circuitpython/supervisor/shared/serial.c

533 lines
14 KiB
C

// This file is part of the CircuitPython project: https://circuitpython.org
//
// SPDX-FileCopyrightText: Copyright (c) 2017 Scott Shawcroft for Adafruit Industries
//
// SPDX-License-Identifier: MIT
#include <stdarg.h>
#include <string.h>
#include "py/mpconfig.h"
#include "py/mphal.h"
#include "py/mpprint.h"
#include "supervisor/shared/cpu.h"
#include "supervisor/shared/display.h"
#include "shared-bindings/terminalio/Terminal.h"
#include "supervisor/shared/serial.h"
#include "shared-bindings/microcontroller/Pin.h"
#if CIRCUITPY_SERIAL_BLE
#include "supervisor/shared/bluetooth/serial.h"
#endif
#if CIRCUITPY_USB_DEVICE
#include "shared-module/usb_cdc/__init__.h"
#endif
#if CIRCUITPY_TINYUSB
#include "supervisor/usb.h"
#include "tusb.h"
#endif
#if CIRCUITPY_WEB_WORKFLOW
#include "supervisor/shared/web_workflow/websocket.h"
#endif
#if CIRCUITPY_CONSOLE_UART
#include "shared-bindings/busio/UART.h"
busio_uart_obj_t console_uart;
// on Espressif, the receive buffer must be larger than the hardware FIFO length. See uart_driver_install().
#if defined(SOC_UART_FIFO_LEN)
byte console_uart_rx_buf[SOC_UART_FIFO_LEN + 1];
#else
byte console_uart_rx_buf[64];
#endif
#endif
#if CIRCUITPY_USB_DEVICE || CIRCUITPY_CONSOLE_UART
// Flag to note whether this is the first write after connection.
// Delay slightly on the first write to allow time for the host to set up things,
// including turning off echo mode.
static bool _first_write_done = false;
#endif
#if CIRCUITPY_USB_DEVICE && CIRCUITPY_USB_VENDOR
bool tud_vendor_connected(void);
#endif
// Set to true to temporarily discard writes to the console only.
static bool _serial_console_write_disabled;
// Set to true to temporarily discard writes to the display terminal only.
static bool _serial_display_write_disabled;
// Indicates that serial console has been early initialized.
static bool _serial_console_early_inited = false;
#if CIRCUITPY_CONSOLE_UART
// All output to the console uart comes through this inner write function. It ensures that all
// lines are terminated with a "cooked" '\r\n' sequence. Lines that are already cooked are sent
// on unchanged.
static void inner_console_uart_write_cb(void *env, const char *str, size_t len) {
(void)env;
int uart_errcode;
bool last_cr = false;
while (len > 0) {
size_t i = 0;
if (str[0] == '\n' && !last_cr) {
common_hal_busio_uart_write(&console_uart, (const uint8_t *)"\r", 1, &uart_errcode);
i = 1;
}
// Lump all characters on the next line together.
while ((last_cr || str[i] != '\n') && i < len) {
last_cr = str[i] == '\r';
i++;
}
common_hal_busio_uart_write(&console_uart, (const uint8_t *)str, i, &uart_errcode);
str = &str[i];
len -= i;
}
}
#if CIRCUITPY_CONSOLE_UART_TIMESTAMP
static const mp_print_t inner_console_uart_write = {NULL, inner_console_uart_write_cb};
static uint32_t console_uart_write_prev_time = 0;
static bool console_uart_write_prev_nl = true;
static inline void console_uart_write_timestamp(void) {
uint32_t now = supervisor_ticks_ms32();
uint32_t delta = now - console_uart_write_prev_time;
console_uart_write_prev_time = now;
mp_printf(&inner_console_uart_write,
"%01lu.%03lu(%01lu.%03lu): ",
now / 1000, now % 1000, delta / 1000, delta % 1000);
}
#endif
static size_t console_uart_write(const char *str, size_t len) {
// Ignore writes if console uart is not yet initialized.
if (!_serial_console_early_inited) {
return len;
}
if (!_first_write_done) {
mp_hal_delay_ms(50);
_first_write_done = true;
}
// There may be multiple newlines in the string, split at newlines.
