arduino-esp32/libraries/AsyncUDP/src/AsyncUDP.cpp
Hamza Hajeir f083e2df8d
fix(asyncudp): Fixes and implements tcpip thread locking (#10415)
* fix(asyncudp): Fixes and implements tcpip thread locking

* fix(asyncudp): Adds missing unlock

* ci(pre-commit): Apply automatic fixes

---------

Co-authored-by: pre-commit-ci-lite[bot] <117423508+pre-commit-ci-lite[bot]@users.noreply.github.com>
2024-10-07 19:15:42 +03:00

818 lines
20 KiB
C++

#include "Arduino.h"
#include "AsyncUDP.h"
extern "C" {
#include "lwip/opt.h"
#include "lwip/inet.h"
#include "lwip/udp.h"
#include "lwip/igmp.h"
#include "lwip/ip_addr.h"
#include "lwip/mld6.h"
#include "lwip/prot/ethernet.h"
#include <esp_err.h>
#include <esp_wifi.h>
}
#include "lwip/priv/tcpip_priv.h"
#ifdef CONFIG_LWIP_TCPIP_CORE_LOCKING
#define UDP_MUTEX_LOCK() \
if (!sys_thread_tcpip(LWIP_CORE_LOCK_QUERY_HOLDER)) { \
LOCK_TCPIP_CORE(); \
}
#define UDP_MUTEX_UNLOCK() \
if (sys_thread_tcpip(LWIP_CORE_LOCK_QUERY_HOLDER)) { \
UNLOCK_TCPIP_CORE(); \
}
#else // CONFIG_LWIP_TCPIP_CORE_LOCKING
#define UDP_MUTEX_LOCK()
#define UDP_MUTEX_UNLOCK()
#endif // CONFIG_LWIP_TCPIP_CORE_LOCKING
static const char *netif_ifkeys[TCPIP_ADAPTER_IF_MAX] = {"WIFI_STA_DEF", "WIFI_AP_DEF", "ETH_DEF", "PPP_DEF"};
static esp_err_t tcpip_adapter_get_netif(tcpip_adapter_if_t tcpip_if, void **netif) {
*netif = NULL;
if (tcpip_if < TCPIP_ADAPTER_IF_MAX) {
esp_netif_t *esp_netif = esp_netif_get_handle_from_ifkey(netif_ifkeys[tcpip_if]);
if (esp_netif == NULL) {
return ESP_FAIL;
}
int netif_index = esp_netif_get_netif_impl_index(esp_netif);
if (netif_index < 0) {
return ESP_FAIL;
}
UDP_MUTEX_LOCK();
*netif = (void *)netif_get_by_index(netif_index);
UDP_MUTEX_UNLOCK();
} else {
*netif = netif_default;
}
return (*netif != NULL) ? ESP_OK : ESP_FAIL;
}
typedef struct {
struct tcpip_api_call_data call;
udp_pcb *pcb;
const ip_addr_t *addr;
uint16_t port;
struct pbuf *pb;
struct netif *netif;
err_t err;
} udp_api_call_t;
static err_t _udp_connect_api(struct tcpip_api_call_data *api_call_msg) {
udp_api_call_t *msg = (udp_api_call_t *)api_call_msg;
msg->err = udp_connect(msg->pcb, msg->addr, msg->port);
return msg->err;
}
static err_t _udp_connect(struct udp_pcb *pcb, const ip_addr_t *addr, u16_t port) {
udp_api_call_t msg;
msg.pcb = pcb;
msg.addr = addr;
msg.port = port;
tcpip_api_call(_udp_connect_api, (struct tcpip_api_call_data *)&msg);
return msg.err;
}
static err_t _udp_disconnect_api(struct tcpip_api_call_data *api_call_msg) {
udp_api_call_t *msg = (udp_api_call_t *)api_call_msg;
msg->err = 0;
udp_disconnect(msg->pcb);
return msg->err;
}
static void _udp_disconnect(struct udp_pcb *pcb) {
udp_api_call_t msg;
msg.pcb = pcb;
tcpip_api_call(_udp_disconnect_api, (struct tcpip_api_call_data *)&msg);
