arduino-esp32/cores/esp32/esp32-hal-rmt.c
Me No Dev 730d827553
Fix RMT fail to start due to bad ISR priority
The RMT config structure was missing initializer for the ISR priority, which was causing RMT to fail to initialize.
2023-10-23 11:45:42 +03:00

599 lines
21 KiB
C

// Copyright 2023 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "soc/soc_caps.h"
#if SOC_RMT_SUPPORTED
#include "esp32-hal.h"
#include "driver/gpio.h"
#include "driver/rmt_tx.h"
#include "driver/rmt_rx.h"
#include "hal/rmt_ll.h"
#include "esp32-hal-rmt.h"
#include "esp32-hal-periman.h"
// Arduino Task Handle indicates if the Arduino Task has been started already
extern TaskHandle_t loopTaskHandle;
// RMT Events
#define RMT_FLAG_RX_DONE (1)
#define RMT_FLAG_TX_DONE (2)
/**
Internal macros
*/
#if CONFIG_DISABLE_HAL_LOCKS
# define RMT_MUTEX_LOCK(busptr)
# define RMT_MUTEX_UNLOCK(busptr)
#else
# define RMT_MUTEX_LOCK(busptr) do {} while (xSemaphoreTake(busptr->g_rmt_objlocks, portMAX_DELAY) != pdPASS)
# define RMT_MUTEX_UNLOCK(busptr) xSemaphoreGive(busptr->g_rmt_objlocks)
#endif /* CONFIG_DISABLE_HAL_LOCKS */
/**
Typedefs for internal stuctures, enums
*/
struct rmt_obj_s {
// general RMT information
rmt_channel_handle_t rmt_channel_h; // IDF RMT channel handler
rmt_encoder_handle_t rmt_copy_encoder_h; // RMT simple copy encoder handle
uint32_t signal_range_min_ns; // RX Filter data - Low Pass pulse width
uint32_t signal_range_max_ns; // RX idle time that defines end of reading
EventGroupHandle_t rmt_events; // read/write done event RMT callback handle
bool rmt_ch_is_looping; // Is this RMT TX Channel in LOOPING MODE?
size_t *num_symbols_read; // Pointer to the number of RMT symbol read by IDF RMT RX Done
uint32_t frequency_Hz; // RMT Frequency
#if !CONFIG_DISABLE_HAL_LOCKS
SemaphoreHandle_t g_rmt_objlocks; // Channel Semaphore Lock
#endif /* CONFIG_DISABLE_HAL_LOCKS */
};
typedef struct rmt_obj_s *rmt_bus_handle_t;
/**
Internal variables used in RMT API
*/
static SemaphoreHandle_t g_rmt_block_lock = NULL;
/**
Internal method (private) declarations
*/
// This is called from an IDF ISR code, therefore this code is part of an ISR
static bool _rmt_rx_done_callback(rmt_channel_handle_t channel, const rmt_rx_done_event_data_t *data, void *args)
{
BaseType_t high_task_wakeup = pdFALSE;
rmt_bus_handle_t bus = (rmt_bus_handle_t) args;
// sets the returning number of RMT symbols (32 bits) effectively read
*bus->num_symbols_read = data->num_symbols;
// set RX event group and signal the received RMT symbols of that channel
xEventGroupSetBitsFromISR(bus->rmt_events, RMT_FLAG_RX_DONE, &high_task_wakeup);
// A "need to yield" is returned in order to execute portYIELD_FROM_ISR() in the main IDF RX ISR
return high_task_wakeup == pdTRUE;
}
// This is called from an IDF ISR code, therefore this code is part of an ISR
static bool _rmt_tx_done_callback(rmt_channel_handle_t channel, const rmt_tx_done_event_data_t *data, void *args)
{
BaseType_t high_task_wakeup = pdFALSE;
rmt_bus_handle_t bus = (rmt_bus_handle_t) args;
// set RX event group and signal the received RMT symbols of that channel
xEventGroupSetBitsFromISR(bus->rmt_events, RMT_FLAG_TX_DONE, &high_task_wakeup);
// A "need to yield" is returned in order to execute portYIELD_FROM_ISR() in the main IDF RX ISR
