drivers: serial: uart_max32: Add async mode support

This commit adds asynchronous mode support to MAX32 UART driver. Each
direction uses a single DMA channel that is assigned in devicetree
configuration.

Asynchronous mode also depends on interrupts to refresh receive
timeouts.

Signed-off-by: Tahsin Mutlugun <Tahsin.Mutlugun@analog.com>
This commit is contained in:
Tahsin Mutlugun 2023-12-11 15:26:28 +03:00 committed by Benjamin Cabé
parent 70d5d38380
commit 50596320d4
3 changed files with 562 additions and 26 deletions

View file

@ -10,6 +10,8 @@ config UART_MAX32
select SERIAL_HAS_DRIVER select SERIAL_HAS_DRIVER
select SERIAL_SUPPORT_INTERRUPT select SERIAL_SUPPORT_INTERRUPT
select PINCTRL select PINCTRL
select SERIAL_SUPPORT_ASYNC if DT_HAS_ADI_MAX32_DMA_ENABLED
select DMA if UART_ASYNC_API
help help
This option enables the UART driver for MAX32 family of This option enables the UART driver for MAX32 family of
processors. processors.

View file

@ -4,6 +4,9 @@
* SPDX-License-Identifier: Apache-2.0 * SPDX-License-Identifier: Apache-2.0
*/ */
#ifdef CONFIG_UART_ASYNC_API
#include <zephyr/drivers/dma.h>
#endif
#include <zephyr/drivers/pinctrl.h> #include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/uart.h> #include <zephyr/drivers/uart.h>
#include <zephyr/kernel.h> #include <zephyr/kernel.h>
@ -16,23 +19,65 @@
LOG_MODULE_REGISTER(uart_max32, CONFIG_UART_LOG_LEVEL); LOG_MODULE_REGISTER(uart_max32, CONFIG_UART_LOG_LEVEL);
#ifdef CONFIG_UART_ASYNC_API
struct max32_uart_dma_config {
const struct device *dev;
const uint32_t channel;
const uint32_t slot;
};
#endif /* CONFIG_UART_ASYNC_API */
struct max32_uart_config { struct max32_uart_config {
mxc_uart_regs_t *regs; mxc_uart_regs_t *regs;
const struct pinctrl_dev_config *pctrl; const struct pinctrl_dev_config *pctrl;
const struct device *clock; const struct device *clock;
struct max32_perclk perclk; struct max32_perclk perclk;
struct uart_config uart_conf; struct uart_config uart_conf;
#ifdef CONFIG_UART_INTERRUPT_DRIVEN #if defined(CONFIG_UART_INTERRUPT_DRIVEN) || defined(CONFIG_UART_ASYNC_API)
uart_irq_config_func_t irq_config_func; uart_irq_config_func_t irq_config_func;
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */ #endif /* CONFIG_UART_INTERRUPT_DRIVEN || CONFIG_UART_ASYNC_API */
#ifdef CONFIG_UART_ASYNC_API
const struct max32_uart_dma_config tx_dma;
const struct max32_uart_dma_config rx_dma;
#endif /* CONFIG_UART_ASYNC_API */
}; };
#ifdef CONFIG_UART_ASYNC_API
struct max32_uart_async_tx {
const uint8_t *buf;
size_t len;
struct k_work_delayable timeout_work;
};
struct max32_uart_async_rx {
uint8_t *buf;
size_t len;
size_t offset;
size_t counter;
uint8_t *next_buf;
size_t next_len;
int32_t timeout;
struct k_work_delayable timeout_work;
};
struct max32_uart_async_data {
const struct device *uart_dev;
struct max32_uart_async_tx tx;
struct max32_uart_async_rx rx;
uart_callback_t cb;
void *user_data;
};
#endif
struct max32_uart_data { struct max32_uart_data {
#ifdef CONFIG_UART_INTERRUPT_DRIVEN #ifdef CONFIG_UART_INTERRUPT_DRIVEN
uart_irq_callback_user_data_t cb; /* Interrupt callback */ uart_irq_callback_user_data_t cb; /* Interrupt callback */
void *cb_data; /* Interrupt callback arg */ void *cb_data; /* Interrupt callback arg */
uint32_t flags; /* Cached interrupt flags */ uint32_t flags; /* Cached interrupt flags */
uint32_t status; /* Cached status flags */ uint32_t status; /* Cached status flags */
#endif
#ifdef CONFIG_UART_ASYNC_API
struct max32_uart_async_data async;
#endif #endif
struct uart_config conf; /* baudrate, stopbits, ... */ struct uart_config conf; /* baudrate, stopbits, ... */
}; };
@ -207,11 +252,19 @@ static int api_config_get(const struct device *dev, struct uart_config *uart_cfg
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */ #endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
