circuitpython-ulab/code/numerical.c
2019-12-05 20:53:27 +01:00

316 lines
14 KiB
C

/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2019 Zoltán Vörös
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "py/obj.h"
#include "py/objint.h"
#include "py/runtime.h"
#include "py/builtin.h"
#include "py/misc.h"
#include "numerical.h"
enum NUMERICAL_FUNCTION_TYPE {
NUMERICAL_MIN,
NUMERICAL_MAX,
NUMERICAL_ARGMIN,
NUMERICAL_ARGMAX,
NUMERICAL_SUM,
NUMERICAL_MEAN,
NUMERICAL_STD,
};
// creates the shape and strides arrays of the contracted ndarray
ndarray_header_obj_t contracted_shape_strides(ndarray_obj_t *ndarray, int8_t axis) {
if(axis < 0) axis += ndarray->ndim;
if((axis > ndarray->ndim-1) || (axis < 0)) {
mp_raise_ValueError("tuple index out of range");
}
size_t *shape = m_new(size_t, ndarray->ndim-1);
int32_t *strides = m_new(int32_t, ndarray->ndim-1);
for(size_t i=0, j=0; i < ndarray->ndim; i++) {
if(axis != i) {
shape[j] = ndarray->shape[j];
j++;
}
}
int32_t stride = 1;
for(size_t i=0; i < ndarray->ndim-1; i++) {
strides[ndarray->ndim-2-i] = stride;
stride *= shape[ndarray->ndim-2-i];
}
ndarray_header_obj_t header;
header.shape = shape;
header.strides = strides;
header.axis = axis;
return header;
}
mp_obj_t numerical_linspace(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&mp_const_none_obj) } },
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&mp_const_none_obj) } },
{ MP_QSTR_num, MP_ARG_INT, {.u_int = 50} },
{ MP_QSTR_endpoint, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&mp_const_true_obj)} },
{ MP_QSTR_retstep, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&mp_const_false_obj)} },
{ MP_QSTR_dtype, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = NDARRAY_FLOAT} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(2, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
uint16_t len = args[2].u_int;
if(len < 2) {
mp_raise_ValueError("number of points must be at least 2");
}
mp_float_t value, step;
value = mp_obj_get_float(args[0].u_obj);
uint8_t typecode = args[5].u_int;
if(args[3].u_obj == mp_const_true) step = (mp_obj_get_float(args[1].u_obj)-value)/(len-1);
else step = (mp_obj_get_float(args[1].u_obj)-value)/len;
ndarray_obj_t *ndarray = ndarray_new_linear_array(len, typecode);
if(typecode == NDARRAY_UINT8) {
uint8_t *array = (uint8_t *)ndarray->array->items;
for(size_t i=0; i < len; i++, value += step) array[i] = (uint8_t)value;
} else if(typecode == NDARRAY_INT8) {
int8_t *array = (int8_t *)ndarray->array->items;
for(size_t i=0; i < len; i++, value += step) array[i] = (int8_t)value;
} else if(typecode == NDARRAY_UINT16) {
uint16_t *array = (uint16_t *)ndarray->array->items;
for(size_t i=0; i < len; i++, value += step) array[i] = (uint16_t)value;
} else if(typecode == NDARRAY_INT16) {
int16_t *array = (int16_t *)ndarray->array->items;
for(size_t i=0; i < len; i++, value += step) array[i] = (int16_t)value;
} else {
mp_float_t *array = (mp_float_t *)ndarray->array->items;
for(size_t i=0; i < len; i++, value += step) array[i] = value;
}
if(args[4].u_obj == mp_const_false) {
return MP_OBJ_FROM_PTR(ndarray);
} else {
mp_obj_t tuple[2];
tuple[0] = ndarray;
tuple[1] = mp_obj_new_float(step);
return mp_obj_new_tuple(2, tuple);
}
}
mp_obj_t numerical_flat_sum_mean_std(ndarray_obj_t *ndarray, uint8_t optype, size_t ddof) {
mp_float_t value;
int32_t *shape_strides = m_new(int32_t, ndarray->ndim);
shape_strides[ndarray->ndim-1] = ndarray->strides[ndarray->ndim-1];
for(uint8_t i=ndarray->ndim-1; i > 0; i--) {
shape_strides[i-1] = shape_strides[i] * ndarray->shape[i-1];
}
if(ndarray->array->typecode == NDARRAY_UINT8) {
CALCULATE_FLAT_SUM_STD(ndarray, uint8_t, value, shape_strides, optype);
} else if(ndarray->array->typecode == NDARRAY_INT8) {
CALCULATE_FLAT_SUM_STD(ndarray, int8_t, value, shape_strides, optype);
} if(ndarray->array->typecode == NDARRAY_UINT16) {
CALCULATE_FLAT_SUM_STD(ndarray, uint16_t, value, shape_strides, optype);
