
int16_t t;
switch(rotation) {
case 1:
t = x;
x = TFTWIDTH - 1 - y;
y = t;
break;
case 2:
x = TFTWIDTH - 1 - x;
y = TFTHEIGHT - 1 - y;
break;
case 3:
t = x;
x = y;
y = TFTHEIGHT - 1 - t;
break;
}
writeRegister16(0x0020, x);
writeRegister16(0x0021, y);
writeRegister16(0x0022, color);
} else if(driver == ID_7575) {
uint8_t hi, lo;
switch(rotation) {
default: lo = 0 ; break;
case 1 : lo = 0x60; break;
case 2 : lo = 0xc0; break;
case 3 : lo = 0xa0; break;
}
writeRegister8( HX8347G_MEMACCESS , lo);
// Only upper-left is set -- bottom-right is full screen default
writeRegisterPair(HX8347G_COLADDRSTART_HI, HX8347G_COLADDRSTART_LO, x);
writeRegisterPair(HX8347G_ROWADDRSTART_HI, HX8347G_ROWADDRSTART_LO, y);
hi = color >> 8; lo = color;
CD_COMMAND; write8(0x22); CD_DATA; write8(hi); write8(lo);
} else if ((driver == ID_9341) || (driver == ID_HX8357D)) {
setAddrWindow(x, y, _width-1, _height-1);
CS_ACTIVE;
CD_COMMAND;
write8(0x2C);
CD_DATA;
write8(color >> 8); write8(color);
}
CS_IDLE;
}
// Issues 'raw' an array of 16-bit color values to the LCD; used
// externally by BMP examples. Assumes that setWindowAddr() has
// previously been set to define the bounds. Max 255 pixels at
// a time (BMP examples read in small chunks due to limited RAM).
#if defined(__SAMD51__)
void Adafruit_TFTLCD::pushColors(uint16_t *data, uint16_t len, boolean first) {
#else
void Adafruit_TFTLCD::pushColors(uint16_t *data, uint8_t len, boolean first) {
#endif
uint16_t color;
uint8_t hi, lo;
CS_ACTIVE;
if(first == true) { // Issue GRAM write command only on first call
CD_COMMAND;
if (driver == ID_9341) {
write8(0x2C);
} else if (driver == ID_932X) {
write8(0x00); // High byte of GRAM register...
write8(0x22); // Write data to GRAM
} else if (driver == ID_HX8357D) {
write8(HX8357_RAMWR);
} else {
write8(0x22); // Write data to GRAM
}
}
CD_DATA;
#if defined(__SAMD51__)
pinPeripheral(clockpin, PIO_TIMER);
desc->BTCTRL.bit.SRCINC = 1;
uint8_t *dataPtr = (uint8_t *)data; // -> 1st byte of data
uint32_t bytesToGo = len * 2;
uint16_t bytesThisPass;
// BTCNT is a 16-bit value, so large fills may require multiple DMA xfers
while(bytesToGo > 0) {
if(bytesToGo > 65535) bytesThisPass = 65535;
else bytesThisPass = bytesToGo;
desc->SRCADDR.reg = (uint32_t)dataPtr + bytesThisPass;
desc->BTCNT.reg = bytesThisPass;
transfer_is_done = false;
stat = myDMA.startJob();
myDMA.trigger();
while(!transfer_is_done);
bytesToGo -= bytesThisPass;
dataPtr += bytesThisPass;
}
pinPeripheral(clockpin, PIO_OUTPUT);
#else
while(len--) {
color = *data++;
hi = color >> 8; // Don't simplify or merge these
lo = color; // lines, there's macro shenanigans
write8(hi); // going on.
write8(lo);
}
#endif
CS_IDLE;
}
void Adafruit_TFTLCD::pushColorsDMA(
uint32_t bytesToGo,
uint8_t *buffer,
uint16_t bufSize,
void (*callback)(uint8_t *dest, uint16_t len)) {
CS_ACTIVE;
CD_COMMAND;
if(driver == ID_9341) {
write8(0x2C);
} else if(driver == ID_932X) {
write8(0x00); // High byte of GRAM register...