return high_task_wakeup == pdTRUE;
}
// This function must be called only after checking the pin and its bus with _rmtGetBus()
static bool _rmtCheckDirection(uint8_t gpio_num, rmt_ch_dir_t rmt_dir, const char* labelFunc)
{
// gets bus RMT direction from the Peripheral Manager information
rmt_ch_dir_t bus_rmt_dir = perimanGetPinBusType(gpio_num) == ESP32_BUS_TYPE_RMT_TX ? RMT_TX_MODE : RMT_RX_MODE;
if (bus_rmt_dir == rmt_dir) { // matches expected RX/TX channel
return true;
}
// print error message
if (rmt_dir == RMT_RX_MODE) {
log_w("==>%s():Channel set as TX instead of RX.", labelFunc);
} else {
log_w("==>%s():Channel set as RX instead of TX.", labelFunc);
}
return false; // mismatched
}
static rmt_bus_handle_t _rmtGetBus(int pin, const char* labelFunc)
{
// Is pin RX or TX? Let's find it out
peripheral_bus_type_t rmt_bus_type = perimanGetPinBusType(pin);
if (rmt_bus_type != ESP32_BUS_TYPE_RMT_TX && rmt_bus_type != ESP32_BUS_TYPE_RMT_RX) {
log_e("==>%s():GPIO %u is not attached to an RMT channel.", labelFunc, pin);
return NULL;
}
return (rmt_bus_handle_t)perimanGetPinBus(pin, rmt_bus_type);
}
// Peripheral Manager detach callback
static bool _rmtDetachBus(void *busptr)
{
// sanity check - it should never happen
assert(busptr && "_rmtDetachBus bus NULL pointer.");
bool retCode = true;
rmt_bus_handle_t bus = (rmt_bus_handle_t) busptr;
log_v("Detaching RMT GPIO Bus");
// lock it
while (xSemaphoreTake(g_rmt_block_lock, portMAX_DELAY) != pdPASS) {}
// free Event Group
if (bus->rmt_events != NULL) {
vEventGroupDelete(bus->rmt_events);
bus->rmt_events = NULL;
}
// deallocate the channel encoder
if (bus->rmt_copy_encoder_h != NULL) {
if (ESP_OK != rmt_del_encoder(bus->rmt_copy_encoder_h)) {
log_w("RMT Encoder Deletion has failed.");
retCode = false;
}
}
// disable and deallocate RMT channel
if (bus->rmt_channel_h != NULL) {
// force stopping rmt TX/RX processing and unlock Power Management (APB Freq)
rmt_disable(bus->rmt_channel_h);
if (ESP_OK != rmt_del_channel(bus->rmt_channel_h)) {
log_w("RMT Channel Deletion has failed.");
retCode = false;
}
}
#if !CONFIG_DISABLE_HAL_LOCKS
// deallocate channel semaphore
if (bus->g_rmt_objlocks != NULL) {
vSemaphoreDelete(bus->g_rmt_objlocks);
}
#endif
// free the allocated bus data structure
free(bus);
// release the mutex
xSemaphoreGive(g_rmt_block_lock);
return retCode;
}
/**
Public method definitions
*/
bool rmtSetCarrier(int pin, bool carrier_en, bool carrier_level, uint32_t frequency_Hz, float duty_percent)
{
rmt_bus_handle_t bus = _rmtGetBus(pin, __FUNCTION__);
if (bus == NULL) {
return false;
}
if (duty_percent > 1) {
log_w("GPIO %d - RMT Carrier must be a float percentage from 0 to 1. Setting to 50%.", pin);
duty_percent = 0.5;
}
rmt_carrier_config_t carrier_cfg = {0};
carrier_cfg.duty_cycle = duty_percent; // duty cycle
carrier_cfg.frequency_hz = carrier_en ? frequency_Hz : 0; // carrier frequency in Hz
carrier_cfg.flags.polarity_active_low = carrier_level; // carrier modulation polarity level
bool retCode = true;
RMT_MUTEX_LOCK(bus);
// modulate carrier to TX channel
if (ESP_OK != rmt_apply_carrier(bus->rmt_channel_h, &carrier_cfg)) {
log_w("GPIO %d - Error applying RMT carrier.", pin);
retCode = false;
}
RMT_MUTEX_UNLOCK(bus);