} else if(ndarray->array->typecode == NDARRAY_INT16) {
CALCULATE_FLAT_SUM_STD(ndarray, int16_t, value, shape_strides, optype);
} else {
CALCULATE_FLAT_SUM_STD(ndarray, mp_float_t, value, shape_strides, optype);
}
m_del(int32_t, shape_strides, ndarray->ndim);
if(optype == NUMERICAL_SUM) {
return mp_obj_new_float(value);
} else if(optype == NUMERICAL_MEAN) {
return mp_obj_new_float(value/ndarray->len);
} else {
return mp_obj_new_float(MICROPY_FLOAT_C_FUN(sqrt)(value/(ndarray->len-ddof)));
}
}
// numerical functions for ndarrays
mp_obj_t numerical_sum_mean_ndarray(ndarray_obj_t *ndarray, mp_obj_t axis, uint8_t optype) {
if(axis == mp_const_none) {
return numerical_flat_sum_mean_std(ndarray, optype, 0);
} else {
int8_t ax = mp_obj_get_int(axis);
ndarray_header_obj_t header = contracted_shape_strides(ndarray, ax);
ndarray_obj_t *result = ndarray_new_ndarray(ndarray->ndim-1, header.shape, header.strides, NDARRAY_FLOAT);
mp_float_t *farray = (mp_float_t *)result->array->items;
size_t offset;
// iterate along the length of the output array, so as to avoid recursion
for(size_t i=0; i < result->array->len; i++) {
offset = ndarray_index_from_contracted(i, ndarray, result->strides, result->ndim, header.axis) + ndarray->offset;
if(ndarray->array->typecode == NDARRAY_UINT8) {
CALCULATE_SUM(ndarray, uint8_t, farray, ndarray->shape[header.axis], i, ndarray->strides[header.axis], offset, optype);
} else if(ndarray->array->typecode == NDARRAY_INT8) {
CALCULATE_SUM(ndarray, int8_t, farray, ndarray->shape[header.axis], i, ndarray->strides[header.axis], offset, optype);
} else if(ndarray->array->typecode == NDARRAY_UINT16) {
CALCULATE_SUM(ndarray, uint16_t, farray, ndarray->shape[header.axis], i, ndarray->strides[header.axis], offset, optype);
} else if(ndarray->array->typecode == NDARRAY_INT16) {
CALCULATE_SUM(ndarray, int16_t, farray, ndarray->shape[header.axis], i, ndarray->strides[header.axis], offset, optype);
} else {
CALCULATE_SUM(ndarray, mp_float_t, farray, ndarray->shape[header.axis], i, ndarray->strides[header.axis], offset, optype);
}
if(optype == NUMERICAL_MEAN) farray[i] /= ndarray->shape[header.axis];
}
return MP_OBJ_FROM_PTR(result);
}
return mp_const_none;
}
mp_obj_t numerical_argmin_argmax_ndarray(ndarray_obj_t *ndarray, mp_obj_t axis, uint8_t optype) {
return mp_const_none;
}
// numerical function for interables (single axis)
mp_obj_t numerical_argmin_argmax_iterable(mp_obj_t oin, uint8_t optype) {
size_t idx = 0, best_idx = 0;
mp_obj_iter_buf_t iter_buf;
mp_obj_t iterable = mp_getiter(oin, &iter_buf);
mp_obj_t best_obj = MP_OBJ_NULL;
mp_obj_t item;
mp_uint_t op = MP_BINARY_OP_LESS;
if((optype == NUMERICAL_ARGMAX) || (optype == NUMERICAL_MAX)) op = MP_BINARY_OP_MORE;
while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
if ((best_obj == MP_OBJ_NULL) || (mp_binary_op(op, item, best_obj) == mp_const_true)) {
best_obj = item;
best_idx = idx;
}
idx++;
}
if((optype == NUMERICAL_ARGMIN) || (optype == NUMERICAL_ARGMAX)) {
return MP_OBJ_NEW_SMALL_INT(best_idx);
} else {
return best_obj;
}
}
mp_obj_t numerical_sum_mean_std_iterable(mp_obj_t oin, uint8_t optype, size_t ddof) {
mp_float_t value, sum = 0.0, sq_sum = 0.0;
mp_obj_iter_buf_t iter_buf;
mp_obj_t item, iterable = mp_getiter(oin, &iter_buf);
mp_int_t len = mp_obj_get_int(mp_obj_len(oin));
while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
value = mp_obj_get_float(item);
sum += value;
}
if(optype == NUMERICAL_SUM) {
return mp_obj_new_float(sum);
} else if(optype == NUMERICAL_MEAN) {
return mp_obj_new_float(sum/len);
} else { // this should be the case of the standard deviation
sum /= len; // this is the mean now
iterable = mp_getiter(oin, &iter_buf);
while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
value = mp_obj_get_float(item) - sum;
sq_sum += value * value;
}
return mp_obj_new_float(MICROPY_FLOAT_C_FUN(sqrt)(sq_sum/(len-ddof)));
}
}