#ifdef CONFIG_UART_ASYNC_API
static void uart_max32_async_tx_timeout(struct k_work *work);
static void uart_max32_async_rx_timeout(struct k_work *work);
#endif /* CONFIG_UART_ASYNC_API */
static int uart_max32_init(const struct device *dev) static int uart_max32_init(const struct device *dev)
{ {
int ret; int ret;
const struct max32_uart_config *const cfg = dev->config; const struct max32_uart_config *const cfg = dev->config;
mxc_uart_regs_t *regs = cfg->regs; mxc_uart_regs_t *regs = cfg->regs;
#ifdef CONFIG_UART_ASYNC_API
struct max32_uart_data *data = dev->data;
#endif
if (!device_is_ready(cfg->clock)) { if (!device_is_ready(cfg->clock)) {
LOG_ERR("Clock control device not ready"); LOG_ERR("Clock control device not ready");
@ -244,12 +297,20 @@ static int uart_max32_init(const struct device *dev)
return ret; return ret;
} }
#ifdef CONFIG_UART_INTERRUPT_DRIVEN #if defined(CONFIG_UART_INTERRUPT_DRIVEN) || defined(CONFIG_UART_ASYNC_API)
/* Clear any pending UART RX/TX interrupts */ /* Clear any pending UART RX/TX interrupts */
MXC_UART_ClearFlags(regs, (ADI_MAX32_UART_INT_RX | ADI_MAX32_UART_INT_TX)); MXC_UART_ClearFlags(regs, (ADI_MAX32_UART_INT_RX | ADI_MAX32_UART_INT_TX));
cfg->irq_config_func(dev); cfg->irq_config_func(dev);
#endif #endif
#ifdef CONFIG_UART_ASYNC_API
data->async.uart_dev = dev;
k_work_init_delayable(&data->async.tx.timeout_work, uart_max32_async_tx_timeout);
k_work_init_delayable(&data->async.rx.timeout_work, uart_max32_async_rx_timeout);
data->async.rx.len = 0;
data->async.rx.offset = 0;
#endif
return ret; return ret;
} }
@ -307,20 +368,6 @@ static int api_irq_tx_ready(const struct device *dev)
!(data->status & MXC_F_UART_STATUS_TX_FULL)); !(data->status & MXC_F_UART_STATUS_TX_FULL));
} }
static void api_irq_rx_enable(const struct device *dev)
{
const struct max32_uart_config *cfg = dev->config;
MXC_UART_EnableInt(cfg->regs, ADI_MAX32_UART_INT_RX);
}
static void api_irq_rx_disable(const struct device *dev)
{
const struct max32_uart_config *cfg = dev->config;
MXC_UART_DisableInt(cfg->regs, ADI_MAX32_UART_INT_RX);
}
static int api_irq_tx_complete(const struct device *dev) static int api_irq_tx_complete(const struct device *dev)
{ {
const struct max32_uart_config *cfg = dev->config; const struct max32_uart_config *cfg = dev->config;
@ -378,22 +425,459 @@ static int api_irq_update(const struct device *dev)
static void api_irq_callback_set(const struct device *dev, uart_irq_callback_user_data_t cb, static void api_irq_callback_set(const struct device *dev, uart_irq_callback_user_data_t cb,
void *cb_data) void *cb_data)
{ {
struct max32_uart_data *const data = dev->data; struct max32_uart_data *const dev_data = dev->data;
data->cb = cb; dev_data->cb = cb;
data->cb_data = cb_data; dev_data->cb_data = cb_data;
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
#if defined(CONFIG_UART_INTERRUPT_DRIVEN) || defined(CONFIG_UART_ASYNC_API)
static void api_irq_rx_enable(const struct device *dev)
{
const struct max32_uart_config *cfg = dev->config;
MXC_UART_EnableInt(cfg->regs, ADI_MAX32_UART_INT_RX);
}
static void api_irq_rx_disable(const struct device *dev)
{
const struct max32_uart_config *cfg = dev->config;
MXC_UART_DisableInt(cfg->regs, ADI_MAX32_UART_INT_RX);
} }
static void uart_max32_isr(const struct device *dev) static void uart_max32_isr(const struct device *dev)
{ {
struct max32_uart_data *data = dev->data; struct max32_uart_data *data = dev->data;
const struct max32_uart_config *cfg = dev->config;
uint32_t intfl;
intfl = MXC_UART_GetFlags(cfg->regs);
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
if (data->cb) { if (data->cb) {
data->cb(dev, data->cb_data); data->cb(dev, data->cb_data);
} }
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
#ifdef CONFIG_UART_ASYNC_API
