nrfx/hal/nrf_clock.h

1093 lines
42 KiB
C

/*
* Copyright (c) 2015 - 2020, Nordic Semiconductor ASA
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef NRF_CLOCK_H__
#define NRF_CLOCK_H__
#include <nrfx.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* @defgroup nrf_clock_hal Clock HAL
* @{
* @ingroup nrf_clock
* @brief Hardware access layer for managing the CLOCK peripheral.
*
* This code can be used to manage low-frequency clock (LFCLK), high-frequency clock (HFCLK),
* high-frequency 192 MHz clock (HFCLK192M) and high-frequency audio clock (HFCLKAUDIO)
* settings.
*/
#if defined(CLOCK_LFCLKSRC_BYPASS_Msk) && defined(CLOCK_LFCLKSRC_EXTERNAL_Msk)
// Enable support for external LFCLK sources. Read more in the Product Specification.
#define NRF_CLOCK_USE_EXTERNAL_LFCLK_SOURCES
#endif
#if defined(CLOCK_INTENSET_DONE_Msk) || defined(__NRFX_DOXYGEN__)
/** @brief Presence of the Low Frequency Clock calibration. */
#define NRF_CLOCK_HAS_CALIBRATION 1
#else
#define NRF_CLOCK_HAS_CALIBRATION 0
#endif
#if defined(CLOCK_CTIV_CTIV_Msk) || defined(__NRFX_DOXYGEN__)
/** @brief Presence of the Low Frequency Clock calibration timer. */
#define NRF_CLOCK_HAS_CALIBRATION_TIMER 1
#else
#define NRF_CLOCK_HAS_CALIBRATION_TIMER 0
#endif
#if (defined(CLOCK_INTENSET_HFCLK192MSTARTED_Msk) && !defined(NRF5340_XXAA_NETWORK)) \
|| defined(__NRFX_DOXYGEN__)
/** @brief Presence of the 192 MHz clock. */
#define NRF_CLOCK_HAS_HFCLK192M 1
#else
#define NRF_CLOCK_HAS_HFCLK192M 0
#endif
#if (defined(CLOCK_INTENSET_HFCLKAUDIOSTARTED_Msk) && !defined(NRF5340_XXAA_NETWORK)) \
|| defined(__NRFX_DOXYGEN__)
/** @brief Presence of the Audio clock. */
#define NRF_CLOCK_HAS_HFCLKAUDIO 1
#else
#define NRF_CLOCK_HAS_HFCLKAUDIO 0
#endif
#if (defined(CLOCK_HFCLKCTRL_HCLK_Msk) && !defined(NRF5340_XXAA_NETWORK)) \
|| defined(__NRFX_DOXYGEN__)
/** @brief Presence of HFCLK frequency configuration. */
#define NRF_CLOCK_HAS_HFCLK_DIV 1
#else
#define NRF_CLOCK_HAS_HFCLK_DIV 0
#endif
#if defined(CLOCK_LFCLKALWAYSRUN_ALWAYSRUN_Msk) || defined(__NRFX_DOXYGEN__)
/** @brief Presence of ALWAYSRUN registers. */
#define NRF_CLOCK_HAS_ALWAYSRUN 1
#else
#define NRF_CLOCK_HAS_ALWAYSRUN 0
#endif
#if defined(CLOCK_HFCLKSRC_SRC_Msk) || defined(__NRFX_DOXYGEN__)
/** @brief Presence of HFCLKSRC register. */
#define NRF_CLOCK_HAS_HFCLKSRC 1
#else
#define NRF_CLOCK_HAS_HFCLKSRC 0
#endif
/**
* @brief Low-frequency clock sources.
* @details Used by LFCLKSRC, LFCLKSTAT, and LFCLKSRCCOPY registers.
*/
typedef enum
{
#if defined(CLOCK_LFCLKSRC_SRC_LFULP) || defined(__NRFX_DOXYGEN__)
NRF_CLOCK_LFCLK_LFULP = CLOCK_LFCLKSRC_SRC_LFULP, /**< Internal 32 kHz Ultra-low power oscillator. */
#endif
#if defined(CLOCK_LFCLKSRC_SRC_RC) || defined(__NRFX_DOXYGEN__)
NRF_CLOCK_LFCLK_RC = CLOCK_LFCLKSRC_SRC_RC, /**< Internal 32 kHz RC oscillator. */
#else
NRF_CLOCK_LFCLK_RC = CLOCK_LFCLKSRC_SRC_LFRC, /**< Internal 32 kHz RC oscillator. */
#endif
#if defined(CLOCK_LFCLKSRC_SRC_Xtal) || defined(__NRFX_DOXYGEN__)
NRF_CLOCK_LFCLK_Xtal = CLOCK_LFCLKSRC_SRC_Xtal, /**< External 32 kHz crystal. */
#else
NRF_CLOCK_LFCLK_Xtal = CLOCK_LFCLKSRC_SRC_LFXO, /**< External 32 kHz crystal. */
#endif
#if defined(CLOCK_LFCLKSRC_SRC_Synth) || defined(__NRFX_DOXYGEN__)
NRF_CLOCK_LFCLK_Synth = CLOCK_LFCLKSRC_SRC_Synth, /**< Internal 32 kHz synthesizer from HFCLK system clock. */
#endif
#if defined(NRF_CLOCK_USE_EXTERNAL_LFCLK_SOURCES) || defined(__NRFX_DOXYGEN__)
/**
* External 32 kHz low swing signal. Used only with the LFCLKSRC register.
* For the others @ref NRF_CLOCK_LFCLK_Xtal is returned for this setting.
*/
NRF_CLOCK_LFCLK_Xtal_Low_Swing = (CLOCK_LFCLKSRC_SRC_Xtal |
(CLOCK_LFCLKSRC_EXTERNAL_Enabled << CLOCK_LFCLKSRC_EXTERNAL_Pos)),
/**
* External 32 kHz full swing signal. Used only with the LFCLKSRC register.
* For the others @ref NRF_CLOCK_LFCLK_Xtal is returned for this setting.
