driver: serial: split silabs series 2 and series 0/1 boards usart driver

Split the USART driver into separate implementations for Silabs Series 2
and Series 0/1 boards. This change improves maintainability (especially
with the support of pin-ctrl and clock-ctrl on series 2 boards).

Signed-off-by: Martin Hoff <martin.hoff@silabs.com>
This commit is contained in:
Martin Hoff 2025-01-17 10:42:22 +01:00 committed by Benjamin Cabé
parent 12c98694c0
commit 1318f1543c
7 changed files with 574 additions and 47 deletions

View file

@ -73,6 +73,7 @@ zephyr_library_sources_ifdef(CONFIG_UART_SEDI uart_sedi.c)
zephyr_library_sources_ifdef(CONFIG_UART_SI32_USART uart_si32_usart.c)
zephyr_library_sources_ifdef(CONFIG_UART_SIFIVE uart_sifive.c)
zephyr_library_sources_ifdef(CONFIG_UART_SILABS_EUSART uart_silabs_eusart.c)
zephyr_library_sources_ifdef(CONFIG_UART_SILABS_USART uart_silabs_usart.c)
zephyr_library_sources_ifdef(CONFIG_UART_SMARTBOND uart_smartbond.c)
zephyr_library_sources_ifdef(CONFIG_UART_STELLARIS uart_stellaris.c)
zephyr_library_sources_ifdef(CONFIG_UART_STM32 uart_stm32.c)

View file

@ -215,6 +215,7 @@ rsource "Kconfig.sam0"
rsource "Kconfig.sedi"
rsource "Kconfig.sifive"
rsource "Kconfig.silabs_eusart"
rsource "Kconfig.silabs_usart"
rsource "Kconfig.smartbond"
rsource "Kconfig.stellaris"
rsource "Kconfig.stm32"

View file

@ -10,8 +10,6 @@ config UART_GECKO
select SERIAL_HAS_DRIVER
select SERIAL_SUPPORT_INTERRUPT
select SOC_GECKO_USART
select PINCTRL if (SOC_FAMILY_SILABS_S1 || SOC_FAMILY_SILABS_S2)
select CLOCK_CONTROL if SOC_FAMILY_SILABS_S2
select PM_DEVICE if PM && SOC_FAMILY_SILABS_S2
select PINCTRL if SOC_FAMILY_SILABS_S1
help
Enable the Gecko uart driver.

View file

@ -0,0 +1,15 @@
# Copyright (c) 2025, Silicon Laboratories Inc.
# SPDX-License-Identifier: Apache-2.0
config UART_SILABS_USART
bool "Silabs USART UART driver"
default y
depends on DT_HAS_SILABS_USART_UART_ENABLED
select SERIAL_HAS_DRIVER
select SERIAL_SUPPORT_INTERRUPT
select SOC_GECKO_USART
select PINCTRL
select CLOCK_CONTROL
select PM_DEVICE if PM
help
Enable the Silicon Labs usart driver.

