None Numpy functions =============== This section of the manual discusses those functions that were adapted from ``numpy``. 1. `numpy.argmax <#argmax>`__ 2. `numpy.argmin <#argmin>`__ 3. `numpy.argsort <#argsort>`__ 4. `numpy.clip <#clip>`__ 5. `numpy.convolve <#convolve>`__ 6. `numpy.diff <#diff>`__ 7. `numpy.equal <#equal>`__ 8. `numpy.flip <#flip>`__ 9. `numpy.interp <#interp>`__ 10. `numpy.max <#max>`__ 11. `numpy.maximum <#maximum>`__ 12. `numpy.mean <#mean>`__ 13. `numpy.median <#median>`__ 14. `numpy.min <#min>`__ 15. `numpy.minimum <#minimum>`__ 16. `numpy.not_equal <#not_equal>`__ 17. `numpy.polyfit <#polyfit>`__ 18. `numpy.polyval <#polyval>`__ 19. `numpy.roll <#roll>`__ 20. `numpy.sort <#sort>`__ 21. `numpy.std <#std>`__ 22. `numpy.sum <#sum>`__ 23. `numpy.trapz <#trapz>`__ argmax ------ ``numpy``: https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmax.html See `numpy.max <#max>`__. argmin ------ ``numpy``: https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmin.html See `numpy.max <#max>`__. argsort ------- ``numpy``: https://docs.scipy.org/doc/numpy/reference/generated/numpy.argsort.html Similarly to `sort <#sort>`__, ``argsort`` takes a positional, and a keyword argument, and returns an unsigned short index array of type ``ndarray`` with the same dimensions as the input, or, if ``axis=None``, as a row vector with length equal to the number of elements in the input (i.e., the flattened array). The indices in the output sort the input in ascending order. The routine in ``argsort`` is the same as in ``sort``, therefore, the comments on computational expenses (time and RAM) also apply. In particular, since no copy of the original data is required, virtually no RAM beyond the output array is used. Since the underlying container of the output array is of type ``uint16_t``, neither of the output dimensions should be larger than 65535. If that happens to be the case, the function will bail out with a ``ValueError``. .. code:: # code to be run in micropython from ulab import numpy as np a = np.array([[1, 12, 3, 0], [5, 3, 4, 1], [9, 11, 1, 8], [7, 10, 0, 1]], dtype=np.float) print('\na:\n', a) b = np.argsort(a, axis=0) print('\na sorted along vertical axis:\n', b) c = np.argsort(a, axis=1) print('\na sorted along horizontal axis:\n', c) c = np.argsort(a, axis=None) print('\nflattened a sorted:\n', c) .. parsed-literal:: a: array([[1.0, 12.0, 3.0, 0.0], [5.0, 3.0, 4.0, 1.0], [9.0, 11.0, 1.0, 8.0], [7.0, 10.0, 0.0, 1.0]], dtype=float64) a sorted along vertical axis: array([[0, 1, 3, 0], [1, 3, 2, 1], [3, 2, 0, 3], [2, 0, 1, 2]], dtype=uint16) a sorted along horizontal axis: array([[3, 0, 2, 1], [3, 1, 2, 0], [2, 3, 0, 1], [2, 3, 0, 1]], dtype=uint16) Traceback (most recent call last): File "/dev/shm/micropython.py", line 12, in NotImplementedError: argsort is not implemented for flattened arrays Since during the sorting, only the indices are shuffled, ``argsort`` does not modify the input array, as one can verify this by the following example: .. code:: # code to be run in micropython from ulab import numpy as np a = np.array([0, 5, 1, 3, 2, 4], dtype=np.uint8) print('\na:\n', a) b = np.argsort(a, axis=0) print('\nsorting indices:\n', b) print('\nthe original array:\n', a) .. parsed-literal:: a: array([0, 5, 1, 3, 2, 4], dtype=uint8) sorting indices: array([0, 2, 4, 3, 5, 1], dtype=uint16) the original array: array([0, 5, 1, 3, 2, 4], dtype=uint8) clip ---- ``numpy``: https://docs.scipy.org/doc/numpy/reference/generated/numpy.clip.html Clips an array, i.e., values that are outside of an interval are clipped to the interval edges. The function is equivalent to ``maximum(a_min, minimum(a, a_max))`` broadcasting takes place exactly as in `minimum <#minimum>`__. If the arrays are of different ``dtype``, the output is upcast as in `Binary operators <#Binary-operators>`__. .. code:: # code to be run in micropython from ulab import numpy as np a = np.array(range(9), dtype=np.uint8) print('a:\t\t', a) print('clipped:\t', np.clip(a, 3, 7)) b = 3 * np.ones(len(a), dtype=np.float) print('\na:\t\t', a) print('b:\t\t', b) print('clipped:\t', np.clip(a, b, 7)) .. parsed-literal:: a: array([0, 1, 2, 3, 4, 5, 6, 7, 8], dtype=uint8) clipped: array([3, 3, 3, 3, 4, 5, 6, 7, 7], dtype=uint8) a: array([0, 1, 2, 3, 4, 5, 6, 7, 8], dtype=uint8) b: array([3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0], dtype=float64) clipped: array([3.0, 3.0, 3.0, 3.0, 4.0, 5.0, 6.0, 7.0, 7.0], dtype=float64) convolve -------- ``numpy``: https://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html Returns the discrete, linear convolution of two one-dimensional arrays. Only the ``full`` mode is supported, and the ``mode`` named parameter is not accepted. Note that all other modes can be had by slicing a ``full`` result. .. code:: # code to be run in micropython from ulab import numpy as np x = np.array((1, 2, 3)) y = np.array((1, 10, 100, 1000)) print(np.convolve(x, y)) .. parsed-literal:: array([1.0, 12.0, 123.0, 1230.0, 2300.0, 3000.0], dtype=float64) diff ---- ``numpy``: https://docs.scipy.org/doc/numpy/reference/generated/numpy.diff.html The ``diff`` function returns the numerical derivative of the forward scheme, or more accurately, the differences of an ``ndarray`` along a given axis. The order of derivative can be stipulated with the ``n`` keyword argument, which should be between 0, and 9. Default is 1. If higher order derivatives are required, they can be gotten by repeated calls to the function. The ``axis`` keyword argument should be -1 (last axis, in ``ulab`` equivalent to the second axis, and this also happens to be the default value), 0, or 1. Beyond the output array, the function requires only a couple of bytes of extra RAM for the differentiation stencil. (The stencil is an ``int8`` array, one byte longer than ``n``. This also explains, why the highest order is 9: the coefficients of a ninth-order stencil all fit in signed bytes, while 10 would require ``int16``.) Note that as usual in numerical differentiation (and also in ``numpy``), the length of the respective axis will be reduced by ``n`` after the operation. If ``n`` is larger than, or equal to the length of the axis, an empty array will be returned. **WARNING**: the ``diff`` function does not implement the ``prepend`` and ``append`` keywords that can be found in ``numpy``. .. code:: # code to be run in micropython from ulab import numpy as np a = np.array(range(9), dtype=np.uint8) a[3] = 10 print('a:\n', a) print('\nfirst derivative:\n', np.diff(a, n=1)) print('\nsecond derivative:\n', np.diff(a, n=2)) c = np.array([[1, 2, 3, 4], [4, 3, 2, 1], [1, 4, 9, 16], [0, 0, 0, 0]]) print('\nc:\n', c) print('\nfirst derivative, first axis:\n', np.diff(c, axis=0)) print('\nfirst derivative, second axis:\n', np.diff(c, axis=1)) .. parsed-literal:: a: array([0, 1, 2, 10, 4, 5, 6, 7, 8], dtype=uint8) first derivative: array([1, 1, 8, 250, 1, 1, 1, 1], dtype=uint8) second derivative: array([0, 249, 14, 249, 0, 0, 0], dtype=uint8) c: array([[1.0, 2.0, 3.0, 4.0], [4.0, 3.0, 2.0, 1.0], [1.0, 4.0, 9.0, 16.0], [0.0, 0.0, 0.0, 0.0]], dtype=float64) first derivative, first axis: array([[3.0, 1.0, -1.0, -3.0], [-3.0, 1.0, 7.0, 15.0], [-1.0, -4.0, -9.0, -16.0]], dtype=float64) first derivative, second axis: array([[1.0, 1.0, 1.0], [-1.0, -1.0, -1.0], [3.0, 5.0, 7.0], [0.0, 0.0, 0.0]], dtype=float64) equal ----- ``numpy``: https://numpy.org/doc/stable/reference/generated/numpy.equal.html ``numpy``: https://numpy.org/doc/stable/reference/generated/numpy.not_equal.html In ``micropython``, equality of arrays or scalars can be established by utilising the ``==``, ``!