*/
NRF_CLOCK_LFCLK_Xtal_Full_Swing = (CLOCK_LFCLKSRC_SRC_Xtal |
(CLOCK_LFCLKSRC_BYPASS_Enabled << CLOCK_LFCLKSRC_BYPASS_Pos) |
(CLOCK_LFCLKSRC_EXTERNAL_Enabled << CLOCK_LFCLKSRC_EXTERNAL_Pos)),
#endif // defined(NRF_CLOCK_USE_EXTERNAL_LFCLK_SOURCES) || defined(__NRFX_DOXYGEN__)
} nrf_clock_lfclk_t;
/**
* @brief High-frequency clock sources.
* @details Used by HFCLKSTAT and HFCLK192MSTAT registers.
*/
typedef enum
{
#if defined(CLOCK_HFCLKSTAT_SRC_RC) || defined(__NRFX_DOXYGEN__)
NRF_CLOCK_HFCLK_LOW_ACCURACY = CLOCK_HFCLKSTAT_SRC_RC, /**< Internal 16 MHz RC oscillator. */
#elif defined(CLOCK_HFCLKSTAT_SRC_HFINT)
NRF_CLOCK_HFCLK_LOW_ACCURACY = CLOCK_HFCLKSTAT_SRC_HFINT, /**< Internal 16 MHz RC oscillator. */
#endif
#if defined(CLOCK_HFCLKSTAT_SRC_Xtal) || defined(__NRFX_DOXYGEN__)
NRF_CLOCK_HFCLK_HIGH_ACCURACY = CLOCK_HFCLKSTAT_SRC_Xtal /**< External 16 MHz/32 MHz crystal oscillator. */
#else
NRF_CLOCK_HFCLK_HIGH_ACCURACY = CLOCK_HFCLKSTAT_SRC_HFXO /**< External 32 MHz crystal oscillator. */
#endif
} nrf_clock_hfclk_t;
/** @brief Clock domains. */
typedef enum
{
NRF_CLOCK_DOMAIN_LFCLK,
NRF_CLOCK_DOMAIN_HFCLK,
#if NRF_CLOCK_HAS_HFCLK192M
NRF_CLOCK_DOMAIN_HFCLK192M,
#endif
#if NRF_CLOCK_HAS_HFCLKAUDIO
NRF_CLOCK_DOMAIN_HFCLKAUDIO,
#endif
} nrf_clock_domain_t;
#if NRF_CLOCK_HAS_HFCLK_DIV || NRF_CLOCK_HAS_HFCLK192M
/**
* @brief High-frequency clock frequency configuration.
* @details Used by HFCLKCTRL and HFCLK192MCTRL registers.
*/
typedef enum
{
NRF_CLOCK_HFCLK_DIV_1 = CLOCK_HFCLKCTRL_HCLK_Div1, /**< Divide HFCLK/HFCLK192M by 1 */
NRF_CLOCK_HFCLK_DIV_2 = CLOCK_HFCLKCTRL_HCLK_Div2, /**< Divide HFCLK/HFCLK192M by 2 */
#if NRF_CLOCK_HAS_HFCLK192M
NRF_CLOCK_HFCLK_DIV_4 = CLOCK_HFCLK192MCTRL_HCLK192M_Div4, /**< Divide HFCLK192M by 4 */
#endif
} nrf_clock_hfclk_div_t;
#endif // NRF_CLOCK_HAS_HFCLK_DIV || NRF_CLOCK_HAS_HFCLK192M
/**
* @brief Trigger status of task LFCLKSTART/HFCLKSTART.
*
* @note This enum is deprecated.
*
* @details Used by LFCLKRUN and HFCLKRUN registers.
*/
typedef enum
{
NRF_CLOCK_START_TASK_NOT_TRIGGERED = CLOCK_LFCLKRUN_STATUS_NotTriggered, /**< Task LFCLKSTART/HFCLKSTART has not been triggered. */
NRF_CLOCK_START_TASK_TRIGGERED = CLOCK_LFCLKRUN_STATUS_Triggered /**< Task LFCLKSTART/HFCLKSTART has been triggered. */
} nrf_clock_start_task_status_t;
/** @brief Interrupts. */
typedef enum
{
NRF_CLOCK_INT_HF_STARTED_MASK = CLOCK_INTENSET_HFCLKSTARTED_Msk, /**< Interrupt on HFCLKSTARTED event. */
NRF_CLOCK_INT_LF_STARTED_MASK = CLOCK_INTENSET_LFCLKSTARTED_Msk, /**< Interrupt on LFCLKSTARTED event. */
#if NRF_CLOCK_HAS_CALIBRATION
NRF_CLOCK_INT_DONE_MASK = CLOCK_INTENSET_DONE_Msk, /**< Interrupt on DONE event. */
#endif
#if NRF_CLOCK_HAS_CALIBRATION_TIMER
NRF_CLOCK_INT_CTTO_MASK = CLOCK_INTENSET_CTTO_Msk, /**< Interrupt on CTTO event. */
#endif
#if defined(CLOCK_INTENSET_CTSTARTED_Msk) || defined(__NRFX_DOXYGEN__)
NRF_CLOCK_INT_CTSTARTED_MASK = CLOCK_INTENSET_CTSTARTED_Msk, /**< Interrupt on CTSTARTED event. */
NRF_CLOCK_INT_CTSTOPPED_MASK = CLOCK_INTENSET_CTSTOPPED_Msk /**< Interrupt on CTSTOPPED event. */
#endif
#if NRF_CLOCK_HAS_HFCLKAUDIO
NRF_CLOCK_INT_HFAUDIO_STARTED_MASK = CLOCK_INTENSET_HFCLKAUDIOSTARTED_Msk, /**< Interrupt on HFCLKAUDIOSTARTED event. */
#endif
#if NRF_CLOCK_HAS_HFCLK192M
NRF_CLOCK_INT_HF192M_STARTED_MASK = CLOCK_INTENSET_HFCLK192MSTARTED_Msk, /**< Interrupt on HFCLK192MSTARTED event. */
#endif
} nrf_clock_int_mask_t;
/**
* @brief Tasks.
*
* @details The NRF_CLOCK_TASK_LFCLKSTOP task cannot be set when the low-frequency clock is not running.
* The NRF_CLOCK_TASK_HFCLKSTOP task cannot be set when the high-frequency clock is not running.