View file

@ -19,13 +19,7 @@
#include <em_gpio.h>
#endif /* CONFIG_PINCTRL */
#ifdef CONFIG_CLOCK_CONTROL
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/clock_control/clock_control_silabs.h>
#define GET_GECKO_USART_CLOCK(idx) \
.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(idx)), \
.clock_cfg = SILABS_DT_INST_CLOCK_CFG(idx),
#elif DT_NODE_HAS_PROP(id, peripheral_id)
#if DT_NODE_HAS_PROP(id, peripheral_id)
#define USART_PREFIX cmuClock_USART
#define UART_PREFIX cmuClock_UART
#define CLOCK_USART(id) _CONCAT(USART_PREFIX, id)
@ -130,12 +124,7 @@ struct uart_gecko_config {
const struct pinctrl_dev_config *pcfg;
#endif /* CONFIG_PINCTRL */
USART_TypeDef *base;
#ifdef CONFIG_CLOCK_CONTROL
const struct device *clock_dev;
const struct silabs_clock_control_cmu_config clock_cfg;
#else
CMU_Clock_TypeDef clock;
#endif
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
void (*irq_config_func)(const struct device *dev);
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
@ -650,14 +639,7 @@ static int uart_gecko_init(const struct device *dev)
/* The peripheral and gpio clock are already enabled from soc and gpio driver */
/* Enable USART clock */
#ifdef CONFIG_CLOCK_CONTROL
err = clock_control_on(config->clock_dev, (clock_control_subsys_t)&config->clock_cfg);
if (err < 0) {
return err;
}
#else
CMU_ClockEnable(config->clock, true);
#endif
/* Init USART */
usartInit.baudrate = uart_cfg->baudrate;
@ -687,31 +669,6 @@ static int uart_gecko_init(const struct device *dev)
return 0;
}
#ifdef CONFIG_PM_DEVICE
static int uart_gecko_pm_action(const struct device *dev, enum pm_device_action action)
{
__maybe_unused const struct uart_gecko_config *config = dev->config;
switch (action) {
case PM_DEVICE_ACTION_SUSPEND:
#ifdef USART_STATUS_TXIDLE
/* Wait for TX FIFO to flush before suspending */
while (!(USART_StatusGet(config->base) & USART_STATUS_TXIDLE)) {
}
#endif
break;
case PM_DEVICE_ACTION_RESUME:
break;
default:
return -ENOTSUP;
}
return 0;
}
#endif
static DEVICE_API(uart, uart_gecko_driver_api) = {
.poll_in = uart_gecko_poll_in,
.poll_out = uart_gecko_poll_out,

