// This file is part of the CircuitPython project: https://circuitpython.org // // SPDX-FileCopyrightText: Copyright (c) 2018 hathach for Adafruit Industries // // SPDX-License-Identifier: MIT #include "tusb.h" // // #include "supervisor/flash.h" // For updating fatfs's cache #include "extmod/vfs.h" #include "extmod/vfs_fat.h" #include "lib/oofatfs/diskio.h" #include "lib/oofatfs/ff.h" #include "py/gc.h" #include "py/mpstate.h" #include "shared-module/storage/__init__.h" #include "supervisor/filesystem.h" #include "supervisor/shared/reload.h" #define MSC_FLASH_BLOCK_SIZE 512 #if CIRCUITPY_SAVES_PARTITION_SIZE > 0 #define SAVES_COUNT 1 #define SAVES_LUN (1) #else #define SAVES_COUNT 0 #endif #if CIRCUITPY_SDCARDIO #include "shared-module/sdcardio/__init__.h" #define SDCARD_COUNT 1 #define SDCARD_LUN (1 + SAVES_COUNT) #else #define SDCARD_COUNT 0 #endif #define LUN_COUNT (1 + SAVES_COUNT + SDCARD_COUNT) // The ellipsis range in the designated initializer of `ejected` is not standard C, // but it works in both gcc and clang. static bool ejected[LUN_COUNT] = { [0 ... (LUN_COUNT - 1)] = true}; static bool eject_once[LUN_COUNT] = { [0 ... (LUN_COUNT - 1)] = false}; static bool locked[LUN_COUNT] = { [0 ... (LUN_COUNT - 1)] = false}; #include "tusb.h" static const uint8_t usb_msc_descriptor_template[] = { // MSC Interface Descriptor 0x09, // 0 bLength 0x04, // 1 bDescriptorType (Interface) 0xFF, // 2 bInterfaceNumber [SET AT RUNTIME] #define MSC_INTERFACE_INDEX (2) 0x00, // 3 bAlternateSetting 0x02, // 4 bNumEndpoints 2 0x08, // 5 bInterfaceClass: MSC 0x06, // 6 bInterfaceSubClass: TRANSPARENT 0x50, // 7 bInterfaceProtocol: BULK 0xFF, // 8 iInterface (String Index) [SET AT RUNTIME] #define MSC_INTERFACE_STRING_INDEX (8) // MSC Endpoint IN Descriptor 0x07, // 9 bLength 0x05, // 10 bDescriptorType (Endpoint) 0xFF, // 11 bEndpointAddress (IN/D2H) [SET AT RUNTIME: 0x80 | number] #define MSC_IN_ENDPOINT_INDEX (11) 0x02, // 12 bmAttributes (Bulk) #if USB_HIGHSPEED 0x00, 0x02, // 13,14 wMaxPacketSize 512 #else 0x40, 0x00, // 13,14 wMaxPacketSize 64 #endif 0x00, // 15 bInterval 0 (unit depends on device speed) // MSC Endpoint OUT Descriptor 0x07, // 16 bLength 0x05, // 17 bDescriptorType (Endpoint) 0xFF, // 18 bEndpointAddress (OUT/H2D) [SET AT RUNTIME] #define MSC_OUT_ENDPOINT_INDEX (18) 0x02, // 19 bmAttributes (Bulk) #if USB_HIGHSPEED 0x00, 0x02, // 20,21 wMaxPacketSize 512 #else 0x40, 0x00, // 20,21 wMaxPacketSize 64 #endif 0x00, // 22 bInterval 0 (unit depends on device speed) }; size_t usb_msc_descriptor_length(void) { return sizeof(usb_msc_descriptor_template); } static const char storage_interface_name[] = USB_INTERFACE_NAME " Mass Storage"; size_t usb_msc_add_descriptor(uint8_t *descriptor_buf, descriptor_counts_t *descriptor_counts, uint8_t *current_interface_string) { memcpy(descriptor_buf, usb_msc_descriptor_template, sizeof(usb_msc_descriptor_template)); descriptor_buf[MSC_INTERFACE_INDEX] = descriptor_counts->current_interface; descriptor_counts->current_interface++; descriptor_buf[MSC_IN_ENDPOINT_INDEX] = 0x80 | (USB_MSC_EP_NUM_IN ? USB_MSC_EP_NUM_IN : descriptor_counts->current_endpoint); descriptor_counts->num_in_endpoints++; // Some TinyUSB devices have issues with bi-directional endpoints #ifdef TUD_ENDPOINT_ONE_DIRECTION_ONLY descriptor_counts->current_endpoint++; #endif descriptor_buf[MSC_OUT_ENDPOINT_INDEX] = USB_MSC_EP_NUM_OUT ? USB_MSC_EP_NUM_OUT : descriptor_counts->current_endpoint; descriptor_counts->num_out_endpoints++; descriptor_counts->current_endpoint++; usb_add_interface_string(*current_interface_string, storage_interface_name); descriptor_buf[MSC_INTERFACE_STRING_INDEX] = *current_interface_string; (*current_interface_string)++; return