write8(0x22); // Write data to GRAM
} else if (driver == ID_HX8357D) {
write8(HX8357_RAMWR);
} else {
write8(0x22); // Write data to GRAM
}
CD_DATA;
// Buffer passed in should be 2X bufSize bytes...
uint8_t *buf[2];
buf[0] = buffer; // First half of buffer
buf[1] = buf[0] + bufSize; // Second half
uint8_t idx = 2; // Active buffer 0/1 (2 = first pass; no xfer)
pinPeripheral(clockpin, PIO_TIMER);
desc->BTCTRL.bit.SRCINC = 1;
uint16_t bytesThisPass;
while(bytesToGo > 0) {
if(idx < 2) {
// Wait for prior transfer to finish
while(!transfer_is_done);
// Send from buf[idx]
desc->SRCADDR.reg = (uint32_t)buf[idx] + bytesThisPass;
desc->BTCNT.reg = bytesThisPass;
transfer_is_done = false;
stat = myDMA.startJob();
myDMA.trigger();
bytesToGo -= bytesThisPass; // Data sent
idx = 1 - idx; // Toggle idx so data is loaded into alt buffer
} else {
// First pass, no xfer, just load...
idx = 0;
}
// Load next data (if needed)
if(bytesToGo) {
if(bytesToGo > bufSize) bytesThisPass = bufSize;
else bytesThisPass = bytesToGo;
(*callback)(buf[idx], bytesThisPass);
}
}
// Wait for last transfer to finish
while(!transfer_is_done);
pinPeripheral(clockpin, PIO_OUTPUT);
CS_IDLE;
}
void Adafruit_TFTLCD::setRotation(uint8_t x) {
// Call parent rotation func first -- sets up rotation flags, etc.
Adafruit_GFX::setRotation(x);
// Then perform hardware-specific rotation operations...
CS_ACTIVE;
if(driver == ID_932X) {
uint16_t t;
switch(rotation) {
default: t = 0x1030; break;
case 1 : t = 0x1028; break;
case 2 : t = 0x1000; break;
case 3 : t = 0x1018; break;
}
writeRegister16(0x0003, t ); // MADCTL
// For 932X, init default full-screen address window:
setAddrWindow(0, 0, _width - 1, _height - 1); // CS_IDLE happens here
}
if(driver == ID_7575) {
uint8_t t;
switch(rotation) {
default: t = 0 ; break;
case 1 : t = 0x60; break;
case 2 : t = 0xc0; break;
case 3 : t = 0xa0; break;
}
writeRegister8(HX8347G_MEMACCESS, t);
// 7575 has to set the address window on most drawing operations.
// drawPixel() cheats by setting only the top left...by default,
// the lower right is always reset to the corner.
setLR(); // CS_IDLE happens here
}
if (driver == ID_9341) {
// MEME, HX8357D uses same registers as 9341 but different values
uint16_t t;
switch (rotation) {
case 2:
t = ILI9341_MADCTL_MX | ILI9341_MADCTL_BGR;
break;
case 3:
t = ILI9341_MADCTL_MV | ILI9341_MADCTL_BGR;
break;
case 0:
t = ILI9341_MADCTL_MY | ILI9341_MADCTL_BGR;
break;
case 1:
t = ILI9341_MADCTL_MX | ILI9341_MADCTL_MY | ILI9341_MADCTL_MV | ILI9341_MADCTL_BGR;
break;
}
writeRegister8(ILI9341_MADCTL, t ); // MADCTL
// For 9341, init default full-screen address window:
setAddrWindow(0, 0, _width - 1, _height - 1); // CS_IDLE happens here
}
if (driver == ID_HX8357D) {
// MEME, HX8357D uses same registers as 9341 but different values
uint16_t t;
switch (rotation) {
case 2:
t = HX8357B_MADCTL_RGB;
break;
case 3:
t = HX8357B_MADCTL_MX | HX8357B_MADCTL_MV | HX8357B_MADCTL_RGB;
break;
case 0:
t = HX8357B_MADCTL_MX | HX8357B_MADCTL_MY | HX8357B_MADCTL_RGB;
break;
case 1:
t = HX8357B_MADCTL_MY | HX8357B_MADCTL_MV | HX8357B_MADCTL_RGB;
break;
}
writeRegister8(ILI9341_MADCTL, t ); // MADCTL
// For 8357, init default full-screen address window:
setAddrWindow(0, 0, _width - 1, _height - 1); // CS_IDLE happens here
}}
#ifdef read8isFunctionalized
#define read8(x) x=read8fn()
#endif
// Because this function is used infrequently, it configures the ports for
// the read operation, reads the data, then restores the ports to the write
// configuration. Write operations happen a LOT, so it's advantageous to
// leave the ports in that state as a default.