=``, ``<``, ``>``, ``<=``, or ``=>`` binary operators. In ``circuitpython``, ``==`` and ``!=`` will produce unexpected results. In order to avoid this discrepancy, and to maintain compatibility with ``numpy``, ``ulab`` implements the ``equal`` and ``not_equal`` operators that return the same results, irrespective of the ``python`` implementation. These two functions take two ``ndarray``\ s, or scalars as their arguments. No keyword arguments are implemented. .. code:: # code to be run in micropython from ulab import numpy as np a = np.array(range(9)) b = np.zeros(9) print('a: ', a) print('b: ', b) print('\na == b: ', np.equal(a, b)) print('a != b: ', np.not_equal(a, b)) # comparison with scalars print('a == 2: ', np.equal(a, 2)) .. parsed-literal:: a: array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0], dtype=float64) b: array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], dtype=float64) a == b: array([True, False, False, False, False, False, False, False, False], dtype=bool) a != b: array([False, True, True, True, True, True, True, True, True], dtype=bool) a == 2: array([False, False, True, False, False, False, False, False, False], dtype=bool) flip ---- ``numpy``: https://docs.scipy.org/doc/numpy/reference/generated/numpy.flip.html The ``flip`` function takes one positional, an ``ndarray``, and one keyword argument, ``axis = None``, and reverses the order of elements along the given axis. If the keyword argument is ``None``, the matrix’ entries are flipped along all axes. ``flip`` returns a new copy of the array. .. code:: # code to be run in micropython from ulab import numpy as np a = np.array([1, 2, 3, 4, 5]) print("a: \t", a) print("a flipped:\t", np.flip(a)) a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.uint8) print("\na flipped horizontally\n", np.flip(a, axis=1)) print("\na flipped vertically\n", np.flip(a, axis=0)) print("\na flipped horizontally+vertically\n", np.flip(a)) .. parsed-literal:: a: array([1.0, 2.0, 3.0, 4.0, 5.0], dtype=float64) a flipped: array([5.0, 4.0, 3.0, 2.0, 1.0], dtype=float64) a flipped horizontally array([[3, 2, 1], [6, 5, 4], [9, 8, 7]], dtype=uint8) a flipped vertically array([[7, 8, 9], [4, 5, 6], [1, 2, 3]], dtype=uint8) a flipped horizontally+vertically array([9, 8, 7, 6, 5, 4, 3, 2, 1], dtype=uint8) interp ------ ``numpy``: https://docs.scipy.org/doc/numpy/numpy.interp The ``interp`` function returns the linearly interpolated values of a one-dimensional numerical array. It requires three positional arguments,\ ``x``, at which the interpolated values are evaluated, ``xp``, the array of the independent data variable, and ``fp``, the array of the dependent values of the data. ``xp`` must be a monotonically increasing sequence of numbers. Two keyword arguments, ``left``, and ``right`` can also be supplied; these determine the return values, if ``x < xp[0]``, and ``x > xp[-1]``, respectively. If these arguments are not supplied, ``left``, and ``right`` default to ``fp[0]``, and ``fp[-1]``, respectively. .. code:: # code to be run in micropython from ulab import numpy as np x = np.array([1, 2, 3, 4, 5]) - 0.2 xp = np.array([1, 2, 3, 4]) fp = np.array([1, 2, 3, 5]) print(x) print(np.interp(x, xp, fp)) print(np.interp(x, xp, fp, left=0.0)) print(np.interp(x, xp, fp, right=10.0)) .. parsed-literal:: array([0.8, 1.8, 2.8, 3.8, 4.8], dtype=float64) array([1.0, 1.8, 2.8, 4.6, 5.0], dtype=float64) array([0.0, 1.8, 2.8, 4.6, 5.0], dtype=float64) array([1.0, 1.8, 2.8, 4.6, 10.0], dtype=float64) mean ---- ``numpy``: https://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html If the axis keyword is not specified, it assumes the default value of ``None``, and