sizeof(usb_msc_descriptor_template); } // We hardcode LUN -> mount mapping so that it doesn't changes with saves and // SD card appearing and disappearing. static fs_user_mount_t *get_vfs(int lun) { fs_user_mount_t *root = filesystem_circuitpy(); if (lun == 0) { return root; } // Other filesystems must be native because we don't guard against exceptions. // They must also be off the VM heap so they don't disappear on autoreload. #ifdef SAVES_LUN if (lun == SAVES_LUN) { const char *path_under_mount; fs_user_mount_t *saves = filesystem_for_path("/saves", &path_under_mount); if (saves != root && (saves->blockdev.flags & MP_BLOCKDEV_FLAG_NATIVE) != 0 && gc_nbytes(saves) == 0) { return saves; } } #endif #ifdef SDCARD_LUN if (lun == SDCARD_LUN) { const char *path_under_mount; fs_user_mount_t *sdcard = filesystem_for_path("/sd", &path_under_mount); if (sdcard != root && (sdcard->blockdev.flags & MP_BLOCKDEV_FLAG_NATIVE) != 0) { return sdcard; } else { // Clear any ejected state so that a re-insert causes it to reappear. ejected[SDCARD_LUN] = false; locked[SDCARD_LUN] = false; } } #endif return NULL; } static void _usb_msc_uneject(void) { for (uint8_t i = 0; i < LUN_COUNT; i++) { ejected[i] = false; locked[i] = false; } } void usb_msc_mount(void) { _usb_msc_uneject(); } void usb_msc_umount(void) { for (uint8_t i = 0; i < LUN_COUNT; i++) { fs_user_mount_t *vfs = get_vfs(i); if (vfs == NULL) { continue; } blockdev_unlock(vfs); locked[i] = false; } } void usb_msc_remount(fs_user_mount_t *fs_mount) { for (uint8_t i = 0; i < LUN_COUNT; i++) { fs_user_mount_t *vfs = get_vfs(i); if (vfs == NULL || vfs != fs_mount) { continue; } ejected[i] = false; eject_once[i] = true; } } uint8_t tud_msc_get_maxlun_cb(void) { return LUN_COUNT; } // Callback invoked when received an SCSI command not in built-in list below // - READ_CAPACITY10, READ_FORMAT_CAPACITY, INQUIRY, TEST_UNIT_READY, START_STOP_UNIT, MODE_SENSE6, REQUEST_SENSE // - READ10 and WRITE10 have their own callbacks int32_t tud_msc_scsi_cb(uint8_t lun, const uint8_t scsi_cmd[16], void *buffer, uint16_t bufsize) { // Note that no command uses a response right now. const void *response = NULL; int32_t resplen = 0; switch (scsi_cmd[0]) { case SCSI_CMD_PREVENT_ALLOW_MEDIUM_REMOVAL: // Host is about to read/write etc ... better not to disconnect disk resplen = 0; break; default: // Set Sense = Invalid Command Operation tud_msc_set_sense(lun, SCSI_SENSE_ILLEGAL_REQUEST, 0x20, 0x00); // negative means error -> tinyusb could stall and/or response with failed status resplen = -1; break; } // return len must not larger than bufsize if (resplen > bufsize) { resplen = bufsize; } // copy response to stack's buffer if any if (response && (resplen > 0)) { memcpy(buffer, response, resplen); } return resplen; } void tud_msc_capacity_cb(uint8_t lun, uint32_t *block_count, uint16_t *block_size) { fs_user_mount_t *vfs = get_vfs(lun); if (vfs != NULL) { disk_ioctl(vfs, GET_SECTOR_COUNT, block_count); disk_ioctl(vfs, GET_SECTOR_SIZE, block_size); } } bool tud_msc_is_writable_cb(uint8_t lun) { if (lun >= LUN_COUNT) { return false; } fs_user_mount_t *vfs = get_vfs(lun); if (vfs == NULL) { return false; } if (vfs->blockdev.writeblocks[0] == MP_OBJ_NULL || !filesystem_is_writable_by_usb(vfs)) { return false; } // Lock the blockdev once we say we're writable. if (!locked[lun] && !blockdev_lock(vfs)) { return false; } locked[lun] = true; return true; } // Callback invoked when received READ10 command. // Copy disk's data to buffer (up to bufsize) and return number of copied bytes. int32_t tud_msc_read10_cb(uint8_t lun, uint32_t lba, uint32_t offset, void *buffer, uint32_t