}
static err_t _udp_remove_api(struct tcpip_api_call_data *api_call_msg) {
udp_api_call_t *msg = (udp_api_call_t *)api_call_msg;
msg->err = 0;
udp_remove(msg->pcb);
return msg->err;
}
static void _udp_remove(struct udp_pcb *pcb) {
udp_api_call_t msg;
msg.pcb = pcb;
tcpip_api_call(_udp_remove_api, (struct tcpip_api_call_data *)&msg);
}
static err_t _udp_bind_api(struct tcpip_api_call_data *api_call_msg) {
udp_api_call_t *msg = (udp_api_call_t *)api_call_msg;
msg->err = udp_bind(msg->pcb, msg->addr, msg->port);
return msg->err;
}
static err_t _udp_bind(struct udp_pcb *pcb, const ip_addr_t *addr, u16_t port) {
udp_api_call_t msg;
msg.pcb = pcb;
msg.addr = addr;
msg.port = port;
tcpip_api_call(_udp_bind_api, (struct tcpip_api_call_data *)&msg);
return msg.err;
}
static err_t _udp_sendto_api(struct tcpip_api_call_data *api_call_msg) {
udp_api_call_t *msg = (udp_api_call_t *)api_call_msg;
msg->err = udp_sendto(msg->pcb, msg->pb, msg->addr, msg->port);
return msg->err;
}
static err_t _udp_sendto(struct udp_pcb *pcb, struct pbuf *pb, const ip_addr_t *addr, u16_t port) {
udp_api_call_t msg;
msg.pcb = pcb;
msg.addr = addr;
msg.port = port;
msg.pb = pb;
tcpip_api_call(_udp_sendto_api, (struct tcpip_api_call_data *)&msg);
return msg.err;
}
static err_t _udp_sendto_if_api(struct tcpip_api_call_data *api_call_msg) {
udp_api_call_t *msg = (udp_api_call_t *)api_call_msg;
msg->err = udp_sendto_if(msg->pcb, msg->pb, msg->addr, msg->port, msg->netif);
return msg->err;
}
static err_t _udp_sendto_if(struct udp_pcb *pcb, struct pbuf *pb, const ip_addr_t *addr, u16_t port, struct netif *netif) {
udp_api_call_t msg;
msg.pcb = pcb;
msg.addr = addr;
msg.port = port;
msg.pb = pb;
msg.netif = netif;
tcpip_api_call(_udp_sendto_if_api, (struct tcpip_api_call_data *)&msg);
return msg.err;
}
typedef struct {
void *arg;
udp_pcb *pcb;
pbuf *pb;
const ip_addr_t *addr;
uint16_t port;
struct netif *netif;
} lwip_event_packet_t;
static QueueHandle_t _udp_queue;
static volatile TaskHandle_t _udp_task_handle = NULL;
static void _udp_task(void *pvParameters) {
lwip_event_packet_t *e = NULL;
for (;;) {
if (xQueueReceive(_udp_queue, &e, portMAX_DELAY) == pdTRUE) {
if (!e->pb) {
free((void *)(e));
continue;
}
AsyncUDP::_s_recv(e->arg, e->pcb, e->pb, e->addr, e->port, e->netif);
free((void *)(e));
}
}
_udp_task_handle = NULL;
vTaskDelete(NULL);
}
static bool _udp_task_start() {
if (!_udp_queue) {
_udp_queue = xQueueCreate(32, sizeof(lwip_event_packet_t *));
if (!_udp_queue) {
return false;
}
}
if (!_udp_task_handle) {
xTaskCreateUniversal(
_udp_task, "async_udp", 4096, NULL, CONFIG_ARDUINO_UDP_TASK_PRIORITY, (TaskHandle_t *)&_udp_task_handle, CONFIG_ARDUINO_UDP_RUNNING_CORE
);
