Warn the user that the Pico SDK STDIO calls (stdio_init_all, stdio_usb_init,
stdio_uart_init) are not supported or needed at compile time. See multiple
issues #1433#1347#1273#1251 and others.
Now that we have a default parameter, need to only allow it in C++ since
default values are not part of C spec. Should not affect any users since
only legacy code is in C.
* Add HTTP-parser lib to support ESP32 WebServer
* Add WebServer from ESP32. Only supports HTTP
* Separate HTTP server from the network server
Instead of managing the WiFiServer/WiFiServerSecure in the same object
as the HTTP handling, split them into separate objects. This lets
HTTP and HTTPS servers work without templates or duplicating code.
The HTTP block just gets a `WiFiClient*` and works with that to only
do HTTP processing, while the upper object handles the appropriate
server and client types.
* Add HTTPS server
* Clean up some THandlerFunction refs
* Refactor into a template-ized WebServer/WebServerSecure
* Add DNSServer examples which need WebServer
* Fix CoreMutex infinite recursion crash
Core could crash while Serial debugging was going on and prints were
happening from LWIP/IRQ land and the main app.
* Add HTTPUpdateServer(Secure)
* Add MIME include, optimize WebServer::send(size,len)
When send()ing a large buffer, the WebServer::send() call would
actually convert that buffer into a String (i.e. duplicate it, and
potential issues with embedded \0s in binary data).
Make a simple override to send(size, len) to allow writing from the
source buffer instead.
* Fix WiFiClient::send(Stream), add FSBrowser example
* Add support for the WiFi chip on the Pico W board.
* USB interrupt now no longer hard coded (conflicted with the WiFi IRQ).
* Add in Pico W board to makeboards.py
* Add in GPIO and variant support
* Initialize WiFi in the Variant
* Use manual LWIP, fix size accounting
* Remove the SDK WiFi overrides
* Pulling in work done in the ESP8266 core.
* Make IPAddress support IPv6
* Build LWIP with IPv4 and IPv6 support
* Use proper MAC
* Avoid cyw_warn crash. Make macro to a comment while building
* Add WiFiServer
* Add WiFiUdp
* Move LWIP-specific support files to LWIP_Ethernet
* Add WiFi::ping (ICMP ping)
* Move ICMP echo (ping) to LWIPIntfDev
* Move hostByName to LwipIntfDev
* Add AP mode with simple DHCP server
* Add some examples and basic ESP8266 compat hacks
* Update Adafruit TinyUSB to fix crash
* Set DHCP hostname
* Make Wifi.begin() return CONNECTED with link + IP
* Return connected() on WiFi::begin
* Fix spurious TCP retransmission
* Protect LWIP from reentrancy
The Pico SDK calls "sys_check_timeouts() from inside a periodic interrupt.
This appears unsafe, as the interrupt could happen while already in the
(non-reentrant) LWIP code.
Block the interrupt from calling sys_check_timeouts by using a global flag
manually set via an RAII recursive lock.
Add interrupt protection macros around critical sections inside LWIP via
the standard defines.
These two changes should make LWIP significantly more stable and long
running.
* Support disconnecting and reconnecting WiFi
* Add WiFiServer simple example
* Update documentation
Fixes#666Fixed#665
Using all the work from @hfellner and others, add FreeRTOS
SMP support.
Allow idling cores through the FreeRTOS FIFO queue to
allow for file system and EEPROM support.
Make delay a weak function so FreeRTOS can override.
Add cycle count support under FreeRTOS using a PIO SM.
Use a task-based approach for handling the USB periodic work
instead of the IRQ-based one in the main core.
Set 8 prio levels so it fits in 3 bits nicely (0..7).
Most other boards and the MBED RP2040 support analogReadResolution which
just shifts read data around as needed, with a default of only 10b of
resolution. The Pico ADC technically supports 12b, but only has about
8b of real data after noise, so you're not really losing anything in the
general case.
Fixes#460
Adds support to the core for PIO-based, software-created UARTs, up to 8 (the number of PIO state machines) possible.
By using a custom program on the PIO state machines, it allows for very high bit rates and does not require CPU or interrupts.
Bit widths from 5- to 8-bits, 1 or 2 stop bits, and even/odd/none parity are supported.
Many functions are defined inside the api/Common.h, so remove them from
the Arduino.h header to have them appear only once.
Fix up the abs() macro to avoid macro problems, add round()
* initial tinyusb lib port
* add Adafruit_TinyUSB_Arduino as submodules
* add yield() to main loop
* sync with tinyusb lib latest
* add USB manufacturer and product
* fix typo in tinyusb lib
* sync with master
updating implementation
* Rationalize link stage command line
Make the build process less insane.
* clean up delay
* clean up platform and board
* update makeboards.py for generating usbstack menu
* update tinyusb lib to 1.0.0
Add definitions for compatibility to many platforms and libraries
- clockCyclesPerMicrosecond()
- clockCyclesToMicroseconds(a)
- microsecondsToClockCycles(a)
Use a constexpr template to calculate the valid pins for different IO
hardware. This lets us have an easily readable list of pin numbers that
we can adjust/check.
Windows is case-insensitive, causing "String.h" to override "string.h" in
includes. Adjust the platform.txt appropriately.
Rebuild elf2uf2 as static to avoid startup errors on Windows boxes w/o MinGW.
Some paths hardcoded to my custom toolchain build dir, will be updated
to a package.json tools setup soon.
https://github.com/earlephilhower/pico-quick-toolchain
Blink and Fade examples work (i.e. digitalWrite/analogWrite/delay).
Includes a discovery script which will detect RPI Picos in UF2 bootmode.