*/
typedef enum
{
NRF_CLOCK_TASK_HFCLKSTART = offsetof(NRF_CLOCK_Type, TASKS_HFCLKSTART), /**< Start HFCLK clock source. */
NRF_CLOCK_TASK_HFCLKSTOP = offsetof(NRF_CLOCK_Type, TASKS_HFCLKSTOP), /**< Stop HFCLK clock source. */
NRF_CLOCK_TASK_LFCLKSTART = offsetof(NRF_CLOCK_Type, TASKS_LFCLKSTART), /**< Start LFCLK clock source. */
NRF_CLOCK_TASK_LFCLKSTOP = offsetof(NRF_CLOCK_Type, TASKS_LFCLKSTOP), /**< Stop LFCLK clock source. */
#if NRF_CLOCK_HAS_CALIBRATION
NRF_CLOCK_TASK_CAL = offsetof(NRF_CLOCK_Type, TASKS_CAL), /**< Start calibration of LFCLK RC oscillator. */
#endif
#if NRF_CLOCK_HAS_CALIBRATION_TIMER
NRF_CLOCK_TASK_CTSTART = offsetof(NRF_CLOCK_Type, TASKS_CTSTART), /**< Start calibration timer. */
NRF_CLOCK_TASK_CTSTOP = offsetof(NRF_CLOCK_Type, TASKS_CTSTOP) /**< Stop calibration timer. */
#endif
#if NRF_CLOCK_HAS_HFCLKAUDIO
NRF_CLOCK_TASK_HFCLKAUDIOSTART = offsetof(NRF_CLOCK_Type, TASKS_HFCLKAUDIOSTART), /**< Start HFCLKAUDIO clock source. */
NRF_CLOCK_TASK_HFCLKAUDIOSTOP = offsetof(NRF_CLOCK_Type, TASKS_HFCLKAUDIOSTOP), /**< Stop HFCLKAUDIO clock source. */
#endif
#if NRF_CLOCK_HAS_HFCLK192M
NRF_CLOCK_TASK_HFCLK192MSTART = offsetof(NRF_CLOCK_Type, TASKS_HFCLK192MSTART), /**< Start HFCLK192M clock source. */
NRF_CLOCK_TASK_HFCLK192MSTOP = offsetof(NRF_CLOCK_Type, TASKS_HFCLK192MSTOP), /**< Stop HFCLK192M clock source. */
#endif
} nrf_clock_task_t;
/** @brief Events. */
typedef enum
{
NRF_CLOCK_EVENT_HFCLKSTARTED = offsetof(NRF_CLOCK_Type, EVENTS_HFCLKSTARTED), /**< HFCLK oscillator started. */
NRF_CLOCK_EVENT_LFCLKSTARTED = offsetof(NRF_CLOCK_Type, EVENTS_LFCLKSTARTED), /**< LFCLK oscillator started. */
#if NRF_CLOCK_HAS_CALIBRATION
NRF_CLOCK_EVENT_DONE = offsetof(NRF_CLOCK_Type, EVENTS_DONE), /**< Calibration of LFCLK RC oscillator completed. */
#endif
#if NRF_CLOCK_HAS_CALIBRATION_TIMER
NRF_CLOCK_EVENT_CTTO = offsetof(NRF_CLOCK_Type, EVENTS_CTTO), /**< Calibration timer time-out. */
#endif
#if defined(CLOCK_INTENSET_CTSTARTED_Msk) || defined(__NRFX_DOXYGEN__)
NRF_CLOCK_EVENT_CTSTARTED = offsetof(NRF_CLOCK_Type, EVENTS_CTSTARTED), /**< Calibration timer started. */
NRF_CLOCK_EVENT_CTSTOPPED = offsetof(NRF_CLOCK_Type, EVENTS_CTSTOPPED) /**< Calibration timer stopped. */
#endif
#if NRF_CLOCK_HAS_HFCLKAUDIO
NRF_CLOCK_EVENT_HFCLKAUDIOSTARTED = offsetof(NRF_CLOCK_Type, EVENTS_HFCLKAUDIOSTARTED), /**< HFCLKAUDIO oscillator started. */
#endif
#if NRF_CLOCK_HAS_HFCLK192M
NRF_CLOCK_EVENT_HFCLK192MSTARTED = offsetof(NRF_CLOCK_Type, EVENTS_HFCLK192MSTARTED), /**< HFCLK192M oscillator started. */
#endif
} nrf_clock_event_t;
/**
* @brief Function for enabling the specified interrupt.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] mask Mask of interrupts to be enabled.
*/
NRF_STATIC_INLINE void nrf_clock_int_enable(NRF_CLOCK_Type * p_reg, uint32_t mask);
/**
* @brief Function for disabling the specified interrupt.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] mask Mask of interrupts to be disabled.
*/
NRF_STATIC_INLINE void nrf_clock_int_disable(NRF_CLOCK_Type * p_reg, uint32_t mask);
/**
* @brief Function for checking if the specified interrupts are enabled.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] mask Mask of interrupts to be checked.
*
* @return Mask of enabled interrupts.
*/
NRF_STATIC_INLINE uint32_t nrf_clock_int_enable_check(NRF_CLOCK_Type const * p_reg, uint32_t mask);
/**
* @brief Function for retrieving the address of the specified task.
* @details This function can be used by the PPI module.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] task CLOCK Task.
*
* @return Address of the requested task register.
*/
NRF_STATIC_INLINE uint32_t nrf_clock_task_address_get(NRF_CLOCK_Type const * p_reg,
nrf_clock_task_t task);
/**
* @brief Function for setting the specified task.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] task Task to be activated.
*/
NRF_STATIC_INLINE void nrf_clock_task_trigger(NRF_CLOCK_Type * p_reg, nrf_clock_task_t task);
/**
* @brief Function for retrieving the address of the specified event.
* @details This function can be used by the PPI module.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] event CLOCK Event.
*
* @return Address of the specified event register.
*/
NRF_STATIC_INLINE uint32_t nrf_clock_event_address_get(NRF_CLOCK_Type const * p_reg,
nrf_clock_event_t event);
/**
* @brief Function for clearing the specified event.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] event Event to clear.
*/
NRF_STATIC_INLINE void nrf_clock_event_clear(NRF_CLOCK_Type * p_reg, nrf_clock_event_t event);
/**
* @brief Function for retrieving the state of the specified event.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] event Event to be checked.
*
* @retval true The event has been generated.
* @retval false The event has not been generated.
*/
NRF_STATIC_INLINE bool nrf_clock_event_check(NRF_CLOCK_Type const * p_reg, nrf_clock_event_t event);
/**
* @brief Function for retrieving the trigger status of the task START for given domain.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] domain Clock domain.