if (!_udp_task_handle) {
return false;
}
}
return true;
}
static bool _udp_task_post(void *arg, udp_pcb *pcb, pbuf *pb, const ip_addr_t *addr, uint16_t port, struct netif *netif) {
if (!_udp_task_handle || !_udp_queue) {
return false;
}
lwip_event_packet_t *e = (lwip_event_packet_t *)malloc(sizeof(lwip_event_packet_t));
if (!e) {
return false;
}
e->arg = arg;
e->pcb = pcb;
e->pb = pb;
e->addr = addr;
e->port = port;
e->netif = netif;
if (xQueueSend(_udp_queue, &e, portMAX_DELAY) != pdPASS) {
free((void *)(e));
return false;
}
return true;
}
static void _udp_recv(void *arg, udp_pcb *pcb, pbuf *pb, const ip_addr_t *addr, uint16_t port) {
while (pb != NULL) {
pbuf *this_pb = pb;
pb = pb->next;
this_pb->next = NULL;
if (!_udp_task_post(arg, pcb, this_pb, addr, port, ip_current_input_netif())) {
pbuf_free(this_pb);
}
}
}
/*
static bool _udp_task_stop(){
if(!_udp_task_post(NULL, NULL, NULL, NULL, 0, NULL)){
return false;
}
while(_udp_task_handle){
vTaskDelay(10);
}
lwip_event_packet_t * e;
while (xQueueReceive(_udp_queue, &e, 0) == pdTRUE) {
if(e->pb){
pbuf_free(e->pb);
}
free((void*)(e));
}
vQueueDelete(_udp_queue);
_udp_queue = NULL;
}
*/
AsyncUDPMessage::AsyncUDPMessage(size_t size) {
_index = 0;
if (size > CONFIG_TCP_MSS) {
size = CONFIG_TCP_MSS;
}
_size = size;
_buffer = (uint8_t *)malloc(size);
}
AsyncUDPMessage::~AsyncUDPMessage() {
if (_buffer) {
free(_buffer);
}
}
size_t AsyncUDPMessage::write(const uint8_t *data, size_t len) {
if (_buffer == NULL) {
return 0;
}
size_t s = space();
if (len > s) {
len = s;
}
memcpy(_buffer + _index, data, len);
_index += len;
return len;
}
size_t AsyncUDPMessage::write(uint8_t data) {
return write(&data, 1);
}
size_t AsyncUDPMessage::space() {
if (_buffer == NULL) {
return 0;
}
return _size - _index;
}
uint8_t *AsyncUDPMessage::data() {
return _buffer;
}
size_t AsyncUDPMessage::length() {
return _index;
}
void AsyncUDPMessage::flush() {
_index = 0;
}
AsyncUDPPacket::AsyncUDPPacket(AsyncUDPPacket &packet) {
_udp = packet._udp;
_pb = packet._pb;
_if = packet._if;
_data = packet._data;
_len = packet._len;
_index = 0;
memcpy(&_remoteIp, &packet._remoteIp, sizeof(ip_addr_t));
memcpy(&_localIp, &packet._localIp, sizeof(ip_addr_t));
_localPort = packet._localPort;
_remotePort = packet._remotePort;
memcpy(_remoteMac, packet._remoteMac, 6);
pbuf_ref(_pb);
}
AsyncUDPPacket::AsyncUDPPacket(AsyncUDP *udp, pbuf *pb, const ip_addr_t *raddr, uint16_t rport, struct netif *ntif) {
_udp = udp;
_pb = pb;
_if = TCPIP_ADAPTER_IF_MAX;
_data = (uint8_t *)(pb->payload);
_len = pb->len;
_index = 0;
pbuf_ref(_pb);
//memcpy(&_remoteIp, raddr, sizeof(ip_addr_t));
_remoteIp.type = raddr->type;
_localIp.type = _remoteIp.type;
eth_hdr *eth = NULL;
udp_hdr *udphdr = (udp_hdr *)(_data - UDP_HLEN);