returns the result of the computation for the flattened array. Otherwise, the calculation is along the given axis. .. code:: # code to be run in micropython from ulab import numpy as np a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) print('a: \n', a) print('mean, flat: ', np.mean(a)) print('mean, horizontal: ', np.mean(a, axis=1)) print('mean, vertical: ', np.mean(a, axis=0)) .. parsed-literal:: a: array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]], dtype=float64) mean, flat: 5.0 mean, horizontal: array([2.0, 5.0, 8.0], dtype=float64) mean, vertical: array([4.0, 5.0, 6.0], dtype=float64) max --- ``numpy``: https://docs.scipy.org/doc/numpy/reference/generated/numpy.max.html ``numpy``: https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmax.html ``numpy``: https://docs.scipy.org/doc/numpy/reference/generated/numpy.min.html ``numpy``: https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmin.html **WARNING:** Difference to ``numpy``: the ``out`` keyword argument is not implemented. These functions follow the same pattern, and work with generic iterables, and ``ndarray``\ s. ``min``, and ``max`` return the minimum or maximum of a sequence. If the input array is two-dimensional, the ``axis`` keyword argument can be supplied, in which case the minimum/maximum along the given axis will be returned. If ``axis=None`` (this is also the default value), the minimum/maximum of the flattened array will be determined. ``argmin/argmax`` return the position (index) of the minimum/maximum in the sequence. .. code:: # code to be run in micropython from ulab import numpy as np a = np.array([1, 2, 0, 1, 10]) print('a:', a) print('min of a:', np.min(a)) print('argmin of a:', np.argmin(a)) b = np.array([[1, 2, 0], [1, 10, -1]]) print('\nb:\n', b) print('min of b (flattened):', np.min(b)) print('min of b (axis=0):', np.min(b, axis=0)) print('min of b (axis=1):', np.min(b, axis=1)) .. parsed-literal:: a: array([1.0, 2.0, 0.0, 1.0, 10.0], dtype=float64) min of a: 0.0 argmin of a: 2 b: array([[1.0, 2.0, 0.0], [1.0, 10.0, -1.0]], dtype=float64) min of b (flattened): -1.0 min of b (axis=0): array([1.0, 2.0, -1.0], dtype=float64) min of b (axis=1): array([0.0, -1.0], dtype=float64) median ------ ``numpy``: https://docs.scipy.org/doc/numpy/reference/generated/numpy.median.html The function computes the median along the specified axis, and returns the median of the array elements. If the ``axis`` keyword argument is ``None``, the arrays is flattened first. The ``dtype`` of the results is always float. .. code:: # code to be run in micropython from ulab import numpy as np a = np.array(range(12), dtype=np.int8).reshape((3, 4)) print('a:\n', a) print('\nmedian of the flattened array: ', np.median(a)) print('\nmedian along the vertical axis: ', np.median(a, axis=0)) print('\nmedian along the horizontal axis: ', np.median(a, axis=1)) .. parsed-literal:: a: array([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]], dtype=int8) median of the flattened array: 5.5 median along the vertical axis: array([4.0, 5.0, 6.0, 7.0], dtype=float64) median along the horizontal axis: array([1.5, 5.5, 9.5], dtype=float64) min --- ``numpy``: https://docs.scipy.org/doc/numpy/reference/generated/numpy.min.html See `numpy.max <#max>`__. .. code:: # code to be run in CPython minimum ------- ``numpy``: https://docs.scipy.org/doc/numpy/reference/generated/numpy.minimum.html Returns the minimum of two arrays, or two scalars, or an array, and a scalar. If the arrays are of different ``dtype``, the output is upcast as in `Binary operators <#Binary-operators>`__. If both inputs are scalars, a scalar is returned. Only positional arguments are implemented. maximum ------- ``numpy``: https://docs.scipy.org/doc/numpy/reference/generated/numpy.maximum.html