* create TFLite library * add TFLite hello_world example * add TFLite micro_speech example --------- Co-authored-by: Sanket Wadekar <67091512+sanketwadekar@users.noreply.github.com>
118 lines
4.7 KiB
C++
118 lines
4.7 KiB
C++
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include "feature_provider.h"
|
|
|
|
#include "audio_provider.h"
|
|
#include "micro_features_generator.h"
|
|
#include "micro_model_settings.h"
|
|
#include "tensorflow/lite/micro/micro_log.h"
|
|
|
|
FeatureProvider::FeatureProvider(int feature_size, int8_t* feature_data)
|
|
: feature_size_(feature_size),
|
|
feature_data_(feature_data),
|
|
is_first_run_(true) {
|
|
// Initialize the feature data to default values.
|
|
for (int n = 0; n < feature_size_; ++n) {
|
|
feature_data_[n] = 0;
|
|
}
|
|
}
|
|
|
|
FeatureProvider::~FeatureProvider() {}
|
|
|
|
TfLiteStatus FeatureProvider::PopulateFeatureData(
|
|
int32_t last_time_in_ms, int32_t time_in_ms, int* how_many_new_slices) {
|
|
if (feature_size_ != kFeatureElementCount) {
|
|
MicroPrintf("Requested feature_data_ size %d doesn't match %d",
|
|
feature_size_, kFeatureElementCount);
|
|
return kTfLiteError;
|
|
}
|
|
|
|
// Quantize the time into steps as long as each window stride, so we can
|
|
// figure out which audio data we need to fetch.
|
|
const int last_step = (last_time_in_ms / kFeatureSliceStrideMs);
|
|
const int current_step = (time_in_ms / kFeatureSliceStrideMs);
|
|
|
|
int slices_needed = current_step - last_step;
|
|
// If this is the first call, make sure we don't use any cached information.
|
|
if (is_first_run_) {
|
|
TfLiteStatus init_status = InitializeMicroFeatures();
|
|
if (init_status != kTfLiteOk) {
|
|
return init_status;
|
|
}
|
|
is_first_run_ = false;
|
|
slices_needed = kFeatureSliceCount;
|
|
}
|
|
if (slices_needed > kFeatureSliceCount) {
|
|
slices_needed = kFeatureSliceCount;
|
|
}
|
|
*how_many_new_slices = slices_needed;
|
|
|
|
const int slices_to_keep = kFeatureSliceCount - slices_needed;
|
|
const int slices_to_drop = kFeatureSliceCount - slices_to_keep;
|
|
// If we can avoid recalculating some slices, just move the existing data
|
|
// up in the spectrogram, to perform something like this:
|
|
// last time = 80ms current time = 120ms
|
|
// +-----------+ +-----------+
|
|
// | data@20ms | --> | data@60ms |
|
|
// +-----------+ -- +-----------+
|
|
// | data@40ms | -- --> | data@80ms |
|
|
// +-----------+ -- -- +-----------+
|
|
// | data@60ms | -- -- | <empty> |
|
|
// +-----------+ -- +-----------+
|
|
// | data@80ms | -- | <empty> |
|
|
// +-----------+ +-----------+
|
|
if (slices_to_keep > 0) {
|
|
for (int dest_slice = 0; dest_slice < slices_to_keep; ++dest_slice) {
|
|
int8_t* dest_slice_data =
|
|
feature_data_ + (dest_slice * kFeatureSliceSize);
|
|
const int src_slice = dest_slice + slices_to_drop;
|
|
const int8_t* src_slice_data =
|
|
feature_data_ + (src_slice * kFeatureSliceSize);
|
|
for (int i = 0; i < kFeatureSliceSize; ++i) {
|
|
dest_slice_data[i] = src_slice_data[i];
|
|
}
|
|
}
|
|
}
|
|
// Any slices that need to be filled in with feature data have their
|
|
// appropriate audio data pulled, and features calculated for that slice.
|
|
if (slices_needed > 0) {
|
|
for (int new_slice = slices_to_keep; new_slice < kFeatureSliceCount;
|
|
++new_slice) {
|
|
const int new_step = (current_step - kFeatureSliceCount + 1) + new_slice;
|
|
const int32_t slice_start_ms = (new_step * kFeatureSliceStrideMs);
|
|
int16_t* audio_samples = nullptr;
|
|
int audio_samples_size = 0;
|
|
// TODO(petewarden): Fix bug that leads to non-zero slice_start_ms
|
|
GetAudioSamples((slice_start_ms > 0 ? slice_start_ms : 0),
|
|
kFeatureSliceDurationMs, &audio_samples_size,
|
|
&audio_samples);
|
|
if (audio_samples_size < kMaxAudioSampleSize) {
|
|
MicroPrintf("Audio data size %d too small, want %d",
|
|
audio_samples_size, kMaxAudioSampleSize);
|
|
return kTfLiteError;
|
|
}
|
|
int8_t* new_slice_data = feature_data_ + (new_slice * kFeatureSliceSize);
|
|
size_t num_samples_read;
|
|
TfLiteStatus generate_status = GenerateMicroFeatures(
|
|
audio_samples, audio_samples_size, kFeatureSliceSize,
|
|
new_slice_data, &num_samples_read);
|
|
if (generate_status != kTfLiteOk) {
|
|
return generate_status;
|
|
}
|
|
}
|
|
}
|
|
return kTfLiteOk;
|
|
}
|