STATIC mp_obj_t numerical_function(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args, uint8_t optype) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&mp_const_none_obj)} } ,
{ MP_QSTR_axis, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&mp_const_none_obj)} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_obj_t oin = args[0].u_obj;
mp_obj_t axis = args[1].u_obj;
if(MP_OBJ_IS_TYPE(oin, &mp_type_tuple) || MP_OBJ_IS_TYPE(oin, &mp_type_list) ||
MP_OBJ_IS_TYPE(oin, &mp_type_range)) {
switch(optype) {
case NUMERICAL_MIN:
case NUMERICAL_ARGMIN:
case NUMERICAL_MAX:
case NUMERICAL_ARGMAX:
return numerical_argmin_argmax_iterable(oin, optype);
case NUMERICAL_SUM:
case NUMERICAL_MEAN:
return numerical_sum_mean_std_iterable(oin, optype, 0);
default: // we should never end up here
return mp_const_none;
}
} else if(MP_OBJ_IS_TYPE(oin, &ulab_ndarray_type)) {
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(oin);
switch(optype) {
case NUMERICAL_MIN:
case NUMERICAL_ARGMIN:
case NUMERICAL_MAX:
case NUMERICAL_ARGMAX:
return numerical_argmin_argmax_ndarray(ndarray, axis, optype);
case NUMERICAL_SUM:
case NUMERICAL_MEAN:
return numerical_sum_mean_ndarray(ndarray, args[1].u_obj, optype);
default:
return mp_const_none;
}
} else {
mp_raise_TypeError("input must be tuple, list, range, or ndarray");
}
return mp_const_none;
}
mp_obj_t numerical_sum(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
return numerical_function(n_args, pos_args, kw_args, NUMERICAL_SUM);
}
mp_obj_t numerical_mean(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
return numerical_function(n_args, pos_args, kw_args, NUMERICAL_MEAN);
}
mp_obj_t numerical_std(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&mp_const_none_obj)} } ,
{ MP_QSTR_axis, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&mp_const_none_obj)} },
{ MP_QSTR_ddof, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_obj_t oin = args[0].u_obj;
mp_obj_t axis = args[1].u_obj;
size_t ddof = args[2].u_int;
if(MP_OBJ_IS_TYPE(oin, &mp_type_tuple) || MP_OBJ_IS_TYPE(oin, &mp_type_list) || MP_OBJ_IS_TYPE(oin, &mp_type_range)) {
return numerical_sum_mean_std_iterable(oin, NUMERICAL_STD, ddof);
} else if(MP_OBJ_IS_TYPE(oin, &ulab_ndarray_type)) {
ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(oin);
if(axis == mp_const_none) { // calculate for the flat array
return numerical_flat_sum_mean_std(ndarray, NUMERICAL_STD, ddof);
} else {
int8_t ax = mp_obj_get_int(axis);
ndarray_header_obj_t header = contracted_shape_strides(ndarray, ax);
ndarray_obj_t *result = ndarray_new_ndarray(ndarray->ndim-1, header.shape, header.strides, NDARRAY_FLOAT);
mp_float_t *farray = (mp_float_t *)result->array->items, sum_sq;
size_t offset;
// iterate along the length of the output array, so as to avoid recursion
for(size_t i=0; i < result->array->len; i++) {
offset = ndarray_index_from_contracted(i, ndarray, result->strides, result->ndim, header.axis) + ndarray->offset;
if(ndarray->array->typecode == NDARRAY_UINT8) {
CALCULATE_STD(ndarray, uint8_t, sum_sq, ndarray->shape[header.axis], ndarray->strides[header.axis], offset);
} else if(ndarray->array->typecode == NDARRAY_INT8) {
CALCULATE_STD(ndarray, int8_t, sum_sq, ndarray->shape[header.axis], ndarray->strides[header.axis], offset);
} else if(ndarray->array->typecode == NDARRAY_UINT16) {
CALCULATE_STD(ndarray, uint16_t, sum_sq, ndarray->shape[header.axis], ndarray->strides[header.axis], offset);
} else if(ndarray->array->typecode == NDARRAY_INT16) {
CALCULATE_STD(ndarray, int16_t, sum_sq, ndarray->shape[header.axis], ndarray->strides[header.axis], offset);
} else {
CALCULATE_STD(ndarray, mp_float_t, sum_sq, ndarray->shape[header.axis], ndarray->strides[header.axis], offset);
}
farray[i] = MICROPY_FLOAT_C_FUN(sqrt)(sum_sq / (ndarray->shape[header.axis] - ddof));
}
return MP_OBJ_FROM_PTR(result);
}
mp_raise_TypeError("input must be tuple, list, range, or ndarray");
}
return mp_const_none;
}