Returns the maximum of two arrays, or two scalars, or an array, and a scalar. If the arrays are of different ``dtype``, the output is upcast as in `Binary operators <#Binary-operators>`__. If both inputs are scalars, a scalar is returned. Only positional arguments are implemented. .. code:: # code to be run in micropython from ulab import numpy as np a = np.array([1, 2, 3, 4, 5], dtype=np.uint8) b = np.array([5, 4, 3, 2, 1], dtype=np.float) print('minimum of a, and b:') print(np.minimum(a, b)) print('\nmaximum of a, and b:') print(np.maximum(a, b)) print('\nmaximum of 1, and 5.5:') print(np.maximum(1, 5.5)) .. parsed-literal:: minimum of a, and b: array([1.0, 2.0, 3.0, 2.0, 1.0], dtype=float64) maximum of a, and b: array([5.0, 4.0, 3.0, 4.0, 5.0], dtype=float64) maximum of 1, and 5.5: 5.5 not_equal --------- See `numpy.equal <#equal>`__. polyfit ------- ``numpy``: https://docs.scipy.org/doc/numpy/reference/generated/numpy.polyfit.html polyfit takes two, or three arguments. The last one is the degree of the polynomial that will be fitted, the last but one is an array or iterable with the ``y`` (dependent) values, and the first one, an array or iterable with the ``x`` (independent) values, can be dropped. If that is the case, ``x`` will be generated in the function as ``range(len(y))``. If the lengths of ``x``, and ``y`` are not the same, the function raises a ``ValueError``. .. code:: # code to be run in micropython from ulab import numpy as np x = np.array([0, 1, 2, 3, 4, 5, 6]) y = np.array([9, 4, 1, 0, 1, 4, 9]) print('independent values:\t', x) print('dependent values:\t', y) print('fitted values:\t\t', np.polyfit(x, y, 2)) # the same with missing x print('\ndependent values:\t', y) print('fitted values:\t\t', np.polyfit(y, 2)) .. parsed-literal:: independent values: array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0], dtype=float64) dependent values: array([9.0, 4.0, 1.0, 0.0, 1.0, 4.0, 9.0], dtype=float64) fitted values: array([1.0, -6.0, 9.000000000000004], dtype=float64) dependent values: array([9.0, 4.0, 1.0, 0.0, 1.0, 4.0, 9.0], dtype=float64) fitted values: array([1.0, -6.0, 9.000000000000004], dtype=float64) Execution time ~~~~~~~~~~~~~~ ``polyfit`` is based on the inversion of a matrix (there is more on the background in https://en.wikipedia.org/wiki/Polynomial_regression), and it requires the intermediate storage of ``2*N*(deg+1)`` floats, where ``N`` is the number of entries in the input array, and ``deg`` is the fit’s degree. The additional computation costs of the matrix inversion discussed in `linalg.inv <#inv>`__ also apply. The example from above needs around 150 microseconds to return: .. code:: # code to be run in micropython from ulab import numpy as np @timeit def time_polyfit(x, y, n): return np.polyfit(x, y, n) x = np.array([0, 1, 2, 3, 4, 5, 6]) y = np.array([9, 4, 1, 0, 1, 4, 9]) time_polyfit(x, y, 2) .. parsed-literal:: execution time: 153 us polyval ------- ``numpy``: https://docs.scipy.org/doc/numpy/reference/generated/numpy.polyval.html ``polyval`` takes two arguments, both arrays or generic ``micropython`` iterables returning scalars. .. code:: # code to be run in micropython from ulab import numpy as np p = [1, 1, 1, 0] x = [0, 1, 2, 3, 4] print('coefficients: ', p) print('independent values: ', x) print('\nvalues of p(x): ', np.polyval(p, x)) # the same works with one-dimensional ndarrays a = np.array(x) print('\nndarray (a): ', a) print('value of p(a): ', np.polyval(p, a)) .. parsed-literal:: coefficients: [1, 1, 1, 0] independent values: [0, 1, 2, 3, 4] values of p(x): array([0.0, 3.0, 14.0, 39.0, 84.0], dtype=float64) ndarray (a): array([0.0, 1.0, 2.0, 3.0, 4.0], dtype=float64) value of p(a): array([0.0, 3.0, 14.0, 39.0, 84.0], dtype=float64) roll ---- ``numpy``: https://docs.scipy.org/doc/numpy/reference/generated/numpy.roll.html The roll function shifts the content of a vector by the positions given as the second argument. If the ``axis`` keyword is supplied, the shift is applied to the given axis. .. code:: # code to be run in micropython from ulab import numpy as np a = np.array([1, 2, 3, 4, 5, 6, 7, 8]) print("a:\t\t\t", a) a = np.roll(a, 2) print("a rolled to the left:\t", a) # this should be the original vector a = np.roll(a, -2) print("a rolled to the right:\t", a) .. parsed-literal:: a: array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0], dtype=float64) a rolled to the left: array([7.0, 8.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0], dtype=float64) a rolled to the right: array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0], dtype=float64) Rolling works with matrices, too. If the ``axis`` keyword is 0, the matrix is rolled along its vertical axis, otherwise, horizontally. Horizontal rolls are faster, because they require fewer steps, and larger memory chunks are copied, however, they also require more RAM: basically the whole row must be stored internally. Most expensive are the ``None`` keyword values, because with ``axis = None``, the array is flattened first, hence the row’s length is the size of the whole matrix. Vertical rolls require two internal copies of single columns. .. code:: # code to be run in micropython from ulab import numpy as np a = np.array(range(12)).reshape((3, 4)) print("a:\n", a) a = np.roll(a, 2, axis=0) print("\na rolled up:\n", a) a = np.array(range(12)).reshape((3, 4)) print("a:\n", a) a = np.roll(a, -1, axis=1) print("\na rolled to the left:\n", a) a = np.array(range(12)).reshape((3, 4)) print("a:\n", a) a = np.roll(a, 1, axis=None) print("\na rolled with None:\n", a) .. parsed-literal:: a: array([[0.0, 1.0, 2.0, 3.0], [4.0, 5.0, 6.0, 7.0], [8.0, 9.0, 10.0, 11.0]], dtype=float64) a rolled up: array([[4.0, 5.0, 6.0, 7.0], [8.0, 9.0, 10.0, 11.0], [0.0, 1.0, 2.0, 3.0]], dtype=float64) a: array([[0.0, 1.0, 2.0, 3.0], [4.0, 5.0, 6.0, 7.0], [8.0, 9.0, 10.0, 11.0]], dtype=float64) a rolled to the left: array([[1.0, 2.0, 3.0, 0.0], [5.0, 6.0, 7.0, 4.0], [9.0, 10.0, 11.0, 8.0]], dtype=float64) a: array([[0.0, 1.0, 2.0, 3.0], [4.0, 5.0, 6.0, 7.0], [8.0, 9.0, 10.0, 11.0]], dtype=float64) a rolled with None: array([[11.0, 0.0, 1.0, 2.0], [3.0, 4.0, 5.0, 6.0], [7.0, 8.0, 9.0, 10.0]], dtype=float64) sort ---- ``numpy``: https://docs.scipy.org/doc/numpy/reference/generated/numpy.sort.html The sort function takes an ndarray, and sorts its elements in ascending order along the specified axis using a heap sort algorithm. As opposed to the ``.sort()`` method discussed earlier, this function creates a copy of its input before sorting, and at the end, returns this copy. Sorting takes place in place, without auxiliary storage. The ``axis`` keyword argument takes on the possible values of -1 (the last axis, in ``ulab`` equivalent to the second axis, and this also happens to be the default value), 0, 1, or ``None``. The first three cases are identical to those in `diff <#diff>`__, while the last one flattens the array before sorting. If descending order is required, the result can simply be ``flip``\ ped, see `flip <#flip>`__. **WARNING:** ``numpy`` defines the ``kind``, and ``order`` keyword arguments that are not implemented here. The function in ``ulab`` always uses heap sort, and since ``ulab`` does not have the concept of data fields, the ``order`` keyword argument would have no meaning. .. code:: # code to be run in micropython from ulab import numpy as np a = np.array([[1, 12, 3, 0], [5, 3, 4, 1], [9, 11, 1, 8], [7, 10, 0, 1]], dtype=np.float) print('\na:\n', a) b = np.sort(a, axis=0) print('\na sorted