_localPort = ntohs(udphdr->dest);
_remotePort = ntohs(udphdr->src);
if (_remoteIp.type == IPADDR_TYPE_V4) {
eth = (eth_hdr *)(_data - UDP_HLEN - IP_HLEN - SIZEOF_ETH_HDR);
struct ip_hdr *iphdr = (struct ip_hdr *)(_data - UDP_HLEN - IP_HLEN);
_localIp.u_addr.ip4.addr = iphdr->dest.addr;
_remoteIp.u_addr.ip4.addr = iphdr->src.addr;
} else {
eth = (eth_hdr *)(_data - UDP_HLEN - IP6_HLEN - SIZEOF_ETH_HDR);
struct ip6_hdr *ip6hdr = (struct ip6_hdr *)(_data - UDP_HLEN - IP6_HLEN);
memcpy(&_localIp.u_addr.ip6.addr, (uint8_t *)ip6hdr->dest.addr, 16);
memcpy(&_remoteIp.u_addr.ip6.addr, (uint8_t *)ip6hdr->src.addr, 16);
}
memcpy(_remoteMac, eth->src.addr, 6);
struct netif *netif = NULL;
void *nif = NULL;
int i;
for (i = 0; i < TCPIP_ADAPTER_IF_MAX; i++) {
tcpip_adapter_get_netif((tcpip_adapter_if_t)i, &nif);
netif = (struct netif *)nif;
if (netif && netif == ntif) {
_if = (tcpip_adapter_if_t)i;
break;
}
}
}
AsyncUDPPacket::~AsyncUDPPacket() {
pbuf_free(_pb);
}
uint8_t *AsyncUDPPacket::data() {
return _data;
}
size_t AsyncUDPPacket::length() {
return _len;
}
int AsyncUDPPacket::available() {
return _len - _index;
}
size_t AsyncUDPPacket::read(uint8_t *data, size_t len) {
size_t i;
size_t a = _len - _index;
if (len > a) {
len = a;
}
for (i = 0; i < len; i++) {
data[i] = read();
}
return len;
}
int AsyncUDPPacket::read() {
if (_index < _len) {
return _data[_index++];
}
return -1;
}
int AsyncUDPPacket::peek() {
if (_index < _len) {
return _data[_index];
}
return -1;
}
void AsyncUDPPacket::flush() {
_index = _len;
}
tcpip_adapter_if_t AsyncUDPPacket::interface() {
return _if;
}
IPAddress AsyncUDPPacket::localIP() {
if (_localIp.type != IPADDR_TYPE_V4) {
return IPAddress();
}
return IPAddress(_localIp.u_addr.ip4.addr);
}
IPAddress AsyncUDPPacket::localIPv6() {
if (_localIp.type != IPADDR_TYPE_V6) {
return IPAddress(IPv6);
}
return IPAddress(IPv6, (const uint8_t *)_localIp.u_addr.ip6.addr, _localIp.u_addr.ip6.zone);
}
uint16_t AsyncUDPPacket::localPort() {
return _localPort;
}
IPAddress AsyncUDPPacket::remoteIP() {
if (_remoteIp.type != IPADDR_TYPE_V4) {
return IPAddress();
}
return IPAddress(_remoteIp.u_addr.ip4.addr);
}
IPAddress AsyncUDPPacket::remoteIPv6() {
if (_remoteIp.type != IPADDR_TYPE_V6) {
return IPAddress(IPv6);
}
return IPAddress(IPv6, (const uint8_t *)_remoteIp.u_addr.ip6.addr, _remoteIp.u_addr.ip6.zone);
}
uint16_t AsyncUDPPacket::remotePort() {
return _remotePort;
}
void AsyncUDPPacket::remoteMac(uint8_t *mac) {
memcpy(mac, _remoteMac, 6);
}
bool AsyncUDPPacket::isIPv6() {
return _localIp.type == IPADDR_TYPE_V6;
}
bool AsyncUDPPacket::isBroadcast() {
if (_localIp.type == IPADDR_TYPE_V6) {
return false;
}
uint32_t ip = _localIp.u_addr.ip4.addr;
