// This file is part of the CircuitPython project: https://circuitpython.org // // SPDX-FileCopyrightText: Copyright (c) 2017 Scott Shawcroft for Adafruit Industries // // SPDX-License-Identifier: MIT #include #include #include "py/mpconfig.h" #include "py/mphal.h" #include "py/mpprint.h" #include "supervisor/shared/cpu.h" #include "supervisor/shared/display.h" #include "shared-bindings/terminalio/Terminal.h" #include "supervisor/shared/serial.h" #include "shared-bindings/microcontroller/Pin.h" #if CIRCUITPY_SERIAL_BLE #include "supervisor/shared/bluetooth/serial.h" #endif #if CIRCUITPY_USB_DEVICE #include "shared-module/usb_cdc/__init__.h" #endif #if CIRCUITPY_TINYUSB #include "supervisor/usb.h" #include "tusb.h" #endif #if CIRCUITPY_WEB_WORKFLOW #include "supervisor/shared/web_workflow/websocket.h" #endif #if CIRCUITPY_CONSOLE_UART #include "shared-bindings/busio/UART.h" busio_uart_obj_t console_uart; // on Espressif, the receive buffer must be larger than the hardware FIFO length. See uart_driver_install(). #if defined(SOC_UART_FIFO_LEN) byte console_uart_rx_buf[SOC_UART_FIFO_LEN + 1]; #else byte console_uart_rx_buf[64]; #endif #endif #if CIRCUITPY_USB_DEVICE || CIRCUITPY_CONSOLE_UART // Flag to note whether this is the first write after connection. // Delay slightly on the first write to allow time for the host to set up things, // including turning off echo mode. static bool _first_write_done = false; #endif #if CIRCUITPY_USB_DEVICE && CIRCUITPY_USB_VENDOR bool tud_vendor_connected(void); #endif // Set to true to temporarily discard writes to the console only. static bool _serial_console_write_disabled; // Set to true to temporarily discard writes to the display terminal only. static bool _serial_display_write_disabled; // Indicates that serial console has been early initialized. static bool _serial_console_early_inited = false; #if CIRCUITPY_CONSOLE_UART // All output to the console uart comes through this inner write function. It ensures that all // lines are terminated with a "cooked" '\r\n' sequence. Lines that are already cooked are sent // on unchanged. static void inner_console_uart_write_cb(void *env, const char *str, size_t len) { (void)env; int uart_errcode; bool last_cr = false; while (len > 0) { size_t i = 0; if (str[0] == '\n' && !last_cr) { common_hal_busio_uart_write(&console_uart, (const uint8_t *)"\r", 1, &uart_errcode); i = 1; } // Lump all characters on the next line together. while ((last_cr || str[i] != '\n') && i < len) { last_cr = str[i] == '\r'; i++; } common_hal_busio_uart_write(&console_uart, (const uint8_t *)str, i, &uart_errcode); str = &str[i]; len -= i; } } #if CIRCUITPY_CONSOLE_UART_TIMESTAMP static const mp_print_t inner_console_uart_write = {NULL, inner_console_uart_write_cb}; static uint32_t console_uart_write_prev_time = 0; static bool console_uart_write_prev_nl = true; static inline void console_uart_write_timestamp(void) { uint32_t now = supervisor_ticks_ms32(); uint32_t delta = now - console_uart_write_prev_time; console_uart_write_prev_time = now; mp_printf(&inner_console_uart_write, "%01lu.%03lu(%01lu.%03lu): ", now / 1000, now % 1000, delta / 1000, delta % 1000); } #endif static size_t console_uart_write(const char *str, size_t len) { // Ignore writes if console uart is not yet initialized. if (!_serial_console_early_inited) { return len; } if (!_first_write_done) { mp_hal_delay_ms(50); _first_write_done = true; } // There may be multiple newlines in the string, split at newlines. int remaining_len = len; while (remaining_len > 0) { #if CIRCUITPY_CONSOLE_UART_TIMESTAMP if (console_uart_write_prev_nl) { console_uart_write_timestamp(); console_uart_write_prev_nl = false; } #endif int print_len = 0; while (print_len < remaining_len) { if (str[print_len++] == '\n') { #if CIRCUITPY_CONSOLE_UART_TIMESTAMP console_uart_write_prev_nl = true; #endif break; } } inner_console_uart_write_cb(NULL, str, print_len); str += print_len; remaining_len -= print_len; } return len; } static void