*
* @retval false The task START for the given domain has not been triggered.
* @retval true The task START for the given domain has been triggered.
*/
NRF_STATIC_INLINE bool nrf_clock_start_task_check(NRF_CLOCK_Type const * p_reg,
nrf_clock_domain_t domain);
/**
* @brief Function for retrieving the state of the clock.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] domain Clock domain.
* @param[out] clk_src Clock source that is running. Set to NULL if not needed.
* Ignored for HFCLKAUDIO domain. Typecast it to @ref nrf_clock_lfclk_t for
* LFCLK and @ref nrf_clock_hfclk_t for HFCLK and HFCLK192M.
*
* @retval false The clock is not running.
* @retval true The clock is running.
*/
NRF_STATIC_INLINE bool nrf_clock_is_running(NRF_CLOCK_Type const * p_reg,
nrf_clock_domain_t domain,
void * clk_src);
/**
* @brief Function for changing the low-frequency clock source.
* @details Check in Product Specification if this function can be called when
* the low-frequency clock is running.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] source New low-frequency clock source.
*/
NRF_STATIC_INLINE void nrf_clock_lf_src_set(NRF_CLOCK_Type * p_reg, nrf_clock_lfclk_t source);
/**
* @brief Function for retrieving the selected source for the low-frequency clock.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*
* @retval NRF_CLOCK_LFCLK_RC The internal 32 kHz RC oscillator
* is the selected source for the low-frequency clock.
* @retval NRF_CLOCK_LFCLK_Xtal An external 32 kHz crystal oscillator
* is the selected source for the low-frequency clock.
* @retval NRF_CLOCK_LFCLK_Synth The internal 32 kHz synthesizer from
* the HFCLK is the selected source for the low-frequency clock.
*/
NRF_STATIC_INLINE nrf_clock_lfclk_t nrf_clock_lf_src_get(NRF_CLOCK_Type const * p_reg);
/**
* @brief Function for retrieving the active source of the low-frequency clock.
*
* @note This function is deprecated. Use @ref nrf_clock_is_running instead.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*
* @retval NRF_CLOCK_LFCLK_RC The internal 32 kHz RC oscillator
* is the active source of the low-frequency clock.
* @retval NRF_CLOCK_LFCLK_Xtal An external 32 kHz crystal oscillator
* is the active source of the low-frequency clock.
* @retval NRF_CLOCK_LFCLK_Synth The internal 32 kHz synthesizer from
* the HFCLK is the active source of the low-frequency clock.
*/
NRF_STATIC_INLINE nrf_clock_lfclk_t nrf_clock_lf_actv_src_get(NRF_CLOCK_Type const * p_reg);
/**
* @brief Function for retrieving the clock source for the LFCLK clock when
* the task LKCLKSTART is triggered.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*
* @retval NRF_CLOCK_LFCLK_RC The internal 32 kHz RC oscillator
* is running and generating the LFCLK clock.
* @retval NRF_CLOCK_LFCLK_Xtal An external 32 kHz crystal oscillator
* is running and generating the LFCLK clock.
* @retval NRF_CLOCK_LFCLK_Synth The internal 32 kHz synthesizer from
* the HFCLK is running and generating the LFCLK clock.
*/
NRF_STATIC_INLINE nrf_clock_lfclk_t nrf_clock_lf_srccopy_get(NRF_CLOCK_Type const * p_reg);
/**
* @brief Function for retrieving the state of the LFCLK clock.
*
* @note This function is deprecated. Use @ref nrf_clock_is_running instead.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*
* @retval false The LFCLK clock is not running.
* @retval true The LFCLK clock is running.
*/
NRF_STATIC_INLINE bool nrf_clock_lf_is_running(NRF_CLOCK_Type const * p_reg);
/**
* @brief Function for retrieving the trigger status of the task LFCLKSTART.
*
* @note This function is deprecated. Use @ref nrf_clock_start_task_check instead.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*
* @retval NRF_CLOCK_START_TASK_NOT_TRIGGERED The task LFCLKSTART has not been triggered.
* @retval NRF_CLOCK_START_TASK_TRIGGERED The task LFCLKSTART has been triggered.
*/
NRF_STATIC_INLINE
nrf_clock_start_task_status_t nrf_clock_lf_start_task_status_get(NRF_CLOCK_Type const * p_reg);
#if NRF_CLOCK_HAS_HFCLKSRC
/**
* @brief Function for changing the high-frequency clock source.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] source New high-frequency clock source.
*/
NRF_STATIC_INLINE void nrf_clock_hf_src_set(NRF_CLOCK_Type * p_reg, nrf_clock_hfclk_t source);
#endif
/**
* @brief Function for retrieving the selected source of the high-frequency clock.
*
* For SoCs not featuring the HFCLKSRC register, this is always also the active source
* of the high-frequency clock.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*
* @retval NRF_CLOCK_HFCLK_LOW_ACCURACY The internal RC oscillator is the selected
* source of the high-frequency clock.
* @retval NRF_CLOCK_HFCLK_HIGH_ACCURACY An external crystal oscillator is the selected
* source of the high-frequency clock.
*/
NRF_STATIC_INLINE nrf_clock_hfclk_t nrf_clock_hf_src_get(NRF_CLOCK_Type const * p_reg);
/**
* @brief Function for retrieving the state of the HFCLK clock.
*
* @note This function is deprecated. Use @ref nrf_clock_is_running instead.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] clk_src Clock source to be checked.
*
* @retval false The HFCLK clock is not running.
* @retval true The HFCLK clock is running.
*/
NRF_STATIC_INLINE bool nrf_clock_hf_is_running(NRF_CLOCK_Type const * p_reg,
nrf_clock_hfclk_t clk_src);
/**
* @brief Function for retrieving the trigger status of the task HFCLKSTART.
*
* @note This function is deprecated. Use @ref nrf_clock_start_task_check instead.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*
* @retval NRF_CLOCK_START_TASK_NOT_TRIGGERED The task HFCLKSTART has not been triggered.
* @retval NRF_CLOCK_START_TASK_TRIGGERED The task HFCLKSTART has been triggered.
*/
NRF_STATIC_INLINE
nrf_clock_start_task_status_t nrf_clock_hf_start_task_status_get(NRF_CLOCK_Type const * p_reg);
#if NRF_CLOCK_HAS_HFCLKAUDIO
/**
* @brief Function for changing the Audio clock FREQ_VALUE.