return ip == 0xFFFFFFFF || ip == 0 || (ip & 0xFF000000) == 0xFF000000;
}
bool AsyncUDPPacket::isMulticast() {
return ip_addr_ismulticast(&(_localIp));
}
size_t AsyncUDPPacket::write(const uint8_t *data, size_t len) {
if (!data) {
return 0;
}
return _udp->writeTo(data, len, &_remoteIp, _remotePort, _if);
}
size_t AsyncUDPPacket::write(uint8_t data) {
return write(&data, 1);
}
size_t AsyncUDPPacket::send(AsyncUDPMessage &message) {
return write(message.data(), message.length());
}
bool AsyncUDP::_init() {
if (_pcb) {
return true;
}
UDP_MUTEX_LOCK();
_pcb = udp_new();
if (!_pcb) {
UDP_MUTEX_UNLOCK();
return false;
}
udp_recv(_pcb, &_udp_recv, (void *)this);
UDP_MUTEX_UNLOCK();
return true;
}
AsyncUDP::AsyncUDP() {
_pcb = NULL;
_connected = false;
_lastErr = ERR_OK;
_handler = NULL;
}
AsyncUDP::~AsyncUDP() {
close();
UDP_MUTEX_LOCK();
udp_recv(_pcb, NULL, NULL);
UDP_MUTEX_UNLOCK();
_udp_remove(_pcb);
_pcb = NULL;
}
void AsyncUDP::close() {
if (_pcb != NULL) {
if (_connected) {
_udp_disconnect(_pcb);
}
_connected = false;
//todo: unjoin multicast group
}
}
bool AsyncUDP::connect(const ip_addr_t *addr, uint16_t port) {
if (!_udp_task_start()) {
log_e("failed to start task");
return false;
}
if (!_init()) {
return false;
}
close();
_lastErr = _udp_connect(_pcb, addr, port);
if (_lastErr != ERR_OK) {
return false;
}
_connected = true;
return true;
}
bool AsyncUDP::listen(const ip_addr_t *addr, uint16_t port) {
if (!_udp_task_start()) {
log_e("failed to start task");
return false;
}
if (!_init()) {
return false;
}
close();
if (addr) {
IP_SET_TYPE_VAL(_pcb->local_ip, addr->type);
IP_SET_TYPE_VAL(_pcb->remote_ip, addr->type);
}
if (_udp_bind(_pcb, addr, port) != ERR_OK) {
return false;
}
_connected = true;
return true;
}
static esp_err_t joinMulticastGroup(const ip_addr_t *addr, bool join, tcpip_adapter_if_t tcpip_if = TCPIP_ADAPTER_IF_MAX) {
struct netif *netif = NULL;
if (tcpip_if < TCPIP_ADAPTER_IF_MAX) {
void *nif = NULL;
esp_err_t err = tcpip_adapter_get_netif(tcpip_if, &nif);
if (err) {
return ESP_ERR_INVALID_ARG;
}
netif = (struct netif *)nif;
if (addr->type == IPADDR_TYPE_V4) {
if (join) {
if (igmp_joingroup_netif(netif, (const ip4_addr *)&(addr->u_addr.ip4))) {
return ESP_ERR_INVALID_STATE;
}
} else {
if (igmp_leavegroup_netif(netif, (const ip4_addr *)&(addr->u_addr.ip4))) {
return ESP_ERR_INVALID_STATE;
}
}
} else {
if (join) {
if (mld6_joingroup_netif(netif, &(addr->u_addr.ip6))) {
return ESP_ERR_INVALID_STATE;
}
} else {
if (mld6_leavegroup_netif(netif, &(addr->u_addr.ip6))) {
return ESP_ERR_INVALID_STATE;
}
}
}
} else {
if (addr->type == IPADDR_TYPE_V4) {
if (join) {
if (igmp_joingroup((const ip4_addr *)IP4_ADDR_ANY, (const ip4_addr *)&(addr->u_addr.ip4))) {