View file

@ -0,0 +1,528 @@
/*
* Copyright (c) 2025 Silicon Laboratories Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <errno.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/clock_control/clock_control_silabs.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/uart.h>
#include <zephyr/irq.h>
#include <zephyr/pm/device.h>
#include <em_usart.h>
#define DT_DRV_COMPAT silabs_usart_uart
/**
* @brief Config struct for UART
*/
struct uart_silabs_config {
const struct pinctrl_dev_config *pcfg;
const struct device *clock_dev;
const struct silabs_clock_control_cmu_config clock_cfg;
USART_TypeDef *base;
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
void (*irq_config_func)(const struct device *dev);
#endif
};
struct uart_silabs_data {
struct uart_config *uart_cfg;
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
uart_irq_callback_user_data_t callback;
void *cb_data;
#endif
};
static int uart_silabs_poll_in(const struct device *dev, unsigned char *c)
{
const struct uart_silabs_config *config = dev->config;
uint32_t flags = USART_StatusGet(config->base);
if (flags & USART_STATUS_RXDATAV) {
*c = USART_Rx(config->base);
return 0;
}
return -1;
}
static void uart_silabs_poll_out(const struct device *dev, unsigned char c)
{
const struct uart_silabs_config *config = dev->config;
USART_Tx(config->base, c);
}
static int uart_silabs_err_check(const struct device *dev)
{
const struct uart_silabs_config *config = dev->config;
uint32_t flags = USART_IntGet(config->base);
int err = 0;
if (flags & USART_IF_RXOF) {
err |= UART_ERROR_OVERRUN;
}
if (flags & USART_IF_PERR) {
err |= UART_ERROR_PARITY;
}
if (flags & USART_IF_FERR) {
err |= UART_ERROR_FRAMING;
}
USART_IntClear(config->base, USART_IF_RXOF | USART_IF_PERR | USART_IF_FERR);
return err;
}
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static int uart_silabs_fifo_fill(const struct device *dev, const uint8_t *tx_data, int len)
{
const struct uart_silabs_config *config = dev->config;
int i = 0;
while ((i < len) && (config->base->STATUS & USART_STATUS_TXBL)) {
config->base->TXDATA = tx_data[i++];
}
return i;
}
static int uart_silabs_fifo_read(const struct device *dev, uint8_t *rx_data, const int len)
{
const struct uart_silabs_config *config = dev->config;
int i = 0;
while ((i < len) && (config->base->STATUS & USART_STATUS_RXDATAV)) {
rx_data[i++] = (uint8_t)config->base->RXDATA;
}
return i;
}
static void uart_silabs_irq_tx_enable(const struct device *dev)
{
const struct uart_silabs_config *config = dev->config;
USART_IntEnable(config->base, USART_IEN_TXBL | USART_IEN_TXC);
}
static void uart_silabs_irq_tx_disable(const struct device *dev)
{
const struct uart_silabs_config *config = dev->config;
USART_IntDisable(config->base, USART_IEN_TXBL | USART_IEN_TXC);
}
static int uart_silabs_irq_tx_complete(const struct device *dev)
{
const struct uart_silabs_config *config = dev->config;
uint32_t flags = USART_IntGet(config->base);
USART_IntClear(config->base, USART_IF_TXC);
return !!(flags & USART_IF_TXC);
}
static int uart_silabs_irq_tx_ready(const struct device *dev)
{
const struct uart_silabs_config *config = dev->config;
uint32_t flags = USART_IntGetEnabled(config->base);
return !!(flags & USART_IF_TXBL);
}
static void uart_silabs_irq_rx_enable(const struct device *dev)
{
const struct uart_silabs_config *config = dev->config;
USART_IntEnable(config->base, USART_IEN_RXDATAV);
}
static void uart_silabs_irq_rx_disable(const struct device *dev)
{
const struct uart_silabs_config *config = dev->config;
USART_IntDisable(config->base, USART_IEN_RXDATAV);