*
* The frequency of HFCLKAUDIO ranges from 10.666 MHz to 13.333 MHz in 40.7 Hz steps.
* To calculate @p freq_value corresponding to the chosen frequency, use the following equation:
* FREQ_VALUE = 2^16 * ((12 * f_out / 32M) - 4)
*
* @warning Chosen frequency must fit in 11.176 MHz - 11.402 MHz or 12.165 MHz - 12.411 MHz frequency bands.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] freq_value New FREQ_VALUE
*/
NRF_STATIC_INLINE
void nrf_clock_hfclkaudio_config_set(NRF_CLOCK_Type * p_reg, uint16_t freq_value);
/**
* @brief Function for retrieving the Audio clock FREQ_VALUE.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*
* The frequency of HFCLKAUDIO ranges from 10.666 MHz to 13.333 MHz in 40.7 Hz steps.
* To calculate frequency corresponding to the returned FREQ_VALUE, use the following equation:
* f_out = 32M * (4 + FREQ_VALUE * 2^(-16))/12
* @return FREQ_VALUE of the Audio clock.
*/
NRF_STATIC_INLINE
uint16_t nrf_clock_hfclkaudio_config_get(NRF_CLOCK_Type const * p_reg);
#endif
#if NRF_CLOCK_HAS_CALIBRATION_TIMER
/**
* @brief Function for changing the calibration timer interval.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] interval New calibration timer interval in 0.25 s resolution
* (range: 0.25 seconds to 31.75 seconds).
*/
NRF_STATIC_INLINE void nrf_clock_cal_timer_timeout_set(NRF_CLOCK_Type * p_reg, uint32_t interval);
#endif
#if NRF_CLOCK_HAS_HFCLK_DIV
/**
* @brief Function for changing the HFCLK frequency divider.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] divider New HFCLK divider.
*/
NRF_STATIC_INLINE void nrf_clock_hfclk_div_set(NRF_CLOCK_Type * p_reg,
nrf_clock_hfclk_div_t divider);
/**
* @brief Function for retrieving the HFCLK frequency divider.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*
* @return HFCLK frequency divider.
*/
NRF_STATIC_INLINE nrf_clock_hfclk_div_t nrf_clock_hfclk_div_get(NRF_CLOCK_Type const * p_reg);
#endif
#if NRF_CLOCK_HAS_HFCLK192M
/**
* @brief Function for changing the HFCLK192M frequency divider.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] divider New HFCLK192M divider.
*/
NRF_STATIC_INLINE void nrf_clock_hfclk192m_div_set(NRF_CLOCK_Type * p_reg,
nrf_clock_hfclk_div_t divider);
/**
* @brief Function for retrieving the HFCLK192M frequency divider.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*
* @return HFCLK192M frequency divider.
*/
NRF_STATIC_INLINE nrf_clock_hfclk_div_t nrf_clock_hfclk192m_div_get(NRF_CLOCK_Type const * p_reg);
/**
* @brief Function for changing the HFCLK192M source.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] source New HFCLK192M source.
*/
NRF_STATIC_INLINE void nrf_clock_hfclk192m_src_set(NRF_CLOCK_Type * p_reg,
nrf_clock_hfclk_t source);
/**
* @brief Function for retrieving the selected source of the HFCLK192M.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*
* @retval NRF_CLOCK_HFCLK_LOW_ACCURACY The internal RC oscillator is the selected
* source of the HFCLK192M.
* @retval NRF_CLOCK_HFCLK_HIGH_ACCURACY An external crystal oscillator is the selected
* source of the HFCLK192M.
*/
NRF_STATIC_INLINE nrf_clock_hfclk_t nrf_clock_hfclk192m_src_get(NRF_CLOCK_Type const * p_reg);
#endif // NRF_CLOCK_HAS_HFCLK192M
#if NRF_CLOCK_HAS_ALWAYSRUN
/**
* @brief Function for setting the clock domain to always run.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] domain Clock domain.
* @param[in] alwaysrun Ensure the clock is always running.
*/
NRF_STATIC_INLINE void nrf_clock_alwaysrun_set(NRF_CLOCK_Type const * p_reg,
nrf_clock_domain_t domain,
bool alwaysrun);
/**
* @brief Function for checking if the clock domain is configured to always run.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] domain Clock domain.
*
* @retval true The clock domain is configured to always run.
* @retval false The clock domain is not configured to always run.
*/
NRF_STATIC_INLINE bool nrf_clock_alwaysrun_get(NRF_CLOCK_Type const * p_reg,
nrf_clock_domain_t domain);
/**
* @brief Function for checking if the clock domain always run setting is active.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] domain Clock domain.
*
* @retval true The clock domain always run setting is active.
* @retval false The clock domain always run setting is not active.
*/
NRF_STATIC_INLINE bool nrf_clock_alwaysrun_active_get(NRF_CLOCK_Type const * p_reg,
nrf_clock_domain_t domain);
#endif
#if defined(DPPI_PRESENT) || defined(__NRFX_DOXYGEN__)
/**
* @brief Function for setting the subscribe configuration for a given
* CLOCK task.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] task Task for which to set the configuration.
* @param[in] channel Channel through which to subscribe events.
*/
NRF_STATIC_INLINE void nrf_clock_subscribe_set(NRF_CLOCK_Type * p_reg,
nrf_clock_task_t task,
uint8_t channel);
/**
* @brief Function for clearing the subscribe configuration for a given
* CLOCK task.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] task Task for which to clear the configuration.
*/
NRF_STATIC_INLINE void nrf_clock_subscribe_clear(NRF_CLOCK_Type * p_reg, nrf_clock_task_t task);
/**
* @brief Function for setting the publish configuration for a given
* CLOCK event.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] event Event for which to set the configuration.
* @param[in] channel Channel through which to publish the event.
*/
NRF_STATIC_INLINE void nrf_clock_publish_set(NRF_CLOCK_Type * p_reg,
nrf_clock_event_t event,
uint8_t channel);
/**
* @brief Function for clearing the publish configuration for a given
* CLOCK event.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] event Event for which to clear the configuration.