int remaining_len = len;
while (remaining_len > 0) {
#if CIRCUITPY_CONSOLE_UART_TIMESTAMP
if (console_uart_write_prev_nl) {
console_uart_write_timestamp();
console_uart_write_prev_nl = false;
}
#endif
int print_len = 0;
while (print_len < remaining_len) {
if (str[print_len++] == '\n') {
#if CIRCUITPY_CONSOLE_UART_TIMESTAMP
console_uart_write_prev_nl = true;
#endif
break;
}
}
inner_console_uart_write_cb(NULL, str, print_len);
str += print_len;
remaining_len -= print_len;
}
return len;
}
static void console_uart_write_cb(void *env, const char *str, size_t len) {
(void)env;
console_uart_write(str, len);
}
const mp_print_t console_uart_print = {NULL, console_uart_write_cb};
#endif
MP_WEAK void board_serial_early_init(void) {
}
MP_WEAK void board_serial_init(void) {
}
MP_WEAK bool board_serial_connected(void) {
return false;
}
MP_WEAK char board_serial_read(void) {
return -1;
}
MP_WEAK uint32_t board_serial_bytes_available(void) {
return 0;
}
MP_WEAK void board_serial_write_substring(const char *text, uint32_t length) {
(void)text;
(void)length;
}
MP_WEAK void port_serial_early_init(void) {
}
MP_WEAK void port_serial_init(void) {
}
MP_WEAK bool port_serial_connected(void) {
return false;
}
MP_WEAK char port_serial_read(void) {
return -1;
}
MP_WEAK uint32_t port_serial_bytes_available(void) {
return 0;
}
MP_WEAK void port_serial_write_substring(const char *text, uint32_t length) {
(void)text;
(void)length;
}
void serial_early_init(void) {
// Ignore duplicate calls to initialize allowing port-specific code to
// call this function early.
if (_serial_console_early_inited) {
return;
}
#if CIRCUITPY_CONSOLE_UART
// Set up console UART, if enabled.
console_uart.base.type = &busio_uart_type;
const mcu_pin_obj_t *console_rx = MP_OBJ_TO_PTR(CIRCUITPY_CONSOLE_UART_RX);
const mcu_pin_obj_t *console_tx = MP_OBJ_TO_PTR(CIRCUITPY_CONSOLE_UART_TX);
common_hal_busio_uart_construct(&console_uart, console_tx, console_rx, NULL, NULL, NULL,
false, CIRCUITPY_CONSOLE_UART_BAUDRATE, 8, BUSIO_UART_PARITY_NONE, 1, 1.0f, sizeof(console_uart_rx_buf),
console_uart_rx_buf, true);
common_hal_busio_uart_never_reset(&console_uart);
#endif
board_serial_early_init();
port_serial_early_init();
_serial_console_early_inited = true;
// Do an initial print so that we can confirm the serial output is working.
CIRCUITPY_CONSOLE_UART_PRINTF("Serial console setup\n");
}
void serial_init(void) {
#if CIRCUITPY_USB_DEVICE || CIRCUITPY_CONSOLE_UART
_first_write_done = false;
#endif
board_serial_init();
port_serial_init();
}
bool serial_connected(void) {
#if CIRCUITPY_USB_DEVICE && CIRCUITPY_USB_VENDOR
if (tud_vendor_connected()) {
return true;
}
#endif
#if CIRCUITPY_CONSOLE_UART
return true;
#endif
#if CIRCUITPY_SERIAL_BLE
if (ble_serial_connected()) {
return true;
}
#endif
#if CIRCUITPY_USB_DEVICE && CIRCUITPY_USB_CDC
if (usb_cdc_console_enabled() && tud_cdc_connected()) {
return true;
}
#elif CIRCUITPY_USB_DEVICE
if (tud_cdc_connected()) {
return true;
}
#endif
#if CIRCUITPY_WEB_WORKFLOW
if (websocket_connected()) {
return true;
}
#endif
#if CIRCUITPY_TERMINALIO
if (supervisor_terminal_started()) {
return true;
}
#endif
if (board_serial_connected()) {
return true;
}
if (port_serial_connected()) {
return true;
}
return false;
}
char serial_read(void) {
#if CIRCUITPY_USB_DEVICE && CIRCUITPY_USB_VENDOR
if (tud_vendor_connected() && tud_vendor_available() > 0) {
char tiny_buffer;
tud_vendor_read(&tiny_buffer, 1);
return tiny_buffer;
}
#endif
#if CIRCUITPY_CONSOLE_UART
if (common_hal_busio_uart_rx_characters_available(&console_uart)) {
int uart_errcode;
char text;
common_hal_busio_uart_read(&console_uart, (uint8_t *)&text, 1, &uart_errcode);
return text;
}
#endif
#if CIRCUITPY_SERIAL_BLE
if (ble_serial_available() > 0) {
return ble_serial_read_char();
}
#endif
#if CIRCUITPY_WEB_WORKFLOW
if (websocket_available()) {
char c = websocket_read_char();
if (c != -1) {
return c;
}
}
#endif
#if CIRCUITPY_USB_KEYBOARD_WORKFLOW
if (usb_keyboard_chars_available() > 0) {
return usb_keyboard_read_char();
}
#endif
if (board_serial_bytes_available() > 0) {
return board_serial_read();
}
if (port_serial_bytes_available() > 0) {
return port_serial_read();
}
#if CIRCUITPY_USB_DEVICE && CIRCUITPY_USB_CDC
if (!usb_cdc_console_enabled()) {
return -1;
}
#endif
#if CIRCUITPY_USB_DEVICE
return (char)tud_cdc_read_char();
#endif
return -1;
}
uint32_t serial_bytes_available(void) {
// There may be multiple serial input channels, so sum the count from all.
