circuitpython-ulab/code/poly.c

152 lines
5.6 KiB
C

/*
* This file is part of the micropython-ulab project,
*
* https://github.com/v923z/micropython-ulab
*
* The MIT License (MIT)
*
* Copyright (c) 2019 Zoltán Vörös
*/
#include "py/obj.h"
#include "py/runtime.h"
#include "py/objarray.h"
#include "ndarray.h"
#include "linalg.h"
#include "poly.h"
void fill_array_iterable(mp_float_t *array, mp_obj_t oin) {
mp_obj_iter_buf_t buf;
mp_obj_t item, iterable = mp_getiter(oin, &buf);
while((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
*array++ = mp_obj_get_float(item);
}
}
mp_obj_t poly_polyval(mp_obj_t o_p, mp_obj_t o_x) {
// we always return floats: polynomials are going to be of type float, except,
// when both the coefficients and the independent variable are integers;
uint8_t plen = mp_obj_get_int(mp_obj_len_maybe(o_p));
mp_float_t *p = m_new(mp_float_t, plen);
fill_array_iterable(p, o_p);
ndarray_obj_t *ndarray;
mp_float_t *array;
if(MP_OBJ_IS_TYPE(o_x, &ulab_ndarray_type)) {
ndarray_obj_t *input = MP_OBJ_TO_PTR(o_x);
ndarray = ndarray_copy_view(input, NDARRAY_FLOAT);
array = (mp_float_t *)ndarray->array->items;
} else { // at this point, we should have a 1-D iterable
size_t len = mp_obj_get_int(mp_obj_len_maybe(o_x));
ndarray = ndarray_new_linear_array(len, NDARRAY_FLOAT);
array = (mp_float_t *)ndarray->array->items;
fill_array_iterable(array, o_x);
}
mp_float_t x, y;
for(size_t i=0; i < ndarray->len; i++) {
x = array[i];
y = p[0];
for(uint8_t j=0; j < plen-1; j++) {
y *= x;
y += p[j+1];
}
array[i] = y;
}
m_del(mp_float_t, p, plen);
return MP_OBJ_FROM_PTR(ndarray);
}
mp_obj_t poly_polyfit(size_t n_args, const mp_obj_t *args) {
if(n_args != 3) {
mp_raise_ValueError("number of arguments must be 3");
}
if(!MP_OBJ_IS_TYPE(args[0], &ulab_ndarray_type) && !MP_OBJ_IS_TYPE(args[0], &mp_type_tuple) &&
!MP_OBJ_IS_TYPE(args[0], &mp_type_list) && !MP_OBJ_IS_TYPE(args[0], &mp_type_range) &&
!MP_OBJ_IS_TYPE(args[1], &ulab_ndarray_type) && !MP_OBJ_IS_TYPE(args[1], &mp_type_tuple) &&
!MP_OBJ_IS_TYPE(args[1], &mp_type_list) && !MP_OBJ_IS_TYPE(args[1], &mp_type_range)) {
mp_raise_ValueError("input data must be a 1D iterable");
}
uint16_t lenx, leny;
uint8_t deg;
mp_float_t *x, *XT, *y, *prod;
lenx = (uint16_t)mp_obj_get_int(mp_obj_len_maybe(args[0]));
leny = (uint16_t)mp_obj_get_int(mp_obj_len_maybe(args[1]));
if(lenx != leny) {
mp_raise_ValueError("input vectors must be of equal length");
}
deg = (uint8_t)mp_obj_get_int(args[2]);
if(leny < deg) {
mp_raise_ValueError("more degrees of freedom than data points");
}
x = m_new(mp_float_t, lenx);
fill_array_iterable(x, args[0]);
y = m_new(mp_float_t, leny);
fill_array_iterable(y, args[1]);
// one could probably express X as a function of XT,
// and thereby save RAM, because X is used only in the product
XT = m_new(mp_float_t, (deg+1)*leny); // XT is a matrix of shape (deg+1, len) (rows, columns)
for(uint8_t i=0; i < leny; i++) { // column index
XT[i+0*lenx] = 1.0; // top row
for(uint8_t j=1; j < deg+1; j++) { // row index
XT[i+j*leny] = XT[i+(j-1)*leny]*x[i];
}
}
prod = m_new(mp_float_t, (deg+1)*(deg+1)); // the product matrix is of shape (deg+1, deg+1)
mp_float_t sum;
for(uint16_t i=0; i < deg+1; i++) { // column index
for(uint16_t j=0; j < deg+1; j++) { // row index
sum = 0.0;
for(size_t k=0; k < lenx; k++) {
// (j, k) * (k, i)
// Note that the second matrix is simply the transpose of the first:
// X(k, i) = XT(i, k) = XT[k*lenx+i]
sum += XT[j*lenx+k]*XT[i*lenx+k]; // X[k*(deg+1)+i];
}
prod[j*(deg+1)+i] = sum;
}
}
if(!linalg_invert_matrix(prod, deg+1)) {
// Although X was a Vandermonde matrix, whose inverse is guaranteed to exist,
// we bail out here, if prod couldn't be inverted: if the values in x are not all
// distinct, prod is singular
m_del(mp_float_t, XT, (deg+1)*lenx);
m_del(mp_float_t, x, lenx);
m_del(mp_float_t, y, lenx);
m_del(mp_float_t, prod, (deg+1)*(deg+1));
mp_raise_ValueError("could not invert Vandermonde matrix");
}
// at this point, we have the inverse of X^T * X
// y is a column vector; x is free now, we can use it for storing intermediate values
for(uint16_t i=0; i < deg+1; i++) { // row index
sum = 0.0;
for(uint16_t j=0; j < lenx; j++) { // column index
sum += XT[i*lenx+j]*y[j];
}
x[i] = sum;
}
// XT is no longer needed
m_del(mp_float_t, XT, (deg+1)*leny);
ndarray_obj_t *beta = ndarray_new_linear_array(deg+1, NDARRAY_FLOAT);
mp_float_t *betav = (mp_float_t *)beta->array->items;
// x[0..(deg+1)] contains now the product X^T * y; we can get rid of y
m_del(float, y, leny);
// now, we calculate beta, i.e., we apply prod = (X^T * X)^(-1) on x = X^T * y; x is a column vector now
for(uint16_t i=0; i < deg+1; i++) {
sum = 0.0;
for(uint16_t j=0; j < deg+1; j++) {
sum += prod[i*(deg+1)+j]*x[j];
}
betav[i] = sum;
}
m_del(mp_float_t, x, lenx);
m_del(mp_float_t, prod, (deg+1)*(deg+1));
for(uint8_t i=0; i < (deg+1)/2; i++) {
// We have to reverse the array, for the leading coefficient comes first.
SWAP(mp_float_t, betav[i], betav[deg-i]);
}
return MP_OBJ_FROM_PTR(beta);
}