}
static int uart_silabs_irq_rx_full(const struct device *dev)
{
const struct uart_silabs_config *config = dev->config;
uint32_t flags = USART_IntGet(config->base);
return !!(flags & USART_IF_RXDATAV);
}
static int uart_silabs_irq_rx_ready(const struct device *dev)
{
const struct uart_silabs_config *config = dev->config;
return (config->base->IEN & USART_IEN_RXDATAV) && uart_silabs_irq_rx_full(dev);
}
static void uart_silabs_irq_err_enable(const struct device *dev)
{
const struct uart_silabs_config *config = dev->config;
USART_IntEnable(config->base, USART_IF_RXOF | USART_IF_PERR | USART_IF_FERR);
}
static void uart_silabs_irq_err_disable(const struct device *dev)
{
const struct uart_silabs_config *config = dev->config;
USART_IntDisable(config->base, USART_IF_RXOF | USART_IF_PERR | USART_IF_FERR);
}
static int uart_silabs_irq_is_pending(const struct device *dev)
{
return uart_silabs_irq_tx_ready(dev) || uart_silabs_irq_rx_ready(dev);
}
static int uart_silabs_irq_update(const struct device *dev)
{
return 1;
}
static void uart_silabs_irq_callback_set(const struct device *dev, uart_irq_callback_user_data_t cb,
void *cb_data)
{
struct uart_silabs_data *data = dev->data;
data->callback = cb;
data->cb_data = cb_data;
}
static void uart_silabs_isr(const struct device *dev)
{
struct uart_silabs_data *data = dev->data;
if (data->callback) {
data->callback(dev, data->cb_data);
}
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
static inline USART_Parity_TypeDef uart_silabs_cfg2ll_parity(enum uart_config_parity parity)
{
switch (parity) {
case UART_CFG_PARITY_ODD:
return usartOddParity;
case UART_CFG_PARITY_EVEN:
return usartEvenParity;
case UART_CFG_PARITY_NONE:
default:
return usartNoParity;
}
}
static inline enum uart_config_parity uart_silabs_ll2cfg_parity(USART_Parity_TypeDef parity)
{
switch (parity) {
case usartOddParity:
return UART_CFG_PARITY_ODD;
case usartEvenParity:
return UART_CFG_PARITY_EVEN;
case usartNoParity:
default:
return UART_CFG_PARITY_NONE;
}
}
static inline USART_Stopbits_TypeDef uart_silabs_cfg2ll_stopbits(enum uart_config_stop_bits sb)
{
switch (sb) {
case UART_CFG_STOP_BITS_0_5:
return usartStopbits0p5;
case UART_CFG_STOP_BITS_1:
return usartStopbits1;
case UART_CFG_STOP_BITS_2:
return usartStopbits2;
case UART_CFG_STOP_BITS_1_5:
return usartStopbits1p5;
default:
return usartStopbits1;
}
}
static inline enum uart_config_stop_bits uart_silabs_ll2cfg_stopbits(USART_Stopbits_TypeDef sb)
{
switch (sb) {
case usartStopbits0p5:
return UART_CFG_STOP_BITS_0_5;
case usartStopbits1:
return UART_CFG_STOP_BITS_1;
case usartStopbits1p5:
return UART_CFG_STOP_BITS_1_5;
case usartStopbits2:
return UART_CFG_STOP_BITS_2;
default:
return UART_CFG_STOP_BITS_1;
}
}
static inline USART_Databits_TypeDef uart_silabs_cfg2ll_databits(enum uart_config_data_bits db,
enum uart_config_parity p)
{
switch (db) {
case UART_CFG_DATA_BITS_7:
if (p == UART_CFG_PARITY_NONE) {
return usartDatabits7;
} else {
return usartDatabits8;
}
case UART_CFG_DATA_BITS_9:
return usartDatabits9;
case UART_CFG_DATA_BITS_8:
default:
if (p == UART_CFG_PARITY_NONE) {
return usartDatabits8;
} else {
return usartDatabits9;
}
return usartDatabits8;
}
}
static inline enum uart_config_data_bits uart_silabs_ll2cfg_databits(USART_Databits_TypeDef db,
USART_Parity_TypeDef p)
{
switch (db) {
case usartDatabits7:
if (p == usartNoParity) {
return UART_CFG_DATA_BITS_7;
} else {
return UART_CFG_DATA_BITS_6;
}
case usartDatabits9:
if (p == usartNoParity) {
return UART_CFG_DATA_BITS_9;
} else {
return UART_CFG_DATA_BITS_8;