uint16_t Adafruit_TFTLCD::readPixel(int16_t x, int16_t y) {
if((x < 0) || (y < 0) || (x >= _width) || (y >= _height)) return 0;
CS_ACTIVE;
if(driver == ID_932X) {
uint8_t hi, lo;
int16_t t;
switch(rotation) {
case 1:
t = x;
x = TFTWIDTH - 1 - y;
y = t;
break;
case 2:
x = TFTWIDTH - 1 - x;
y = TFTHEIGHT - 1 - y;
break;
case 3:
t = x;
x = y;
y = TFTHEIGHT - 1 - t;
break;
}
writeRegister16(0x0020, x);
writeRegister16(0x0021, y);
// Inexplicable thing: sometimes pixel read has high/low bytes
// reversed. A second read fixes this. Unsure of reason. Have
// tried adjusting timing in read8() etc. to no avail.
for(uint8_t pass=0; pass<2; pass++) {
CD_COMMAND; write8(0x00); write8(0x22); // Read data from GRAM
CD_DATA;
setReadDir(); // Set up LCD data port(s) for READ operations
read8(hi); // First 2 bytes back are a dummy read
read8(hi);
read8(hi); // Bytes 3, 4 are actual pixel value
read8(lo);
setWriteDir(); // Restore LCD data port(s) to WRITE configuration
}
CS_IDLE;
return ((uint16_t)hi << 8) | lo;
} else if(driver == ID_7575) {
uint8_t r, g, b;
writeRegisterPair(HX8347G_COLADDRSTART_HI, HX8347G_COLADDRSTART_LO, x);
writeRegisterPair(HX8347G_ROWADDRSTART_HI, HX8347G_ROWADDRSTART_LO, y);
CD_COMMAND; write8(0x22); // Read data from GRAM
setReadDir(); // Set up LCD data port(s) for READ operations
CD_DATA;
read8(r); // First byte back is a dummy read
read8(r);
read8(g);
read8(b);
setWriteDir(); // Restore LCD data port(s) to WRITE configuration
CS_IDLE;
return (((uint16_t)r & B11111000) << 8) |
(((uint16_t)g & B11111100) << 3) |
( b >> 3);
} else return 0;
}
// Ditto with the read/write port directions, as above.
uint16_t Adafruit_TFTLCD::readID(void) {
uint16_t id;
// retry a bunch!
for (int i = 0; i<5; i++) {
id = readReg(0xD3);
if (id == 0x9341) {
return id;
}
}
uint8_t hi, lo;
/*
for (uint8_t i=0; i<128; i++) {
Serial.print("$"); Serial.print(i, HEX);
Serial.print(" = 0x"); Serial.println(readReg(i), HEX);
}
*/
if (readReg(0x04) == 0x8000) { // eh close enough
// setc!