return ESP_ERR_INVALID_STATE;
}
} else {
if (igmp_leavegroup((const ip4_addr *)IP4_ADDR_ANY, (const ip4_addr *)&(addr->u_addr.ip4))) {
return ESP_ERR_INVALID_STATE;
}
}
} else {
if (join) {
if (mld6_joingroup((const ip6_addr *)IP6_ADDR_ANY, &(addr->u_addr.ip6))) {
return ESP_ERR_INVALID_STATE;
}
} else {
if (mld6_leavegroup((const ip6_addr *)IP6_ADDR_ANY, &(addr->u_addr.ip6))) {
return ESP_ERR_INVALID_STATE;
}
}
}
}
return ESP_OK;
}
bool AsyncUDP::listenMulticast(const ip_addr_t *addr, uint16_t port, uint8_t ttl, tcpip_adapter_if_t tcpip_if) {
if (!ip_addr_ismulticast(addr)) {
return false;
}
if (joinMulticastGroup(addr, true, tcpip_if) != ERR_OK) {
return false;
}
if (!listen(NULL, port)) {
return false;
}
_pcb->mcast_ttl = ttl;
_pcb->remote_port = port;
ip_addr_copy(_pcb->remote_ip, *addr);
//ip_addr_copy(_pcb->remote_ip, ip_addr_any_type);
return true;
}
size_t AsyncUDP::writeTo(const uint8_t *data, size_t len, const ip_addr_t *addr, uint16_t port, tcpip_adapter_if_t tcpip_if) {
if (!_pcb) {
UDP_MUTEX_LOCK();
_pcb = udp_new();
UDP_MUTEX_UNLOCK();
if (_pcb == NULL) {
return 0;
}
}
if (len > CONFIG_TCP_MSS) {
len = CONFIG_TCP_MSS;
}
_lastErr = ERR_OK;
pbuf *pbt = pbuf_alloc(PBUF_TRANSPORT, len, PBUF_RAM);
if (pbt != NULL) {
uint8_t *dst = reinterpret_cast<uint8_t *>(pbt->payload);
memcpy(dst, data, len);
if (tcpip_if < TCPIP_ADAPTER_IF_MAX) {
void *nif = NULL;
tcpip_adapter_get_netif((tcpip_adapter_if_t)tcpip_if, &nif);
if (!nif) {
_lastErr = _udp_sendto(_pcb, pbt, addr, port);
} else {
_lastErr = _udp_sendto_if(_pcb, pbt, addr, port, (struct netif *)nif);
}
} else {
_lastErr = _udp_sendto(_pcb, pbt, addr, port);
}
pbuf_free(pbt);
if (_lastErr < ERR_OK) {
return 0;
}
return len;
}
return 0;
}
void AsyncUDP::_recv(udp_pcb *upcb, pbuf *pb, const ip_addr_t *addr, uint16_t port, struct netif *netif) {
while (pb != NULL) {
pbuf *this_pb = pb;
pb = pb->next;
this_pb->next = NULL;
if (_handler) {
AsyncUDPPacket packet(this, this_pb, addr, port, netif);
_handler(packet);
}
pbuf_free(this_pb);
}
}
void AsyncUDP::_s_recv(void *arg, udp_pcb *upcb, pbuf *p, const ip_addr_t *addr, uint16_t port, struct netif *netif) {
reinterpret_cast<AsyncUDP *>(arg)->_recv(upcb, p, addr, port, netif);
}
bool AsyncUDP::listen(uint16_t port) {
return listen(IP_ANY_TYPE, port);
}
bool AsyncUDP::listen(const IPAddress addr, uint16_t port) {
ip_addr_t laddr;
addr.to_ip_addr_t(&laddr);
return listen(&laddr, port);
}
bool AsyncUDP::listenMulticast(const IPAddress addr, uint16_t port, uint8_t ttl, tcpip_adapter_if_t tcpip_if) {
ip_addr_t laddr;
addr.to_ip_addr_t(&laddr);
return listenMulticast(&laddr, port, ttl, tcpip_if);
}
bool AsyncUDP::connect(const IPAddress addr, uint16_t port) {
ip_addr_t daddr;