console_uart_write_cb(void *env, const char *str, size_t len) { (void)env; console_uart_write(str, len); } const mp_print_t console_uart_print = {NULL, console_uart_write_cb}; #endif MP_WEAK void board_serial_early_init(void) { } MP_WEAK void board_serial_init(void) { } MP_WEAK bool board_serial_connected(void) { return false; } MP_WEAK char board_serial_read(void) { return -1; } MP_WEAK uint32_t board_serial_bytes_available(void) { return 0; } MP_WEAK void board_serial_write_substring(const char *text, uint32_t length) { (void)text; (void)length; } void serial_early_init(void) { // Ignore duplicate calls to initialize allowing port-specific code to // call this function early. if (_serial_console_early_inited) { return; } #if CIRCUITPY_CONSOLE_UART // Set up console UART, if enabled. console_uart.base.type = &busio_uart_type; const mcu_pin_obj_t *console_rx = MP_OBJ_TO_PTR(CIRCUITPY_CONSOLE_UART_RX); const mcu_pin_obj_t *console_tx = MP_OBJ_TO_PTR(CIRCUITPY_CONSOLE_UART_TX); common_hal_busio_uart_construct(&console_uart, console_tx, console_rx, NULL, NULL, NULL, false, CIRCUITPY_CONSOLE_UART_BAUDRATE, 8, BUSIO_UART_PARITY_NONE, 1, 1.0f, sizeof(console_uart_rx_buf), console_uart_rx_buf, true); common_hal_busio_uart_never_reset(&console_uart); #endif board_serial_early_init(); #if CIRCUITPY_PORT_SERIAL port_serial_early_init(); #endif _serial_console_early_inited = true; // Do an initial print so that we can confirm the serial output is working. CIRCUITPY_CONSOLE_UART_PRINTF("Serial console setup\n"); } void serial_init(void) { #if CIRCUITPY_USB_DEVICE || CIRCUITPY_CONSOLE_UART _first_write_done = false; #endif board_serial_init(); #if CIRCUITPY_PORT_SERIAL port_serial_init(); #endif } bool serial_connected(void) { #if CIRCUITPY_USB_DEVICE && CIRCUITPY_USB_VENDOR if (tud_vendor_connected()) { return true; } #endif #if CIRCUITPY_CONSOLE_UART return true; #endif #if CIRCUITPY_SERIAL_BLE if (ble_serial_connected()) { return true; } #endif #if CIRCUITPY_USB_DEVICE && CIRCUITPY_USB_CDC if (usb_cdc_console_enabled() && tud_cdc_connected()) { return true; } #elif CIRCUITPY_USB_DEVICE if (tud_cdc_connected()) { return true; } #endif #if CIRCUITPY_WEB_WORKFLOW if (websocket_connected()) { return true; } #endif #if CIRCUITPY_TERMINALIO if (supervisor_terminal_started()) { return true; } #endif if (board_serial_connected()) { return true; } #if CIRCUITPY_PORT_SERIAL if (port_serial_connected()) { return true; } #endif return false; } char serial_read(void) { #if CIRCUITPY_USB_DEVICE && CIRCUITPY_USB_VENDOR if (tud_vendor_connected() && tud_vendor_available() > 0) { char tiny_buffer; tud_vendor_read(&tiny_buffer, 1); return tiny_buffer; } #endif #if CIRCUITPY_CONSOLE_UART if (common_hal_busio_uart_rx_characters_available(&console_uart)) { int uart_errcode; char text; common_hal_busio_uart_read(&console_uart, (uint8_t *)&text, 1, &uart_errcode); return text; } #endif #if CIRCUITPY_SERIAL_BLE if (ble_serial_available() > 0) { return ble_serial_read_char(); } #endif #if CIRCUITPY_WEB_WORKFLOW if (websocket_available()) { int c = websocket_read_char(); if (c != -1) { return c; } } #endif #if CIRCUITPY_USB_KEYBOARD_WORKFLOW if (usb_keyboard_chars_available() > 0) { return usb_keyboard_read_char(); } #endif if (board_serial_bytes_available() > 0) { return board_serial_read(); } #if CIRCUITPY_PORT_SERIAL if (port_serial_bytes_available() > 0) { return port_serial_read(); } #endif #if CIRCUITPY_USB_DEVICE && CIRCUITPY_USB_CDC if (!usb_cdc_console_enabled()) { return -1; } #endif #if CIRCUITPY_USB_DEVICE return (char)tud_cdc_read_char(); #endif return -1; } uint32_t serial_bytes_available(void) { // There may be multiple serial input channels, so sum the count from all. uint32_t count = 0; #if CIRCUITPY_USB_DEVICE && CIRCUITPY_USB_VENDOR if (tud_vendor_connected()) { count += tud_vendor_available(); } #endif #if CIRCUITPY_CONSOLE_UART count += common_hal_busio_uart_rx_characters_available(&console_uart); #endif #if CIRCUITPY_SERIAL_BLE count += ble_serial_available(); #endif #if CIRCUITPY_WEB_WORKFLOW count += websocket_available(); #endif #if CIRCUITPY_USB_KEYBOARD_WORKFLOW count += usb_keyboard_chars_available(); #endif #if CIRCUITPY_USB_DEVICE && CIRCUITPY_USB_CDC if (usb_cdc_console_enabled()) { count += tud_cdc_available(); } #endif // Board-specific serial input. count += board_serial_bytes_available(); #if CIRCUITPY_PORT_SERIAL // Port-specific serial input. count += port_serial_bytes_available(); #endif return count; } uint32_t serial_write_substring(const char *text, uint32_t length) { if (length == 0) { return 0; } // See https://github.com/micropython/micropython/pull/11850 for the motivation for returning // the number of chars written. // Assume that unless otherwise reported, we sent all that we got. uint32_t length_sent = length; #if CIRCUITPY_TERMINALIO int errcode; if (!_serial_display_write_disabled) { length_sent = common_hal_terminalio_terminal_write(&supervisor_terminal, (const uint8_t *)text, length, &errcode); } #endif if (_serial_console_write_disabled) { return length_sent; } #if CIRCUITPY_USB_DEVICE && CIRCUITPY_USB_VENDOR if (tud_vendor_connected()) { length_sent = tud_vendor_write(text, length); } #endif #if CIRCUITPY_CONSOLE_UART length_sent = console_uart_write(text, length); #endif #if CIRCUITPY_SERIAL_BLE ble_serial_write(text, length); #endif #if CIRCUITPY_WEB_WORKFLOW websocket_write(text, length); #endif #if CIRCUITPY_USB_DEVICE && CIRCUITPY_USB_CDC if (!usb_cdc_console_enabled()) { return length; } #endif #if CIRCUITPY_USB_DEVICE // Delay the very first write if (tud_cdc_connected() && !_first_write_done) { mp_hal_delay_ms(50); _first_write_done = true; } uint32_t count = 0; if (tud_cdc_connected()) { while (count < length) { count += tud_cdc_write(text + count, length - count); // If we're in an interrupt, then don't wait for more room. Queue up what we can. if (cpu_interrupt_active()) { break; } usb_background(); } } #endif board_serial_write_substring(text, length); #if CIRCUITPY_PORT_SERIAL port_serial_write_substring(text, length); #endif return length_sent; } void serial_write(const char *text) { serial_write_substring(text, strlen(text)); } bool serial_console_write_disable(bool disabled) { bool now = _serial_console_write_disabled; _serial_console_write_disabled = disabled; return now; } bool serial_display_write_disable(bool disabled) { bool now = _serial_display_write_disabled; _serial_display_write_disabled = disabled; return now; } // A general purpose hex/ascii dump function for arbitrary area of memory. void print_hexdump(const mp_print_t *printer, const char *prefix, const uint8_t *buf, size_t len) { size_t i; for (i = 0; i < len; ++i) { // print hex digit if (i % 32 == 0) { mp_printf(printer, "%s0x%04x:", prefix, i); } if (i % 32 == 16) { mp_printf(printer, " : "); } else if (i % 4 == 0) { mp_printf(printer, " "); } mp_printf(printer, "%02x", buf[i]); // print ascii chars for this line if (i % 32 == 31) { size_t k = i - 31; mp_printf(printer, " : "); for (size_t j = 0; j < 32; ++j) { if (j == 16) { mp_printf(printer, " "); } if (buf[k + j] >= 32 && buf[k + j] < 127) { mp_printf(printer, "%c", buf[k + j]); } else { mp_printf(printer, "."); } } mp_printf(printer, "\n"); } } if (i % 32 != 0) { // For a final line of less than 32 bytes, pad with spaces i -= i % 32; for (size_t j = len % 32; j < 32; ++j) { if (j % 32 == 16) { mp_printf(printer, " "); } else if (j % 4 == 0) { mp_printf(printer, " "); } mp_printf(printer, " "); } // Print ascii chars for the last line fragment mp_printf(printer, " : "); for (size_t j = 0; j < len % 32; ++j) { if (j == 16) { mp_printf(printer, " "); } if (buf[i + j] >= 32 && buf[i + j] < 127) { mp_printf(printer, "%c", buf[i + j]); } else { mp_printf(printer, "."); } } mp_printf(printer, "\n"); } } int console_uart_printf(const char *fmt, ...) { #if CIRCUITPY_CONSOLE_UART va_list args; va_start(args, fmt); int ret = mp_vprintf(&console_uart_print, fmt, args); va_end(args); return ret; #else return 0; #endif }