}
case usartDatabits8:
default:
if (p == usartNoParity) {
return UART_CFG_DATA_BITS_8;
} else {
return UART_CFG_DATA_BITS_7;
}
}
}
static inline USART_HwFlowControl_TypeDef uart_silabs_cfg2ll_hwctrl(
enum uart_config_flow_control fc)
{
if (fc == UART_CFG_FLOW_CTRL_RTS_CTS) {
return usartHwFlowControlCtsAndRts;
}
return usartHwFlowControlNone;
}
static inline enum uart_config_flow_control uart_silabs_ll2cfg_hwctrl(
USART_HwFlowControl_TypeDef fc)
{
if (fc == usartHwFlowControlCtsAndRts) {
return UART_CFG_FLOW_CTRL_RTS_CTS;
}
return UART_CFG_FLOW_CTRL_NONE;
}
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
static int uart_silabs_configure(const struct device *dev,
const struct uart_config *cfg)
{
const struct uart_silabs_config *config = dev->config;
USART_TypeDef *base = config->base;
struct uart_silabs_data *data = dev->data;
struct uart_config *uart_cfg = data->uart_cfg;
USART_InitAsync_TypeDef usartInit = USART_INITASYNC_DEFAULT;
if ((cfg->parity == UART_CFG_PARITY_MARK) ||
(cfg->parity == UART_CFG_PARITY_SPACE)) {
return -ENOSYS;
}
if (cfg->flow_ctrl == UART_CFG_FLOW_CTRL_DTR_DSR ||
cfg->flow_ctrl == UART_CFG_FLOW_CTRL_RS485) {
return -ENOSYS;
}
*uart_cfg = *cfg;
usartInit.baudrate = uart_cfg->baudrate;
usartInit.parity = uart_silabs_cfg2ll_parity(uart_cfg->parity);
usartInit.stopbits = uart_silabs_cfg2ll_stopbits(uart_cfg->stop_bits);
usartInit.databits = uart_silabs_cfg2ll_databits(uart_cfg->data_bits,
uart_cfg->parity);
usartInit.hwFlowControl = uart_silabs_cfg2ll_hwctrl(uart_cfg->flow_ctrl);
USART_Enable(base, usartDisable);
USART_InitAsync(base, &usartInit);
USART_Enable(base, usartEnable);
return 0;
};
static int uart_silabs_config_get(const struct device *dev,
struct uart_config *cfg)
{
struct uart_silabs_data *data = dev->data;
struct uart_config *uart_cfg = data->uart_cfg;
cfg->baudrate = uart_cfg->baudrate;
cfg->parity = uart_cfg->parity;
cfg->stop_bits = uart_cfg->stop_bits;
cfg->data_bits = uart_cfg->data_bits;
cfg->flow_ctrl = uart_cfg->flow_ctrl;
return 0;
}
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
static int uart_silabs_init(const struct device *dev)
{
int err;
const struct uart_silabs_config *config = dev->config;
const struct uart_silabs_data *data = dev->data;
const struct uart_config *uart_cfg = data->uart_cfg;
USART_InitAsync_TypeDef usartInit = USART_INITASYNC_DEFAULT;
/* The peripheral and gpio clock are already enabled from soc and gpio driver */
/* Enable USART clock */
err = clock_control_on(config->clock_dev, (clock_control_subsys_t)&config->clock_cfg);
if (err < 0) {
return err;
}
err = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT);
if (err < 0) {
return err;
}
usartInit.baudrate = uart_cfg->baudrate;
usartInit.parity = uart_silabs_cfg2ll_parity(uart_cfg->parity);
usartInit.stopbits = uart_silabs_cfg2ll_stopbits(uart_cfg->stop_bits);
usartInit.databits = uart_silabs_cfg2ll_databits(uart_cfg->data_bits, uart_cfg->parity);
usartInit.hwFlowControl =
uart_cfg->flow_ctrl ? usartHwFlowControlCtsAndRts : usartHwFlowControlNone;
USART_InitAsync(config->base, &usartInit);
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
config->irq_config_func(dev);
#endif
return 0;
}
#ifdef CONFIG_PM_DEVICE
static int uart_silabs_pm_action(const struct device *dev, enum pm_device_action action)
{
__maybe_unused const struct uart_silabs_config *config = dev->config;
switch (action) {
case PM_DEVICE_ACTION_SUSPEND:
/* Wait for TX FIFO to flush before suspending */
while (!(USART_StatusGet(config->base) & USART_STATUS_TXIDLE)) {
}
break;