*/
NRF_STATIC_INLINE void nrf_clock_publish_clear(NRF_CLOCK_Type * p_reg, nrf_clock_event_t event);
#endif // defined(DPPI_PRESENT) || defined(__NRFX_DOXYGEN__)
#ifndef NRF_DECLARE_ONLY
NRF_STATIC_INLINE void nrf_clock_int_enable(NRF_CLOCK_Type * p_reg, uint32_t mask)
{
p_reg->INTENSET = mask;
}
NRF_STATIC_INLINE void nrf_clock_int_disable(NRF_CLOCK_Type * p_reg, uint32_t mask)
{
p_reg->INTENCLR = mask;
}
NRF_STATIC_INLINE uint32_t nrf_clock_int_enable_check(NRF_CLOCK_Type const * p_reg, uint32_t mask)
{
return p_reg->INTENSET & mask;
}
NRF_STATIC_INLINE uint32_t nrf_clock_task_address_get(NRF_CLOCK_Type const * p_reg,
nrf_clock_task_t task)
{
return (uint32_t)((uint8_t *)p_reg + (uint32_t)task);
}
NRF_STATIC_INLINE void nrf_clock_task_trigger(NRF_CLOCK_Type * p_reg, nrf_clock_task_t task)
{
*((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)task)) = 0x1UL;
}
NRF_STATIC_INLINE uint32_t nrf_clock_event_address_get(NRF_CLOCK_Type const * p_reg,
nrf_clock_event_t event)
{
return (uint32_t)((uint8_t *)p_reg + (uint32_t)event);
}
NRF_STATIC_INLINE void nrf_clock_event_clear(NRF_CLOCK_Type * p_reg, nrf_clock_event_t event)
{
*((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event)) = 0x0UL;
#if __CORTEX_M == 0x04
volatile uint32_t dummy = *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event));
(void)dummy;
#endif
}
NRF_STATIC_INLINE bool nrf_clock_event_check(NRF_CLOCK_Type const * p_reg, nrf_clock_event_t event)
{
return (bool)*((volatile uint32_t *)((uint8_t *)p_reg + event));
}
NRF_STATIC_INLINE bool nrf_clock_start_task_check(NRF_CLOCK_Type const * p_reg,
nrf_clock_domain_t domain)
{
switch (domain)
{
case NRF_CLOCK_DOMAIN_LFCLK:
return ((p_reg->LFCLKRUN & CLOCK_LFCLKRUN_STATUS_Msk)
>> CLOCK_LFCLKRUN_STATUS_Pos);
case NRF_CLOCK_DOMAIN_HFCLK:
return ((p_reg->HFCLKRUN & CLOCK_HFCLKRUN_STATUS_Msk)
>> CLOCK_HFCLKRUN_STATUS_Pos);
#if NRF_CLOCK_HAS_HFCLK192M
case NRF_CLOCK_DOMAIN_HFCLK192M:
return ((p_reg->HFCLK192MRUN & CLOCK_HFCLK192MRUN_STATUS_Msk)
>> CLOCK_HFCLK192MRUN_STATUS_Pos);
#endif
#if NRF_CLOCK_HAS_HFCLKAUDIO
case NRF_CLOCK_DOMAIN_HFCLKAUDIO:
return ((p_reg->HFCLKAUDIORUN & CLOCK_HFCLKAUDIORUN_STATUS_Msk)
>> CLOCK_HFCLKAUDIORUN_STATUS_Pos);
#endif
default:
NRFX_ASSERT(0);
return false;
}
}
NRF_STATIC_INLINE bool nrf_clock_is_running(NRF_CLOCK_Type const * p_reg,
nrf_clock_domain_t domain,
void * clk_src)
{
switch (domain)
{
case NRF_CLOCK_DOMAIN_LFCLK:
if (clk_src != NULL)
{
(*(uint32_t *)clk_src) = ((p_reg->LFCLKSTAT & CLOCK_LFCLKSTAT_SRC_Msk)
>> CLOCK_LFCLKSTAT_SRC_Pos);
}
if ((p_reg->LFCLKSTAT & CLOCK_LFCLKSTAT_STATE_Msk)
>> CLOCK_LFCLKSTAT_STATE_Pos)
{
return true;
}
break;
case NRF_CLOCK_DOMAIN_HFCLK:
if (clk_src != NULL)
{
(*(uint32_t *)clk_src) = ((p_reg->HFCLKSTAT & CLOCK_HFCLKSTAT_SRC_Msk)
>> CLOCK_HFCLKSTAT_SRC_Pos);
}
if ((p_reg->HFCLKSTAT & CLOCK_HFCLKSTAT_STATE_Msk)
>> CLOCK_HFCLKSTAT_STATE_Pos)
{
return true;
}
break;
#if NRF_CLOCK_HAS_HFCLK192M
case NRF_CLOCK_DOMAIN_HFCLK192M:
if (clk_src != NULL)
{
(*(uint32_t *)clk_src) = ((p_reg->HFCLK192MSTAT & CLOCK_HFCLK192MSTAT_SRC_Msk)
>> CLOCK_HFCLK192MSTAT_SRC_Pos);
}
if ((p_reg->HFCLK192MSTAT & CLOCK_HFCLK192MSTAT_STATE_Msk)
>> CLOCK_HFCLK192MSTAT_STATE_Pos)
{
return true;
}
break;
#endif
#if NRF_CLOCK_HAS_HFCLKAUDIO
case NRF_CLOCK_DOMAIN_HFCLKAUDIO:
return (p_reg->HFCLKAUDIOSTAT & CLOCK_HFCLKAUDIOSTAT_STATE_Msk) ==
CLOCK_HFCLKAUDIOSTAT_STATE_Msk;
#endif
default:
NRFX_ASSERT(0);
return false;
}
return false;
}
NRF_STATIC_INLINE void nrf_clock_lf_src_set(NRF_CLOCK_Type * p_reg, nrf_clock_lfclk_t source)
{
p_reg->LFCLKSRC = (uint32_t)(source);
}
NRF_STATIC_INLINE nrf_clock_lfclk_t nrf_clock_lf_src_get(NRF_CLOCK_Type const * p_reg)
{
return (nrf_clock_lfclk_t)(p_reg->LFCLKSRC);
