arduino-pico/cores/rp2040/wiring_analog.cpp
Earle F. Philhower, III 76811d3c66
Add RP2350B generic/Pimoroni PGA2350 support (#2433)
* Add support for the extra 16 GPIO pins in the menus and core.
* Clean up Generic RP2350 PSRAM ("none" is valid) and flash (other than 16MB) options.
* Add extra GPIO<->peripheral connections
* Add Pimoroni PGA2350 RP2350B-based board
* Pins 32-47 can be used for PIOPrograms
* Avoid hang when PSRAM fails to initialize
* Move libpico to an RP2350B board for SDK (otherwise the SDK drops all GPIOHI support)
2024-09-11 18:55:28 -07:00

184 lines
5.7 KiB
C++

/*
PWM and analogRead for the Raspberry Pi Pico RP2040
Copyright (c) 2021 Earle F. Philhower, III <earlephilhower@yahoo.com>
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <Arduino.h>
#include <CoreMutex.h>
#include <hardware/gpio.h>
#include <hardware/pwm.h>
#include <hardware/clocks.h>
#include <hardware/pll.h>
#include <hardware/adc.h>
void __clearADCPin(pin_size_t p);
static uint32_t analogScale = 255;
static uint32_t analogFreq = 1000;
static uint64_t pwmInitted = 0;
static bool scaleInitted = false;
static bool adcInitted = false;
static uint16_t analogWritePseudoScale = 1;
static uint16_t analogWriteSlowScale = 1;
auto_init_mutex(_dacMutex);
extern "C" void analogWriteFreq(uint32_t freq) {
if (freq == analogFreq) {
return;
}
if (freq < 100) {
DEBUGCORE("ERROR: analogWriteFreq too low (%lu)\n", freq);
analogFreq = 100;
} else if (freq > 10'000'000) {
DEBUGCORE("ERROR: analogWriteFreq too high (%lu)\n", freq);
analogFreq = 10'000'000;
} else {
analogFreq = freq;
}
pwmInitted = 0;
scaleInitted = false;
}
extern "C" void analogWriteRange(uint32_t range) {
if (range == analogScale) {
return;
}
if ((range >= 3) && (range <= 65535)) {
analogScale = range;
pwmInitted = 0;
scaleInitted = false;
} else {
DEBUGCORE("ERROR: analogWriteRange out of range (%lu)\n", range);
}
}
extern "C" void analogWriteResolution(int res) {
if ((res >= 2) && (res <= 16)) {
analogWriteRange((1 << res) - 1);
} else {
DEBUGCORE("ERROR: analogWriteResolution out of range (%d)\n", res);
}
}
extern "C" void analogWrite(pin_size_t pin, int val) {
CoreMutex m(&_dacMutex);
if ((pin >= __GPIOCNT) || !m) {
DEBUGCORE("ERROR: Illegal analogWrite pin (%d)\n", pin);
return;
}
__clearADCPin(pin);
if (!scaleInitted) {
// For low frequencies, we need to scale the output max value up to achieve lower periods
analogWritePseudoScale = 1;
while (((clock_get_hz(clk_sys) / ((float)analogScale * analogFreq)) > 255.0) && (analogScale < 32678)) {
analogWritePseudoScale++;
analogScale *= 2;
DEBUGCORE("Adjusting analogWrite values PS=%d, scale=%lu\n", analogWritePseudoScale, analogScale);
}
// For high frequencies, we need to scale the output max value down to actually hit the frequency target
analogWriteSlowScale = 1;
while (((clock_get_hz(clk_sys) / ((float)analogScale * analogFreq)) < 1.0) && (analogScale >= 6)) {
analogWriteSlowScale++;
analogScale /= 2;
DEBUGCORE("Adjusting analogWrite values SS=%d, scale=%lu\n", analogWriteSlowScale, analogScale);
}
scaleInitted = true;
}
if (!(pwmInitted & (1LL << pwm_gpio_to_slice_num(pin)))) {
pwm_config c = pwm_get_default_config();
pwm_config_set_clkdiv(&c, clock_get_hz(clk_sys) / ((float)analogScale * analogFreq));
pwm_config_set_wrap(&c, analogScale - 1);
pwm_init(pwm_gpio_to_slice_num(pin), &c, true);
pwmInitted |= 1LL << pwm_gpio_to_slice_num(pin);
}
val <<= analogWritePseudoScale;
val >>= analogWriteSlowScale;
if (val < 0) {
val = 0;
} else if ((uint32_t)val > analogScale) {
val = analogScale;
}
gpio_set_function(pin, GPIO_FUNC_PWM);
pwm_set_gpio_level(pin, val);
}
auto_init_mutex(_adcMutex);
static uint8_t _readBits = 10;
static uint8_t _lastADCMux = 0;
static uint64_t _adcGPIOInit = 0;
void __clearADCPin(pin_size_t p) {
_adcGPIOInit &= ~(1LL << p);
}
extern "C" int analogRead(pin_size_t pin) {
CoreMutex m(&_adcMutex);
pin_size_t maxPin = __GPIOCNT;
pin_size_t minPin = __FIRSTANALOGGPIO;
if ((pin < minPin) || (pin > maxPin) || !m) {
DEBUGCORE("ERROR: Illegal analogRead pin (%d)\n", pin);
return 0;
}
if (!adcInitted) {
adc_init();
adcInitted = true;
}
if (!(_adcGPIOInit & (1LL << pin))) {
adc_gpio_init(pin);
_adcGPIOInit |= 1LL << pin;
}
if (_lastADCMux != pin) {
adc_select_input(pin - minPin);
_lastADCMux = pin;
}
return (_readBits < 12) ? adc_read() >> (12 - _readBits) : adc_read() << (_readBits - 12);
}
extern "C" float analogReadTemp(float vref) {
CoreMutex m(&_adcMutex);
if (!m) {
return 0.0f; // Deadlock
}
if (!adcInitted) {
adc_init();
adcInitted = true;
}
_lastADCMux = 0;
adc_set_temp_sensor_enabled(true);
delay(1); // Allow things to settle. Without this, readings can be erratic
adc_select_input(__GPIOCNT - __FIRSTANALOGGPIO); // Temperature sensor
int v = adc_read();
adc_set_temp_sensor_enabled(false);
float t = 27.0f - ((v * vref / 4096.0f) - 0.706f) / 0.001721f; // From the datasheet
return t;
}
extern "C" void analogReadResolution(int bits) {
CoreMutex m(&_adcMutex);
if (m && ((bits > 0) && (bits < 32))) {
_readBits = bits;
}
}