case PM_DEVICE_ACTION_RESUME:
break;
default:
return -ENOTSUP;
}
return 0;
}
#endif
static DEVICE_API(uart, uart_silabs_driver_api) = {
.poll_in = uart_silabs_poll_in,
.poll_out = uart_silabs_poll_out,
.err_check = uart_silabs_err_check,
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
.configure = uart_silabs_configure,
.config_get = uart_silabs_config_get,
#endif
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.fifo_fill = uart_silabs_fifo_fill,
.fifo_read = uart_silabs_fifo_read,
.irq_tx_enable = uart_silabs_irq_tx_enable,
.irq_tx_disable = uart_silabs_irq_tx_disable,
.irq_tx_complete = uart_silabs_irq_tx_complete,
.irq_tx_ready = uart_silabs_irq_tx_ready,
.irq_rx_enable = uart_silabs_irq_rx_enable,
.irq_rx_disable = uart_silabs_irq_rx_disable,
.irq_rx_ready = uart_silabs_irq_rx_ready,
.irq_err_enable = uart_silabs_irq_err_enable,
.irq_err_disable = uart_silabs_irq_err_disable,
.irq_is_pending = uart_silabs_irq_is_pending,
.irq_update = uart_silabs_irq_update,
.irq_callback_set = uart_silabs_irq_callback_set,
#endif
};
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
#define SILABS_USART_IRQ_HANDLER_FUNC(idx) .irq_config_func = usart_silabs_config_func_##idx,
#define SILABS_USART_IRQ_HANDLER(idx) \
static void usart_silabs_config_func_##idx(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(idx, rx, irq), \
DT_INST_IRQ_BY_NAME(idx, rx, priority), uart_silabs_isr, \
DEVICE_DT_INST_GET(idx), 0); \
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(idx, tx, irq), \
DT_INST_IRQ_BY_NAME(idx, tx, priority), uart_silabs_isr, \
DEVICE_DT_INST_GET(idx), 0); \
\
irq_enable(DT_INST_IRQ_BY_NAME(idx, rx, irq)); \
irq_enable(DT_INST_IRQ_BY_NAME(idx, tx, irq)); \
}
#else
#define SILABS_USART_IRQ_HANDLER_FUNC(idx)
#define SILABS_USART_IRQ_HANDLER(idx)
#endif
#define SILABS_USART_INIT(idx) \
SILABS_USART_IRQ_HANDLER(idx); \
PINCTRL_DT_INST_DEFINE(idx); \
\
static struct uart_config uart_cfg_##idx = { \
.baudrate = DT_INST_PROP(idx, current_speed), \
.parity = DT_INST_ENUM_IDX(idx, parity), \
.stop_bits = DT_INST_ENUM_IDX(idx, stop_bits), \
.data_bits = DT_INST_ENUM_IDX(idx, data_bits), \
.flow_ctrl = DT_INST_PROP(idx, hw_flow_control) ? UART_CFG_FLOW_CTRL_RTS_CTS \
: UART_CFG_FLOW_CTRL_NONE, \
}; \
\
static const struct uart_silabs_config uart_silabs_cfg_##idx = { \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(idx), \
.base = (USART_TypeDef *)DT_INST_REG_ADDR(idx), \
.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(idx)), \
.clock_cfg = SILABS_DT_INST_CLOCK_CFG(idx), \
SILABS_USART_IRQ_HANDLER_FUNC(idx) \
}; \
\
static struct uart_silabs_data uart_silabs_data_##idx = { \
.uart_cfg = &uart_cfg_##idx, \
}; \
\
DEVICE_DT_INST_DEFINE(idx, uart_silabs_init, PM_DEVICE_DT_INST_GET(idx), \
&uart_silabs_data_##idx, &uart_silabs_cfg_##idx, PRE_KERNEL_1, \
CONFIG_SERIAL_INIT_PRIORITY, &uart_silabs_driver_api); \
\
PM_DEVICE_DT_INST_DEFINE(idx, uart_silabs_pm_action);
DT_INST_FOREACH_STATUS_OKAY(SILABS_USART_INIT)

View file

@ -0,0 +1,27 @@
description: Silabs USART UART
compatible: "silabs,usart-uart"
include: [uart-controller.yaml, pinctrl-device.yaml]
properties:
reg:
required: true
interrupts:
required: true
current-speed:
description: |
Initial baud rate setting for UART. Defaults to standard baudrate of 115200 if not specified.
default: 115200
stop-bits:
description: |
Sets the number of stop bits. Defaults to standard of 1 if not specified.
default: "1"
data-bits:
description: |
Sets the number of data bits. Defaults to standard of 8 if not specified.
default: 8