}
NRF_STATIC_INLINE nrf_clock_lfclk_t nrf_clock_lf_actv_src_get(NRF_CLOCK_Type const * p_reg)
{
nrf_clock_lfclk_t clk_src;
(void)nrf_clock_is_running(p_reg, NRF_CLOCK_DOMAIN_LFCLK, &clk_src);
return clk_src;
}
NRF_STATIC_INLINE nrf_clock_lfclk_t nrf_clock_lf_srccopy_get(NRF_CLOCK_Type const * p_reg)
{
return (nrf_clock_lfclk_t)((p_reg->LFCLKSRCCOPY & CLOCK_LFCLKSRCCOPY_SRC_Msk)
>> CLOCK_LFCLKSRCCOPY_SRC_Pos);
}
NRF_STATIC_INLINE bool nrf_clock_lf_is_running(NRF_CLOCK_Type const * p_reg)
{
return nrf_clock_is_running(p_reg, NRF_CLOCK_DOMAIN_LFCLK, NULL);
}
NRF_STATIC_INLINE
nrf_clock_start_task_status_t nrf_clock_lf_start_task_status_get(NRF_CLOCK_Type const * p_reg)
{
return (nrf_clock_start_task_status_t)nrf_clock_start_task_check(p_reg,
NRF_CLOCK_DOMAIN_LFCLK);
}
#if NRF_CLOCK_HAS_HFCLKSRC
NRF_STATIC_INLINE void nrf_clock_hf_src_set(NRF_CLOCK_Type * p_reg, nrf_clock_hfclk_t source)
{
p_reg->HFCLKSRC = (uint32_t)(source);
}
#endif
NRF_STATIC_INLINE nrf_clock_hfclk_t nrf_clock_hf_src_get(NRF_CLOCK_Type const * p_reg)
{
#if NRF_CLOCK_HAS_HFCLKSRC
return (nrf_clock_hfclk_t)(p_reg->HFCLKSRC);
#else
return (nrf_clock_hfclk_t)((p_reg->HFCLKSTAT & CLOCK_HFCLKSTAT_SRC_Msk)
>> CLOCK_HFCLKSTAT_SRC_Pos);
#endif
}
NRF_STATIC_INLINE bool nrf_clock_hf_is_running(NRF_CLOCK_Type const * p_reg,
nrf_clock_hfclk_t clk_src)
{
nrf_clock_hfclk_t active_clk_src;
bool ret = nrf_clock_is_running(p_reg, NRF_CLOCK_DOMAIN_HFCLK, &active_clk_src);
return (ret && (active_clk_src == clk_src));
}
NRF_STATIC_INLINE
nrf_clock_start_task_status_t nrf_clock_hf_start_task_status_get(NRF_CLOCK_Type const * p_reg)
{
return (nrf_clock_start_task_status_t)nrf_clock_start_task_check(p_reg,
NRF_CLOCK_DOMAIN_HFCLK);
}
#if NRF_CLOCK_HAS_HFCLKAUDIO
NRF_STATIC_INLINE
void nrf_clock_hfclkaudio_config_set(NRF_CLOCK_Type * p_reg, uint16_t freq_value)
{
p_reg->HFCLKAUDIO.FREQUENCY = freq_value;
}
NRF_STATIC_INLINE
uint16_t nrf_clock_hfclkaudio_config_get(NRF_CLOCK_Type const * p_reg)
{
return (uint16_t)(p_reg->HFCLKAUDIO.FREQUENCY);
}
#endif
#if NRF_CLOCK_HAS_HFCLK_DIV
NRF_STATIC_INLINE
void nrf_clock_hfclk_div_set(NRF_CLOCK_Type * p_reg, nrf_clock_hfclk_div_t divider)
{
p_reg->HFCLKCTRL = (((uint8_t)(divider) << CLOCK_HFCLKCTRL_HCLK_Pos) &
CLOCK_HFCLKCTRL_HCLK_Msk);
}
NRF_STATIC_INLINE nrf_clock_hfclk_div_t nrf_clock_hfclk_div_get(NRF_CLOCK_Type const * p_reg)
{
return (nrf_clock_hfclk_div_t)((p_reg->HFCLKCTRL & CLOCK_HFCLKCTRL_HCLK_Msk)
>> CLOCK_HFCLKCTRL_HCLK_Pos);
}
#endif
#if NRF_CLOCK_HAS_HFCLK192M
NRF_STATIC_INLINE
void nrf_clock_hfclk192m_div_set(NRF_CLOCK_Type * p_reg, nrf_clock_hfclk_div_t divider)
{
p_reg->HFCLK192MCTRL = (((uint8_t)(divider) << CLOCK_HFCLK192MCTRL_HCLK192M_Pos) &
CLOCK_HFCLK192MCTRL_HCLK192M_Msk);
}
NRF_STATIC_INLINE nrf_clock_hfclk_div_t nrf_clock_hfclk192m_div_get(NRF_CLOCK_Type const * p_reg)
{
return (nrf_clock_hfclk_div_t)((p_reg->HFCLK192MCTRL & CLOCK_HFCLK192MCTRL_HCLK192M_Msk)
>> CLOCK_HFCLK192MCTRL_HCLK192M_Pos);
}
NRF_STATIC_INLINE void nrf_clock_hfclk192m_src_set(NRF_CLOCK_Type * p_reg, nrf_clock_hfclk_t source)
{
p_reg->HFCLK192MSRC = (uint32_t)(source);
}
NRF_STATIC_INLINE nrf_clock_hfclk_t nrf_clock_hfclk192m_src_get(NRF_CLOCK_Type const * p_reg)
{
return (nrf_clock_hfclk_t)(p_reg->HFCLK192MSRC);
}
#endif
#if NRF_CLOCK_HAS_CALIBRATION_TIMER
NRF_STATIC_INLINE void nrf_clock_cal_timer_timeout_set(NRF_CLOCK_Type * p_reg, uint32_t interval)
{
p_reg->CTIV = ((interval << CLOCK_CTIV_CTIV_Pos) & CLOCK_CTIV_CTIV_Msk);
}
#endif
#if NRF_CLOCK_HAS_ALWAYSRUN
NRF_STATIC_INLINE void nrf_clock_alwaysrun_set(NRF_CLOCK_Type const * p_reg,
nrf_clock_domain_t domain,
bool alwaysrun)
{
/* ALWAYSRUN registers should be R/W, but are marked as read-only.