uint32_t count = 0;
#if CIRCUITPY_USB_DEVICE && CIRCUITPY_USB_VENDOR
if (tud_vendor_connected()) {
count += tud_vendor_available();
}
#endif
#if CIRCUITPY_CONSOLE_UART
count += common_hal_busio_uart_rx_characters_available(&console_uart);
#endif
#if CIRCUITPY_SERIAL_BLE
count += ble_serial_available();
#endif
#if CIRCUITPY_WEB_WORKFLOW
count += websocket_available();
#endif
#if CIRCUITPY_USB_KEYBOARD_WORKFLOW
count += usb_keyboard_chars_available();
#endif
#if CIRCUITPY_USB_DEVICE && CIRCUITPY_USB_CDC
if (usb_cdc_console_enabled()) {
count += tud_cdc_available();
}
#endif
// Board-specific serial input.
count += board_serial_bytes_available();
// Port-specific serial input.
count += port_serial_bytes_available();
return count;
}
uint32_t serial_write_substring(const char *text, uint32_t length) {
if (length == 0) {
return 0;
}
// See https://github.com/micropython/micropython/pull/11850 for the motivation for returning
// the number of chars written.
// Assume that unless otherwise reported, we sent all that we got.
uint32_t length_sent = length;
#if CIRCUITPY_TERMINALIO
int errcode;
if (!_serial_display_write_disabled) {
length_sent = common_hal_terminalio_terminal_write(&supervisor_terminal, (const uint8_t *)text, length, &errcode);
}
#endif
if (_serial_console_write_disabled) {
return length_sent;
}
#if CIRCUITPY_USB_DEVICE && CIRCUITPY_USB_VENDOR
if (tud_vendor_connected()) {
length_sent = tud_vendor_write(text, length);
}
#endif
#if CIRCUITPY_CONSOLE_UART
length_sent = console_uart_write(text, length);
#endif
#if CIRCUITPY_SERIAL_BLE
ble_serial_write(text, length);
#endif
#if CIRCUITPY_WEB_WORKFLOW
websocket_write(text, length);
#endif
#if CIRCUITPY_USB_DEVICE && CIRCUITPY_USB_CDC
if (!usb_cdc_console_enabled()) {
return length;
}
#endif
#if CIRCUITPY_USB_DEVICE
// Delay the very first write
if (tud_cdc_connected() && !_first_write_done) {
mp_hal_delay_ms(50);
_first_write_done = true;
}
uint32_t count = 0;
if (tud_cdc_connected()) {
while (count < length) {
count += tud_cdc_write(text + count, length - count);
// If we're in an interrupt, then don't wait for more room. Queue up what we can.
if (cpu_interrupt_active()) {
break;
}
usb_background();
}
}
#endif
board_serial_write_substring(text, length);
port_serial_write_substring(text, length);
return length_sent;
}
void serial_write(const char *text) {
serial_write_substring(text, strlen(text));
}
bool serial_console_write_disable(bool disabled) {
bool now = _serial_console_write_disabled;
_serial_console_write_disabled = disabled;
return now;
}
bool serial_display_write_disable(bool disabled) {
bool now = _serial_display_write_disabled;
_serial_display_write_disabled = disabled;
return now;
}
// A general purpose hex/ascii dump function for arbitrary area of memory.
void print_hexdump(const mp_print_t *printer, const char *prefix, const uint8_t *buf, size_t len) {
size_t i;
for (i = 0; i < len; ++i) {
// print hex digit
if (i % 32 == 0) {
mp_printf(printer, "%s0x%04x:", prefix, i);
}
if (i % 32 == 16) {
mp_printf(printer, " : ");
} else if (i % 4 == 0) {
mp_printf(printer, " ");
}
mp_printf(printer, "%02x", buf[i]);
// print ascii chars for this line
if (i % 32 == 31) {
size_t k = i - 31;
mp_printf(printer, " : ");
for (size_t j = 0; j < 32; ++j) {
if (j == 16) {
mp_printf(printer, " ");
}
if (buf[k + j] >= 32 && buf[k + j] < 127) {
mp_printf(printer, "%c", buf[k + j]);
} else {
mp_printf(printer, ".");
}
}
mp_printf(printer, "\n");
}
}
if (i % 32 != 0) {
// For a final line of less than 32 bytes, pad with spaces
i -= i % 32;
for (size_t j = len % 32; j < 32; ++j) {
if (j % 32 == 16) {
mp_printf(printer, " ");
} else if (j % 4 == 0) {
mp_printf(printer, " ");
}
mp_printf(printer, " ");
}
// Print ascii chars for the last line fragment
mp_printf(printer, " : ");
for (size_t j = 0; j < len % 32; ++j) {
if (j == 16) {
mp_printf(printer, " ");
}
if (buf[i + j] >= 32 && buf[i + j] < 127) {
mp_printf(printer, "%c", buf[i + j]);
} else {
mp_printf(printer, ".");
}
}
mp_printf(printer, "\n");
}
}