return retCode;
}
bool rmtSetRxMinThreshold(int pin, uint8_t filter_pulse_ticks)
{
rmt_bus_handle_t bus = _rmtGetBus(pin, __FUNCTION__);
if (bus == NULL) {
return false;
}
if (!_rmtCheckDirection(pin, RMT_RX_MODE, __FUNCTION__)) {
return false;
}
uint32_t filter_pulse_ns = (1000000000 / bus->frequency_Hz) * filter_pulse_ticks;
// RMT_LL_MAX_FILTER_VALUE is 255 for ESP32, S2, S3, C3, C6 and H2;
// filter_pulse_ticks is 8 bits, thus it will not exceed 255
#if 0 // for the future, in case some other SoC has different limit
if (filter_pulse_ticks > RMT_LL_MAX_FILTER_VALUE) {
log_e("filter_pulse_ticks is too big. Max = %d", RMT_LL_MAX_FILTER_VALUE);
return false;
}
#endif
RMT_MUTEX_LOCK(bus);
bus->signal_range_min_ns = filter_pulse_ns; // set zero to disable it
RMT_MUTEX_UNLOCK(bus);
return true;
}
bool rmtSetRxMaxThreshold(int pin, uint16_t idle_thres_ticks)
{
rmt_bus_handle_t bus = _rmtGetBus(pin, __FUNCTION__);
if (bus == NULL) {
return false;
}
if (!_rmtCheckDirection(pin, RMT_RX_MODE, __FUNCTION__)) {
return false;
}
uint32_t idle_thres_ns = (1000000000 / bus->frequency_Hz) * idle_thres_ticks;
// RMT_LL_MAX_IDLE_VALUE is 65535 for ESP32,S2 and 32767 for S3, C3, C6 and H2
#if RMT_LL_MAX_IDLE_VALUE < 65535 // idle_thres_ticks is 16 bits anyway - save some bytes
if (idle_thres_ticks > RMT_LL_MAX_IDLE_VALUE) {
log_e("idle_thres_ticks is too big. Max = %ld", RMT_LL_MAX_IDLE_VALUE);
return false;
}
#endif
RMT_MUTEX_LOCK(bus);
bus->signal_range_max_ns = idle_thres_ns;
RMT_MUTEX_UNLOCK(bus);
return true;
}
bool rmtDeinit(int pin)
{
log_v("Deiniting RMT GPIO %d", pin);
if (_rmtGetBus(pin, __FUNCTION__) != NULL) {
// release all allocated data
return perimanSetPinBus(pin, ESP32_BUS_TYPE_INIT, NULL);
}
log_e("GPIO %d - No RMT channel associated.", pin);
return false;
}
static bool _rmtWrite(int pin, rmt_data_t* data, size_t num_rmt_symbols, bool blocking, bool loop, uint32_t timeout_ms)
{
rmt_bus_handle_t bus = _rmtGetBus(pin, __FUNCTION__);
if (bus == NULL) {
return false;
}
if (!_rmtCheckDirection(pin, RMT_TX_MODE, __FUNCTION__)) {
return false;
}
bool loopCancel = false; // user wants to cancel the writing loop mode
if (data == NULL || num_rmt_symbols == 0) {
if (!loop) {
log_w("GPIO %d - RMT Write Data NULL pointer or size is zero.", pin);
return false;
} else {
loopCancel = true;
}
}
log_v("GPIO: %d - Request: %d RMT Symbols - %s - Timeout: %d", pin, num_rmt_symbols, blocking ? "Blocking" : "Non-Blocking", timeout_ms);
log_v("GPIO: %d - Currently in Loop Mode: [%s] | Asked to Loop: %s, LoopCancel: %s", pin, bus->rmt_ch_is_looping ? "YES" : "NO", loop ? "YES" : "NO", loopCancel ? "YES" : "NO");
if ((xEventGroupGetBits(bus->rmt_events) & RMT_FLAG_TX_DONE) == 0) {
log_v("GPIO %d - RMT Write still pending to be completed.", pin);
return false;
}
rmt_transmit_config_t transmit_cfg = {0}; // loop mode disabled
bool retCode = true;
RMT_MUTEX_LOCK(bus);
// wants to start in writing or looping over a previous looping --> resets the channel
if (bus->rmt_ch_is_looping == true) {
// must force stopping a previous loop transmission first
rmt_disable(bus->rmt_channel_h);
// enable it again for looping or writing
rmt_enable(bus->rmt_channel_h);
bus->rmt_ch_is_looping = false; // not looping anymore
}
if (loopCancel) {