* Redefine them as R/W as a workaround. */
switch (domain)
{
case NRF_CLOCK_DOMAIN_LFCLK:
*(volatile uint32_t *)(&p_reg->LFCLKALWAYSRUN) =
((alwaysrun << CLOCK_LFCLKALWAYSRUN_ALWAYSRUN_Pos)
& CLOCK_LFCLKALWAYSRUN_ALWAYSRUN_Msk);
break;
case NRF_CLOCK_DOMAIN_HFCLK:
*(volatile uint32_t *)(&p_reg->HFCLKALWAYSRUN) =
((alwaysrun << CLOCK_HFCLKALWAYSRUN_ALWAYSRUN_Pos)
& CLOCK_HFCLKALWAYSRUN_ALWAYSRUN_Msk);
break;
#if NRF_CLOCK_HAS_HFCLK192M
case NRF_CLOCK_DOMAIN_HFCLK192M:
*(volatile uint32_t *)(&p_reg->HFCLK192MALWAYSRUN) =
((alwaysrun << CLOCK_HFCLK192MALWAYSRUN_ALWAYSRUN_Pos)
& CLOCK_HFCLK192MALWAYSRUN_ALWAYSRUN_Msk);
break;
#endif
#if NRF_CLOCK_HAS_HFCLKAUDIO
case NRF_CLOCK_DOMAIN_HFCLKAUDIO:
*(volatile uint32_t *)(&p_reg->HFCLKAUDIOALWAYSRUN) =
((alwaysrun << CLOCK_HFCLKAUDIOALWAYSRUN_ALWAYSRUN_Pos)
& CLOCK_HFCLKAUDIOALWAYSRUN_ALWAYSRUN_Msk);
break;
#endif
default:
NRFX_ASSERT(0);
break;
}
}
NRF_STATIC_INLINE bool nrf_clock_alwaysrun_get(NRF_CLOCK_Type const * p_reg,
nrf_clock_domain_t domain)
{
switch (domain)
{
case NRF_CLOCK_DOMAIN_LFCLK:
return ((p_reg->LFCLKALWAYSRUN & CLOCK_LFCLKALWAYSRUN_ALWAYSRUN_Msk)
>> CLOCK_LFCLKALWAYSRUN_ALWAYSRUN_Pos);
case NRF_CLOCK_DOMAIN_HFCLK:
return ((p_reg->HFCLKALWAYSRUN & CLOCK_HFCLKALWAYSRUN_ALWAYSRUN_Msk)
>> CLOCK_HFCLKALWAYSRUN_ALWAYSRUN_Pos);
#if NRF_CLOCK_HAS_HFCLK192M
case NRF_CLOCK_DOMAIN_HFCLK192M:
return ((p_reg->HFCLK192MALWAYSRUN & CLOCK_HFCLK192MALWAYSRUN_ALWAYSRUN_Msk)
>> CLOCK_HFCLK192MALWAYSRUN_ALWAYSRUN_Pos);
#endif
#if NRF_CLOCK_HAS_HFCLKAUDIO
case NRF_CLOCK_DOMAIN_HFCLKAUDIO:
return ((p_reg->HFCLKAUDIOALWAYSRUN & CLOCK_HFCLKAUDIOALWAYSRUN_ALWAYSRUN_Msk)
>> CLOCK_HFCLKAUDIOALWAYSRUN_ALWAYSRUN_Pos);
#endif
default:
NRFX_ASSERT(0);
return false;
}
}
NRF_STATIC_INLINE bool nrf_clock_alwaysrun_active_get(NRF_CLOCK_Type const * p_reg,
nrf_clock_domain_t domain)
{
switch (domain)
{
case NRF_CLOCK_DOMAIN_LFCLK:
return ((p_reg->LFCLKSTAT & CLOCK_LFCLKSTAT_ALWAYSRUNNING_Msk)
>> CLOCK_LFCLKSTAT_ALWAYSRUNNING_Pos);
case NRF_CLOCK_DOMAIN_HFCLK:
return ((p_reg->HFCLKSTAT & CLOCK_HFCLKSTAT_ALWAYSRUNNING_Msk)
>> CLOCK_HFCLKSTAT_ALWAYSRUNNING_Pos);
#if NRF_CLOCK_HAS_HFCLK192M
case NRF_CLOCK_DOMAIN_HFCLK192M:
return ((p_reg->HFCLK192MSTAT & CLOCK_HFCLK192MSTAT_ALWAYSRUNNING_Msk)
>> CLOCK_HFCLK192MSTAT_ALWAYSRUNNING_Pos);
#endif
#if NRF_CLOCK_HAS_HFCLKAUDIO
case NRF_CLOCK_DOMAIN_HFCLKAUDIO:
return ((p_reg->HFCLKAUDIOSTAT & CLOCK_HFCLKAUDIOSTAT_ALWAYSRUNNING_Msk)
>> CLOCK_HFCLKAUDIOSTAT_ALWAYSRUNNING_Pos);
#endif
default:
NRFX_ASSERT(0);
return false;
}
}
#endif // NRF_CLOCK_HAS_ALWAYSRUN
#if defined(DPPI_PRESENT)
NRF_STATIC_INLINE void nrf_clock_subscribe_set(NRF_CLOCK_Type * p_reg,
nrf_clock_task_t task,
uint8_t channel)
{
*((volatile uint32_t *) ((uint8_t *)p_reg+ (uint32_t)task + 0x80uL)) =
((uint32_t)channel | CLOCK_SUBSCRIBE_HFCLKSTART_EN_Msk);
}
NRF_STATIC_INLINE void nrf_clock_subscribe_clear(NRF_CLOCK_Type * p_reg, nrf_clock_task_t task)
{
*((volatile uint32_t *) ((uint8_t *)p_reg + (uint32_t)task + 0x80uL)) = 0;
}
NRF_STATIC_INLINE void nrf_clock_publish_set(NRF_CLOCK_Type * p_reg,
nrf_clock_event_t event,
uint8_t channel)
{
*((volatile uint32_t *) ((uint8_t *)p_reg + (uint32_t)event + 0x80uL)) =
((uint32_t)channel | CLOCK_PUBLISH_HFCLKSTARTED_EN_Msk);
}
NRF_STATIC_INLINE void nrf_clock_publish_clear(NRF_CLOCK_Type * p_reg, nrf_clock_event_t event)
{
*((volatile uint32_t *) ((uint8_t *)p_reg + (uint32_t)event + 0x80uL)) = 0;
}
#endif // defined(DPPI_PRESENT)
#endif // NRF_DECLARE_ONLY
/** @} */
#ifdef __cplusplus
}
#endif
#endif // NRF_CLOCK_H__