bufsize) { (void)offset; const uint32_t block_count = bufsize / MSC_FLASH_BLOCK_SIZE; fs_user_mount_t *vfs = get_vfs(lun); if (vfs == NULL) { return -1; } uint32_t disk_block_count; disk_ioctl(vfs, GET_SECTOR_COUNT, &disk_block_count); if (lba + block_count > disk_block_count) { return -1; } disk_read(vfs, buffer, lba, block_count); return block_count * MSC_FLASH_BLOCK_SIZE; } // Callback invoked when received WRITE10 command. // Process data in buffer to disk's storage and return number of written bytes int32_t tud_msc_write10_cb(uint8_t lun, uint32_t lba, uint32_t offset, uint8_t *buffer, uint32_t bufsize) { (void)lun; (void)offset; autoreload_suspend(AUTORELOAD_SUSPEND_USB); const uint32_t block_count = bufsize / MSC_FLASH_BLOCK_SIZE; fs_user_mount_t *vfs = get_vfs(lun); if (vfs == NULL) { return -1; } disk_write(vfs, buffer, lba, block_count); // Since by getting here we assume the mount is read-only to // MicroPython let's update the cached FatFs sector if it's the one // we just wrote. #if FF_MAX_SS != FF_MIN_SS if (vfs->fatfs.ssize == MSC_FLASH_BLOCK_SIZE) { #else // The compiler can optimize this away. if (FF_MAX_SS == FILESYSTEM_BLOCK_SIZE) { #endif if (lba == vfs->fatfs.winsect && lba > 0) { memcpy(vfs->fatfs.win, buffer + MSC_FLASH_BLOCK_SIZE * (vfs->fatfs.winsect - lba), MSC_FLASH_BLOCK_SIZE); } } return block_count * MSC_FLASH_BLOCK_SIZE; } // Callback invoked when WRITE10 command is completed (status received and accepted by host). // used to flush any pending cache. void tud_msc_write10_complete_cb(uint8_t lun) { (void)lun; // This write is complete; initiate an autoreload. autoreload_resume(AUTORELOAD_SUSPEND_USB); autoreload_trigger(); } // Invoked when received SCSI_CMD_INQUIRY // Application fill vendor id, product id and revision with string up to 8, 16, 4 characters respectively void tud_msc_inquiry_cb(uint8_t lun, uint8_t vendor_id[8], uint8_t product_id[16], uint8_t product_rev[4]) { (void)lun; memcpy(vendor_id, CFG_TUD_MSC_VENDOR, strlen(CFG_TUD_MSC_VENDOR)); memcpy(product_id, CFG_TUD_MSC_PRODUCT, strlen(CFG_TUD_MSC_PRODUCT)); memcpy(product_rev, CFG_TUD_MSC_PRODUCT_REV, strlen(CFG_TUD_MSC_PRODUCT_REV)); } // Invoked when received Test Unit Ready command. // return true allowing host to read/write this LUN e.g SD card inserted bool tud_msc_test_unit_ready_cb(uint8_t lun) { if (lun >= LUN_COUNT) { return false; } #if CIRCUITPY_SDCARDIO if (lun == SDCARD_LUN) { automount_sd_card(); } #endif fs_user_mount_t *current_mount = get_vfs(lun); if (current_mount == NULL) { return false; } if (ejected[lun] || eject_once[lun]) { eject_once[lun] = false; // Set 0x3a for media not present. tud_msc_set_sense(lun, SCSI_SENSE_NOT_READY, 0x3A, 0x00); return false; } return true; } // Invoked when received Start Stop Unit command // - Start = 0 : stopped power mode, if load_eject = 1 : unload disk storage // - Start = 1 : active mode, if load_eject = 1 : load disk storage bool tud_msc_start_stop_cb(uint8_t lun, uint8_t power_condition, bool start, bool load_eject) { if (lun >= LUN_COUNT) { return false; } fs_user_mount_t *current_mount = get_vfs(lun); if (current_mount == NULL) { return false; } if (load_eject) { if (!start) { // Eject but first flush. if (disk_ioctl(current_mount, CTRL_SYNC, NULL) != RES_OK) { return false; } else { blockdev_unlock(current_mount); ejected[lun] = true; locked[lun] = false; } } else { // We can only load if it hasn't been ejected. return !ejected[lun]; } } else { if (!start) { // Stop the unit but don't eject. if (disk_ioctl(current_mount, CTRL_SYNC, NULL) != RES_OK) { return false; } } // Always start the unit, even if ejected. Whether media is present is a separate check. } return true; }