// just resets and releases the channel, maybe, already done above, then exits
bus->rmt_ch_is_looping = false;
} else { // new writing | looping request
// looping | Writing over a previous looping state is valid
if (loop) {
transmit_cfg.loop_count = -1; // enable infinite loop mode
// keeps RMT_FLAG_TX_DONE set - it never changes
} else {
// looping mode never sets this flag (IDF 5.1) in the callback
xEventGroupClearBits(bus->rmt_events, RMT_FLAG_TX_DONE);
}
// transmits just once or looping data
if (ESP_OK != rmt_transmit(bus->rmt_channel_h, bus->rmt_copy_encoder_h,
(const void *) data, num_rmt_symbols * sizeof(rmt_data_t), &transmit_cfg)) {
retCode = false;
log_w("GPIO %d - RMT Transmission failed.", pin);
} else { // transmit OK
if (loop) {
bus->rmt_ch_is_looping = true; // for ever... until a channel canceling or new writing
} else {
if (blocking) {
// wait for transmission confirmation | timeout
retCode = (xEventGroupWaitBits(bus->rmt_events, RMT_FLAG_TX_DONE, pdFALSE /* do not clear on exit */,
pdFALSE /* wait for all bits */, timeout_ms) & RMT_FLAG_TX_DONE) != 0;
}
}
}
}
RMT_MUTEX_UNLOCK(bus);
return retCode;
}
static bool _rmtRead(int pin, rmt_data_t* data, size_t *num_rmt_symbols, bool waitForData, uint32_t timeout_ms)
{
rmt_bus_handle_t bus = _rmtGetBus(pin, __FUNCTION__);
if (bus == NULL) {
return false;
}
if (!_rmtCheckDirection(pin, RMT_RX_MODE, __FUNCTION__)) {
return false;
}
if (data == NULL || num_rmt_symbols == NULL) {
log_w("GPIO %d - RMT Read Data and/or Size NULL pointer.", pin);
return false;
}
log_v("GPIO: %d - Request: %d RMT Symbols - %s - Timeout: %d", pin, *num_rmt_symbols, waitForData ? "Blocking" : "Non-Blocking", timeout_ms);
bool retCode = true;
RMT_MUTEX_LOCK(bus);
// request reading RMT Channel Data
rmt_receive_config_t receive_config;
receive_config.signal_range_min_ns = bus->signal_range_min_ns;
receive_config.signal_range_max_ns = bus->signal_range_max_ns;
xEventGroupClearBits(bus->rmt_events, RMT_FLAG_RX_DONE);
bus->num_symbols_read = num_rmt_symbols;
rmt_receive(bus->rmt_channel_h, data, *num_rmt_symbols * sizeof(rmt_data_t), &receive_config);
// wait for data if requested
if (waitForData) {
retCode = (xEventGroupWaitBits(bus->rmt_events, RMT_FLAG_RX_DONE, pdFALSE /* do not clear on exit */,
pdFALSE /* wait for all bits */, timeout_ms) & RMT_FLAG_RX_DONE) != 0;
}
RMT_MUTEX_UNLOCK(bus);
return retCode;
}
bool rmtWrite(int pin, rmt_data_t *data, size_t num_rmt_symbols, uint32_t timeout_ms) {
return _rmtWrite(pin, data, num_rmt_symbols, true /*blocks*/, false /*looping*/, timeout_ms);
}
bool rmtWriteAsync(int pin, rmt_data_t *data, size_t num_rmt_symbols) {
return _rmtWrite(pin, data, num_rmt_symbols, false /*blocks*/, false /*looping*/, 0 /*N/A*/);
}
bool rmtWriteLooping(int pin, rmt_data_t* data, size_t num_rmt_symbols) {
return _rmtWrite(pin, data, num_rmt_symbols, false /*blocks*/, true /*looping*/, 0 /*N/A*/);
}
bool rmtTransmitCompleted(int pin) {
rmt_bus_handle_t bus = _rmtGetBus(pin, __FUNCTION__);
if (bus == NULL) {
return false;
}
if (!_rmtCheckDirection(pin, RMT_TX_MODE, __FUNCTION__)) {
return false;
}
bool retCode = true;
RMT_MUTEX_LOCK(bus);
retCode = (xEventGroupGetBits(bus->rmt_events) & RMT_FLAG_TX_DONE) != 0;
RMT_MUTEX_UNLOCK(bus);
return retCode;
}
