7.2 KiB
7.2 KiB
CircuitPython Cheatsheet
Digital I/O
import board
from digitalio import DigitalInOut, Direction, Pull
led = DigitalInOut(board.D13)
led.direction = Direction.OUTPUT
switch = DigitalInOut(board.D5)
switch.direction = Direction.INPUT
switch.pull = Pull.UP # Pull.Down is available on some MCUs
while True:
led.value = not switch.value
time.sleep(0.01)
Analog Input
import time
import board
from analogio import AnalogIn
analog_in = AnalogIn(board.A1)
def get_voltage(pin):
return (pin.value * 3.3) / 65536
while True:
print((get_voltage(analog_in),))
time.sleep(0.1)
Analog input values are always 16 bit (i.e. in range(0, 65535)), regardless of the converter's resolution. The get_voltage function converts the analog reading into a voltage, assuming the default 3.3v reference voltage.
Analog Output
import board
from analogio import AnalogOut
analog_out = AnalogOut(board.A0)
while True:
# Count up from 0 to 65535
for i in range(0, 65536):
analog_out.value = i
Analog output values are always 16 bit (i.e. in range(0, 65535)). Depending on the underlying hardware those values will get scaled to match the resolution of the converter. The example will generate a stairstepped signal, the number of steps depends on the resolution of the converter. E.g. the 10-bit converter in the SAMD21 will create 1024 steps, while the 12-bit converter on the SAMD51 will create 4096 steps.
PWM
You can use a PWM in one of two ways.
- With fixed frequency PWM with variable duty cycle. This is useful for controllign the brightness of a LED or the speed of a motor.
import board
import pwmio
led = pwmio.PWMOut(board.D13, frequency=5000, duty_cycle=0)
while True:
for i in range(100):
# PWM LED up and down
if i < 50:
led.duty_cycle = int(i * 2 * 65535 / 100) # Up
else:
led.duty_cycle = 65535 - int((i - 50) * 2 * 65535 / 100) # Down
time.sleep(0.01)
- With variable frequency as well. This is handy for producing tones. The duty cycle effects the sound (as opposed to the note).
import board
import pwmio
piezo = pwmio.PWMOut(board.A1, duty_cycle=0, frequency=440, variable_frequency=True)
while True:
for f in (262, 294, 330, 349, 392, 440, 494, 523):
piezo.frequency = f
piezo.duty_cycle = 65536 // 2 # On 50%
time.sleep(0.25) # On for 1/4 second
piezo.duty_cycle = 0 # Off
time.sleep(0.05) # Pause between notes
time.sleep(0.5)
Servo
import time
import board
import pwmio
from adafruit_motor import servo
# create a PWMOut object on Pin A2.
pwm = pwmio.PWMOut(board.A2, duty_cycle=2 ** 15, frequency=50)
# Create a servo object, my_servo.
my_servo = servo.Servo(pwm)
while True:
for angle in range(0, 180, 5): # 0 - 180 degrees, 5 degrees at a time.
my_servo.angle = angle
time.sleep(0.05)
for angle in range(180, 0, -5): # 180 - 0 degrees, 5 degrees at a time.
my_servo.angle = angle
time.sleep(0.05)
Cap Touch
import time
import board
import touchio
touch_pad = board.A1 # For Circuit Playground Express
touch = touchio.TouchIn(touch_pad)
while True:
if touch.value:
print("Touched!")
time.sleep(0.05)
NeoPixels
import time
import board
import neopixel
RED = (255, 0, 0)
GREEN = (0, 255, 0)
BLUE = (0, 0, 255)
pixel_pin = board.A1
num_pixels = 8
pixels = neopixel.NeoPixel(pixel_pin, num_pixels, brightness=0.3, auto_write=False)
pixels.fill(RED)
pixels.show()
#The usual slicing operations can be used
pixels[1:6:2] = GREEN
pixels[7] = BLUE
pixels.show()
DotStar
import time
import adafruit_dotstar
import board
RED = (255, 0, 0)
num_pixels = 30
# DotStars use 2 pins instead of 1 that NeoPixels take
pixels = adafruit_dotstar.DotStar(board.A1, board.A2, num_pixels, brightness=0.1, auto_write=False)
pixels.fill(0) # all off
pixels[::2] = [RED] * (num_pixels // 2) # every other pixel red
pixels.show()
UART Serial
import board
import busio
import digitalio
uart = busio.UART(board.TX, board.RX, baudrate=9600)
while True:
data = uart.read(32) # read up to 32 bytes
if data is not None:
# convert bytearray to string
data_string = ''.join([chr(b) for b in data])
print(data_string, end="")
uart.write(data_string)
I2C
import time
import adafruit_tsl2561
import board
import busio
i2c = busio.I2C(board.SCL, board.SDA)
# Create library object on our I2C port
tsl2561 = adafruit_tsl2561.TSL2561(i2c)
# Use the object to print the sensor readings
while True:
print("Lux:", tsl2561.lux)
time.sleep(1.0)
SPI
import board
import busio
import digitalio
import adafruit_bme280
spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)
cs = digitalio.DigitalInOut(board.D5)
bme280 = adafruit_bme280.Adafruit_BME280_SPI(spi, cs)
print("\nTemperature: %0.1f C" % bme280.temperature)
print("Humidity: %0.1f %%" % bme280.humidity)
print("Pressure: %0.1f hPa" % bme280.pressure)
HID Keyboard
from adafruit_circuitplayground.express import cpx
from adafruit_hid.keyboard import Keyboard
from adafruit_hid.keycode import Keycode
kbd = Keyboard()
while True:
if cpx.button_a:
kbd.send(Keycode.SHIFT, Keycode.A) # Type capital 'A'
while cpx.button_a: # Wait for button to be released
pass
if cpx.button_b:
kbd.send(Keycode.CONTROL, Keycode.X) # control-X key
while cpx.button_b: # Wait for button to be released
pass
HID Mouse
from adafruit_circuitplayground.express import cpx
from adafruit_hid.mouse import Mouse
m = Mouse()
cpx.adjust_touch_threshold(200)
while True:
if cpx.touch_A4:
m.move(-1, 0, 0)
if cpx.touch_A3:
m.move(1, 0, 0)
if cpx.touch_A7:
m.move(0, -1, 0)
if cpx.touch_A1:
m.move(0, 1, 0)
if cpx.button_a:
m.press(Mouse.LEFT_BUTTON)
while cpx.button_a: # Wait for button A to be released
pass
m.release(Mouse.LEFT_BUTTON)
if cpx.button_b:
m.press(Mouse.RIGHT_BUTTON)
while cpx.button_b: # Wait for button B to be released
pass
m.release(Mouse.RIGHT_BUTTON)
Display
import board, displayio
bitmap = displayio.Bitmap(320, 240, 3)
bitmap[0, 0] = 0
palette = displayio.Palette(1)
palette[0] = 0xFFFFFF
tilegrid = displayio.TileGrid(bitmap, pixel_shader = palette)
group = displayio.Group()
group.append(tilegrid)
board.DISPLAY.show(group)
# Ctrl+D and any key to re-enter the REPL on-screen