addr.to_ip_addr_t(&daddr);
return connect(&daddr, port);
}
size_t AsyncUDP::writeTo(const uint8_t *data, size_t len, const IPAddress addr, uint16_t port, tcpip_adapter_if_t tcpip_if) {
ip_addr_t daddr;
addr.to_ip_addr_t(&daddr);
return writeTo(data, len, &daddr, port, tcpip_if);
}
IPAddress AsyncUDP::listenIP() {
if (!_pcb || _pcb->remote_ip.type != IPADDR_TYPE_V4) {
return IPAddress();
}
return IPAddress(_pcb->remote_ip.u_addr.ip4.addr);
}
IPAddress AsyncUDP::listenIPv6() {
if (!_pcb || _pcb->remote_ip.type != IPADDR_TYPE_V6) {
return IPAddress(IPv6);
}
return IPAddress(IPv6, (const uint8_t *)_pcb->remote_ip.u_addr.ip6.addr, _pcb->remote_ip.u_addr.ip6.zone);
}
size_t AsyncUDP::write(const uint8_t *data, size_t len) {
return writeTo(data, len, &(_pcb->remote_ip), _pcb->remote_port);
}
size_t AsyncUDP::write(uint8_t data) {
return write(&data, 1);
}
size_t AsyncUDP::broadcastTo(uint8_t *data, size_t len, uint16_t port, tcpip_adapter_if_t tcpip_if) {
return writeTo(data, len, IP_ADDR_BROADCAST, port, tcpip_if);
}
size_t AsyncUDP::broadcastTo(const char *data, uint16_t port, tcpip_adapter_if_t tcpip_if) {
return broadcastTo((uint8_t *)data, strlen(data), port, tcpip_if);
}
size_t AsyncUDP::broadcast(uint8_t *data, size_t len) {
if (_pcb->local_port != 0) {
return broadcastTo(data, len, _pcb->local_port);
}
return 0;
}
size_t AsyncUDP::broadcast(const char *data) {
return broadcast((uint8_t *)data, strlen(data));
}
size_t AsyncUDP::sendTo(AsyncUDPMessage &message, const ip_addr_t *addr, uint16_t port, tcpip_adapter_if_t tcpip_if) {
if (!message) {
return 0;
}
return writeTo(message.data(), message.length(), addr, port, tcpip_if);
}
size_t AsyncUDP::sendTo(AsyncUDPMessage &message, const IPAddress addr, uint16_t port, tcpip_adapter_if_t tcpip_if) {
if (!message) {
return 0;
}
return writeTo(message.data(), message.length(), addr, port, tcpip_if);
}
size_t AsyncUDP::send(AsyncUDPMessage &message) {
if (!message) {
return 0;
}
return writeTo(message.data(), message.length(), &(_pcb->remote_ip), _pcb->remote_port);
}
size_t AsyncUDP::broadcastTo(AsyncUDPMessage &message, uint16_t port, tcpip_adapter_if_t tcpip_if) {
if (!message) {
return 0;
}
return broadcastTo(message.data(), message.length(), port, tcpip_if);
}
size_t AsyncUDP::broadcast(AsyncUDPMessage &message) {
if (!message) {
return 0;
}
return broadcast(message.data(), message.length());
}
AsyncUDP::operator bool() {
return _connected;
}
bool AsyncUDP::connected() {
return _connected;
}
esp_err_t AsyncUDP::lastErr() {
return _lastErr;
}
void AsyncUDP::onPacket(AuPacketHandlerFunctionWithArg cb, void *arg) {
onPacket(std::bind(cb, arg, std::placeholders::_1));
}
void AsyncUDP::onPacket(AuPacketHandlerFunction cb) {
_handler = cb;
}