* Update to Pico-SDK v1.5
* Hook in pico_rand, use ioctl to set ipv6 allmulti
* Move into PicoSDK LWIP mutex, hack timer sizes
* Utilize much of the PicoSDK infrastructure for WiFi
* Add WiFi::begin(ssid, pass, bssid)
* WiFiMulti to use BSSID, make more robust
WiFiMulti will now be more aggressive and try all matching SSIDs, in order
of RSSI, using the BSSID to identify individual APs in a mesh.
Before, if the highest RSSI AP didn't connect, it would fail immediately.
Now, it will go down the list, ordered by RSSI, to attempt to get a link.
* Add Bluetooth support from Pico-SDK
Able to build and run the HID Keyboard Demo from the Arduino IDE, almost
as-is.
Will probably need to make BT configurable. Enabling BT on a plain WiFi
sketch uses 50KB of flash and 16KB of RAM even if no BT is used.
* Separate picow libs, BT through menus, example
Build normal Pico.a and 4 different options for PicoW IP/BT configuration.
Use IP=>IP/Bluetooth menu to select between options.
* CMakefile rationalization
* Move BT TLV(pairing) out of last 2 flash sectors
The pairing keys for BT are stored at the end of flash by default, but
we use the last sector of flash for EPROM and the penultimate one for
the filesystem. Overwriting those in BT could cause some real exciting
crashes down the line.
Move the store to an app-build specific address using a dummy const
array to allocate space in the application image itself.
* PicoBluetoothHID with BT Mouse, Joystick, Keyboard
Add simple Bluetooth Classic HID helper function and port the existing
USB HID devices to it. Port their examples.
* Protect BT key storage from multicore
* Add short-n-sweet Bluetooth documents
* Add Bluetooth Serial port library
* Turn off BT when the BT libraries exit
* Add HTTP-parser lib to support ESP32 WebServer
* Add WebServer from ESP32. Only supports HTTP
* Separate HTTP server from the network server
Instead of managing the WiFiServer/WiFiServerSecure in the same object
as the HTTP handling, split them into separate objects. This lets
HTTP and HTTPS servers work without templates or duplicating code.
The HTTP block just gets a `WiFiClient*` and works with that to only
do HTTP processing, while the upper object handles the appropriate
server and client types.
* Add HTTPS server
* Clean up some THandlerFunction refs
* Refactor into a template-ized WebServer/WebServerSecure
* Add DNSServer examples which need WebServer
* Fix CoreMutex infinite recursion crash
Core could crash while Serial debugging was going on and prints were
happening from LWIP/IRQ land and the main app.
* Add HTTPUpdateServer(Secure)
* Add MIME include, optimize WebServer::send(size,len)
When send()ing a large buffer, the WebServer::send() call would
actually convert that buffer into a String (i.e. duplicate it, and
potential issues with embedded \0s in binary data).
Make a simple override to send(size, len) to allow writing from the
source buffer instead.
* Fix WiFiClient::send(Stream), add FSBrowser example
* Add HTTPUpdate class to pull updates from HTTP(S)
* Increase GH runners for pulls
WiFi builds and examples are taking some serious time now
* HTTPUpdate tests build on Pico W
Remove the need to have a separate WiFiClient that's destroyed after
the HTTPClient. Let the object handle its own client, and pass through
any SSL requests.
Also supports the original ::begin methods which need a
WiFiClient(Secure) to be passed in and managed by the app.
Adds a 12K OTA stub 3rd stage bootloader, which reads new firmware
from the LittleFS filesystem and flashes on reboot.
By storing the OTA commands in a file in flash, it is possible to
recover from a power failure during OTA programming. On power
resume, the OTA block will simply re-program from the beginning.
Support cryptographic signed OTA updates, if desired. Includes
host-side signing logic via openssl.
Add PicoOTA library which encapsulates the file format for
the updater, including CRC32 checking.
Add LEAmDNS support to allow Arduino IDE discovery
Add ArduinoOTA class for IDE uploads
Add MD5Builder class
Add Updater class which supports writing and validating
cryptographically signed binaries from any source (http,
Ethernet, WiFi, Serial, etc.)
Add documentation and readmes.