along vertical axis:\n', b) c = np.sort(a, axis=1) print('\na sorted along horizontal axis:\n', c) c = np.sort(a, axis=None) print('\nflattened a sorted:\n', c) .. parsed-literal:: a: array([[1.0, 12.0, 3.0, 0.0], [5.0, 3.0, 4.0, 1.0], [9.0, 11.0, 1.0, 8.0], [7.0, 10.0, 0.0, 1.0]], dtype=float64) a sorted along vertical axis: array([[1.0, 3.0, 0.0, 0.0], [5.0, 10.0, 1.0, 1.0], [7.0, 11.0, 3.0, 1.0], [9.0, 12.0, 4.0, 8.0]], dtype=float64) a sorted along horizontal axis: array([[0.0, 1.0, 3.0, 12.0], [1.0, 3.0, 4.0, 5.0], [1.0, 8.0, 9.0, 11.0], [0.0, 1.0, 7.0, 10.0]], dtype=float64) flattened a sorted: array([0.0, 0.0, 1.0, ..., 10.0, 11.0, 12.0], dtype=float64) Heap sort requires :math:`\sim N\log N` operations, and notably, the worst case costs only 20% more time than the average. In order to get an order-of-magnitude estimate, we will take the sine of 1000 uniformly spaced numbers between 0, and two pi, and sort them: .. code:: # code to be run in micropython import ulab as np from ulab import vector from ulab import numerical @timeit def sort_time(array): return numerical.sort(array) b = vector.sin(np.linspace(0, 6.28, num=1000)) print('b: ', b) sort_time(b) print('\nb sorted:\n', b) std --- ``numpy``: https://docs.scipy.org/doc/numpy/reference/generated/numpy.std.html If the axis keyword is not specified, it assumes the default value of ``None``, and returns the result of the computation for the flattened array. Otherwise, the calculation is along the given axis. .. code:: # code to be run in micropython from ulab import numpy as np a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) print('a: \n', a) print('sum, flat array: ', np.std(a)) print('std, vertical: ', np.std(a, axis=0)) print('std, horizonal: ', np.std(a, axis=1)) .. parsed-literal:: a: array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]], dtype=float64) sum, flat array: 2.581988897471611 std, vertical: array([2.449489742783178, 2.449489742783178, 2.449489742783178], dtype=float64) std, horizonal: array([0.8164965809277261, 0.8164965809277261, 0.8164965809277261], dtype=float64) sum --- ``numpy``: https://docs.scipy.org/doc/numpy/reference/generated/numpy.sum.html If the axis keyword is not specified, it assumes the default value of ``None``, and returns the result of the computation for the flattened array. Otherwise, the calculation is along the given axis. .. code:: # code to be run in micropython from ulab import numpy as np a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) print('a: \n', a) print('sum, flat array: ', np.sum(a)) print('sum, horizontal: ', np.sum(a, axis=1)) print('std, vertical: ', np.sum(a, axis=0)) .. parsed-literal:: a: array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]], dtype=float64) sum, flat array: 45.0 sum, horizontal: array([6.0, 15.0, 24.0], dtype=float64) std, vertical: array([12.0, 15.0, 18.0], dtype=float64) trapz ----- ``numpy``: https://numpy.org/doc/stable/reference/generated/numpy.trapz.html The function takes one or two one-dimensional ``ndarray``\ s, and integrates the dependent values (``y``) using the trapezoidal rule. If the independent variable (``x``) is given, that is taken as the sample points corresponding to ``y``. .. code:: # code to be run in micropython from ulab import numpy as np x = np.linspace(0, 9, num=10) y = x*x print('x: ', x) print('y: ', y) print('============================') print('integral of y: ', np.trapz(y)) print('integral of y at x: ', np.trapz(y, x=x)) .. parsed-literal:: x: array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0], dtype=float64) y: array([0.0, 1.0, 4.0, 9.0, 16.0, 25.0, 36.0, 49.0, 64.0, 81.0], dtype=float64) ============================ integral of y: 244.5 integral of y at x: 244.5 .. code:: # code to be run in CPython