bool rmtRead(int pin, rmt_data_t* data, size_t *num_rmt_symbols, uint32_t timeout_ms) {
return _rmtRead(pin, data, num_rmt_symbols, true /* blocking */, timeout_ms);
}
bool rmtReadAsync(int pin, rmt_data_t* data, size_t *num_rmt_symbols) {
return _rmtRead(pin, data, num_rmt_symbols, false /* non-blocking */, 0 /* N/A */);
}
bool rmtReceiveCompleted(int pin) {
rmt_bus_handle_t bus = _rmtGetBus(pin, __FUNCTION__);
if (bus == NULL) {
return false;
}
if (!_rmtCheckDirection(pin, RMT_RX_MODE, __FUNCTION__)) {
return false;
}
bool retCode = true;
RMT_MUTEX_LOCK(bus);
retCode = (xEventGroupGetBits(bus->rmt_events) & RMT_FLAG_RX_DONE) != 0;
RMT_MUTEX_UNLOCK(bus);
return retCode;
}
bool rmtInit(int pin, rmt_ch_dir_t channel_direction, rmt_reserve_memsize_t mem_size, uint32_t frequency_Hz)
{
log_v("GPIO %d - %s - MemSize[%d] - Freq=%dHz", pin, channel_direction == RMT_RX_MODE ? "RX MODE" : "TX MODE", mem_size * RMT_SYMBOLS_PER_CHANNEL_BLOCK, frequency_Hz);
// create common block mutex for protecting allocs from multiple threads allocating RMT channels
if (!g_rmt_block_lock) {
g_rmt_block_lock = xSemaphoreCreateMutex();
if (g_rmt_block_lock == NULL) {
log_e("GPIO %d - Failed creating RMT Mutex.", pin);
return false;
}
}
// set Peripheral Manager deInit Callback
perimanSetBusDeinit(ESP32_BUS_TYPE_RMT_TX, _rmtDetachBus);
perimanSetBusDeinit(ESP32_BUS_TYPE_RMT_RX, _rmtDetachBus);
// check is pin is valid and in the right direction
if ((channel_direction == RMT_TX_MODE && !GPIO_IS_VALID_OUTPUT_GPIO(pin)) || (!GPIO_IS_VALID_GPIO(pin))) {
log_e("GPIO %d is not valid or can't be used for output in TX mode.", pin);
return false;
}
// validate the RMT ticks by the requested frequency
// Based on 80Mhz using a divider of 8 bits (calculated as 1..256)
if (frequency_Hz > 80000000 || frequency_Hz < 312500) {
log_e("GPIO %d - Bad RMT frequency resolution. Must be between 312.5KHz to 80MHz.", pin);
return false;
}
// Try to dettach any (Tx|Rx|Whatever) previous bus or just keep it as not attached
if (!perimanSetPinBus(pin, ESP32_BUS_TYPE_INIT, NULL)) {
log_w("GPIO %d - Can't detach previous peripheral.", pin);
return false;
}
// lock it
while (xSemaphoreTake(g_rmt_block_lock, portMAX_DELAY) != pdPASS) {}
// allocate the rmt bus object and sets all fields to NULL
rmt_bus_handle_t bus = (rmt_bus_handle_t)heap_caps_calloc(1, sizeof(struct rmt_obj_s), MALLOC_CAP_DEFAULT);
if (bus == NULL) {
log_e("GPIO %d - Bus Memory allocation fault.", pin);
goto Err;
}
// store the RMT Freq to check Filter and Idle valid values in the RMT API
bus->frequency_Hz = frequency_Hz;
// pulses with width smaller than min_ns will be ignored (as a glitch)
bus->signal_range_min_ns = 0; // disabled
// RMT stops reading if the input stays idle for longer than max_ns
bus->signal_range_max_ns = (1000000000 / frequency_Hz) * RMT_LL_MAX_IDLE_VALUE; // maximum possible
// creates the event group to control read_done and write_done
bus->rmt_events = xEventGroupCreate();
if (bus->rmt_events == NULL) {
log_e("GPIO %d - RMT Group Event allocation fault.", pin);
goto Err;
}
// Starting with Receive|Transmit DONE bits set, for allowing a new request from user
xEventGroupSetBits(bus->rmt_events, RMT_FLAG_RX_DONE | RMT_FLAG_TX_DONE);
// channel particular configuration