/*
Serial.println("!");
for (uint8_t i=0; i<254; i++) {
Serial.print("$"); Serial.print(i, HEX);
Serial.print(" = 0x"); Serial.println(readReg(i), HEX);
}
*/
writeRegister24(HX8357D_SETC, 0xFF8357);
delay(300);
//Serial.println(readReg(0xD0), HEX);
if (readReg(0xD0) == 0x990000) {
return 0x8357;
}
}
CS_ACTIVE;
CD_COMMAND;
write8(0x00);
WR_STROBE; // Repeat prior byte (0x00)
setReadDir(); // Set up LCD data port(s) for READ operations
CD_DATA;
read8(hi);
read8(lo);
setWriteDir(); // Restore LCD data port(s) to WRITE configuration
CS_IDLE;
id = hi; id <<= 8; id |= lo;
return id;
}
uint32_t Adafruit_TFTLCD::readReg(uint8_t r) {
uint32_t id;
uint8_t x;
// try reading register #4
CS_ACTIVE;
CD_COMMAND;
write8(r);
setReadDir(); // Set up LCD data port(s) for READ operations
CD_DATA;
delayMicroseconds(50);
read8(x);
id = x; // Do not merge or otherwise simplify
id <<= 8; // these lines. It's an unfortunate
read8(x);
id |= x; // shenanigans that are going on.
id <<= 8; // these lines. It's an unfortunate
read8(x);
id |= x; // shenanigans that are going on.
id <<= 8; // these lines. It's an unfortunate
read8(x);
id |= x; // shenanigans that are going on.
CS_IDLE;
setWriteDir(); // Restore LCD data port(s) to WRITE configuration
//Serial.print("Read $"); Serial.print(r, HEX);
//Serial.print(":\t0x"); Serial.println(id, HEX);
return id;
}
// Pass 8-bit (each) R,G,B, get back 16-bit packed color
uint16_t Adafruit_TFTLCD::color565(uint8_t r, uint8_t g, uint8_t b) {
return ((r & 0xF8) << 8) | ((g & 0xFC) << 3) | (b >> 3);
}
// For I/O macros that were left undefined, declare function
// versions that reference the inline macros just once:
#ifndef write8
void Adafruit_TFTLCD::write8(uint8_t value) {
write8inline(value);
}
#endif
#ifdef read8isFunctionalized
uint8_t Adafruit_TFTLCD::read8fn(void) {
uint8_t result;
read8inline(result);
return result;
}
#endif
#ifndef setWriteDir
void Adafruit_TFTLCD::setWriteDir(void) {
setWriteDirInline();
}
#endif
#ifndef setReadDir
void Adafruit_TFTLCD::setReadDir(void) {
setReadDirInline();
}
#endif
#ifndef writeRegister8
void Adafruit_TFTLCD::writeRegister8(uint8_t a, uint8_t d) {
writeRegister8inline(a, d);
}
#endif
#ifndef writeRegister16
void Adafruit_TFTLCD::writeRegister16(uint16_t a, uint16_t d) {
writeRegister16inline(a, d);
}
#endif
#ifndef writeRegisterPair
void Adafruit_TFTLCD::writeRegisterPair(uint8_t aH, uint8_t aL, uint16_t d) {
writeRegisterPairInline(aH, aL, d);
}
#endif
void Adafruit_TFTLCD::writeRegister24(uint8_t r, uint32_t d) {
CS_ACTIVE;
CD_COMMAND;
write8(r);
CD_DATA;
delayMicroseconds(10);
write8(d >> 16);
delayMicroseconds(10);
write8(d >> 8);
delayMicroseconds(10);
write8(d);
CS_IDLE;
}
void Adafruit_TFTLCD::writeRegister32(uint8_t r, uint32_t d) {
CS_ACTIVE;
CD_COMMAND;
write8(r);
CD_DATA;
delayMicroseconds(10);
write8(d >> 24);
delayMicroseconds(10);
write8(d >> 16);
delayMicroseconds(10);
write8(d >> 8);
delayMicroseconds(10);
write8(d);
CS_IDLE;
}