if (channel_direction == RMT_TX_MODE) {
// TX Channel
rmt_tx_channel_config_t tx_cfg;
tx_cfg.gpio_num = pin;
// CLK_APB for ESP32|S2|S3|C3 -- CLK_PLL_F80M for C6 -- CLK_XTAL for H2
tx_cfg.clk_src = RMT_CLK_SRC_DEFAULT;
tx_cfg.resolution_hz = frequency_Hz;
tx_cfg.mem_block_symbols = SOC_RMT_MEM_WORDS_PER_CHANNEL * mem_size;
tx_cfg.trans_queue_depth = 10; // maximum allowed
tx_cfg.flags.invert_out = 0;
tx_cfg.flags.with_dma = 0;
tx_cfg.flags.io_loop_back = 0;
tx_cfg.flags.io_od_mode = 0;
if (rmt_new_tx_channel(&tx_cfg, &bus->rmt_channel_h) != ESP_OK) {
log_e("GPIO %d - RMT TX Initialization error.", pin);
goto Err;
}
// set TX Callback
rmt_tx_event_callbacks_t cbs = { .on_trans_done = _rmt_tx_done_callback };
if (ESP_OK != rmt_tx_register_event_callbacks(bus->rmt_channel_h, &cbs, bus)) {
log_e("GPIO %d RMT - Error registering TX Callback.", pin);
goto Err;
}
} else {
// RX Channel
rmt_rx_channel_config_t rx_cfg;
rx_cfg.gpio_num = pin;
// CLK_APB for ESP32|S2|S3|C3 -- CLK_PLL_F80M for C6 -- CLK_XTAL for H2
rx_cfg.clk_src = RMT_CLK_SRC_DEFAULT;
rx_cfg.resolution_hz = frequency_Hz;
rx_cfg.mem_block_symbols = SOC_RMT_MEM_WORDS_PER_CHANNEL * mem_size;
rx_cfg.flags.invert_in = 0;
rx_cfg.flags.with_dma = 0;
rx_cfg.flags.io_loop_back = 0;
rx_cfg.intr_priority = 0;
// try to allocate the RMT Channel
if (ESP_OK != rmt_new_rx_channel(&rx_cfg, &bus->rmt_channel_h)) {
log_e("GPIO %d RMT - RX Initialization error.", pin);
goto Err;
}
// set RX Callback
rmt_rx_event_callbacks_t cbs = { .on_recv_done = _rmt_rx_done_callback };
if (ESP_OK != rmt_rx_register_event_callbacks(bus->rmt_channel_h, &cbs, bus)) {
log_e("GPIO %d RMT - Error registering RX Callback.", pin);
goto Err;
}
}
// allocate memory for the RMT Copy encoder
rmt_copy_encoder_config_t copy_encoder_config = {};
if (rmt_new_copy_encoder(&copy_encoder_config, &bus->rmt_copy_encoder_h) != ESP_OK) {
log_e("GPIO %d - RMT Encoder Memory Allocation error.", pin);
goto Err;
}
// create each channel Mutex for multi thread operations
#if !CONFIG_DISABLE_HAL_LOCKS
bus->g_rmt_objlocks = xSemaphoreCreateMutex();
if (bus->g_rmt_objlocks == NULL) {
log_e("GPIO %d - Failed creating RMT Channel Mutex.", pin);
goto Err;
}
#endif
rmt_enable(bus->rmt_channel_h); // starts/enables the channel
// Finally, allocate Peripheral Manager RMT bus and associate it to its GPIO
peripheral_bus_type_t pinBusType =
channel_direction == RMT_TX_MODE ? ESP32_BUS_TYPE_RMT_TX : ESP32_BUS_TYPE_RMT_RX;
if (!perimanSetPinBus(pin, pinBusType, (void *) bus)) {
log_e("Can't allocate the GPIO %d in the Peripheral Manager.", pin);
goto Err;
}
// this delay is necessary when CPU frequency changes, but internal RMT setup is "old/wrong"
// The use case is related to the RMT_CPUFreq_Test example. The very first RMT Write
// goes in the wrong pace (frequency). The delay allows other IDF tasks to run to fix it.
if (loopTaskHandle != NULL) {
// it can only run when Arduino task has been already started.
delay(1);
} // prevent panic when rmtInit() is executed within an C++ object constructor
// release the mutex
xSemaphoreGive(g_rmt_block_lock);
return true;
Err:
// release LOCK and the RMT object
xSemaphoreGive(g_rmt_block_lock);
_rmtDetachBus((void *)bus);
return false;
}
#endif /* SOC_RMT_SUPPORTED */