if (data->async.rx.timeout != SYS_FOREVER_US && data->async.rx.timeout != 0 &&
(intfl & ADI_MAX32_UART_INT_RX)) {
k_work_reschedule(&data->async.rx.timeout_work, K_USEC(data->async.rx.timeout));
}
#endif /* CONFIG_UART_ASYNC_API */
/* Clear RX/TX interrupts flag after cb is called */
MXC_UART_ClearFlags(cfg->regs, intfl);
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN || CONFIG_UART_ASYNC_API */
#if defined(CONFIG_UART_ASYNC_API)
static inline void async_timer_start(struct k_work_delayable *work, int32_t timeout)
{
if ((timeout != SYS_FOREVER_US) && (timeout != 0)) {
k_work_reschedule(work, K_USEC(timeout));
}
} }
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */ static void async_user_callback(const struct device *dev, struct uart_event *evt)
{
const struct max32_uart_data *data = dev->data;
if (data->async.cb) {
data->async.cb(dev, evt, data->async.user_data);
}
}
static void uart_max32_async_tx_callback(const struct device *dma_dev, void *user_data,
uint32_t channel, int status)
{
const struct device *dev = user_data;
const struct max32_uart_config *config = dev->config;
struct max32_uart_data *data = dev->data;
struct dma_status dma_stat;
unsigned int key = irq_lock();
dma_get_status(config->tx_dma.dev, config->tx_dma.channel, &dma_stat);
/* Skip callback if channel is still busy */
if (dma_stat.busy) {
irq_unlock(key);
return;
}
k_work_cancel_delayable(&data->async.tx.timeout_work);
Wrap_MXC_UART_DisableTxDMA(config->regs);
irq_unlock(key);
struct uart_event tx_done = {
.type = status == 0 ? UART_TX_DONE : UART_TX_ABORTED,
.data.tx.buf = data->async.tx.buf,
.data.tx.len = data->async.tx.len,
};
async_user_callback(dev, &tx_done);
}
static int api_callback_set(const struct device *dev, uart_callback_t callback, void *user_data)
{
struct max32_uart_data *data = dev->data;
data->async.cb = callback;
data->async.user_data = user_data;
return 0;
}
static int api_tx(const struct device *dev, const uint8_t *buf, size_t len, int32_t timeout)
{
struct max32_uart_data *data = dev->data;
const struct max32_uart_config *config = dev->config;
struct dma_status dma_stat;
struct dma_config dma_cfg = {0};
struct dma_block_config dma_blk = {0};
int ret;
unsigned int key = irq_lock();
if (config->tx_dma.channel == 0xFF) {
LOG_ERR("Tx DMA channel is not configured");
irq_unlock(key);
return -ENOTSUP;
}
ret = dma_get_status(config->tx_dma.dev, config->tx_dma.channel, &dma_stat);
if (ret < 0 || dma_stat.busy) {
LOG_ERR("DMA Tx %s", ret < 0 ? "error" : "busy");
irq_unlock(key);
return ret < 0 ? ret : -EBUSY;
}
data->async.tx.buf = buf;
data->async.tx.len = len;
dma_cfg.channel_direction = MEMORY_TO_PERIPHERAL;
dma_cfg.dma_callback = uart_max32_async_tx_callback;
dma_cfg.user_data = (void *)dev;
dma_cfg.dma_slot = config->tx_dma.slot;
dma_cfg.block_count = 1;
dma_cfg.source_data_size = 1U;
dma_cfg.source_burst_length = 1U;
dma_cfg.dest_data_size = 1U;
dma_cfg.head_block = &dma_blk;
dma_blk.block_size = len;
dma_blk.source_address = (uint32_t)buf;
ret = dma_config(config->tx_dma.dev, config->tx_dma.channel, &dma_cfg);
if (ret < 0) {
LOG_ERR("Error configuring Tx DMA (%d)", ret);
irq_unlock(key);
return ret;
}
ret = dma_start(config->tx_dma.dev, config->tx_dma.channel);
if (ret < 0) {
LOG_ERR("Error starting Tx DMA (%d)", ret);
irq_unlock(key);
return ret;
}
async_timer_start(&data->async.tx.timeout_work, timeout);
Wrap_MXC_UART_SetTxDMALevel(config->regs, 2);
Wrap_MXC_UART_EnableTxDMA(config->regs);
irq_unlock(key);
return ret;
}
static int api_tx_abort(const struct device *dev)
{
int ret;
struct max32_uart_data *data = dev->data;
const struct max32_uart_config *config = dev->config;
struct dma_status dma_stat;
size_t bytes_sent;
unsigned int key = irq_lock();
k_work_cancel_delayable(&data->async.tx.timeout_work);
Wrap_MXC_UART_DisableTxDMA(config->regs);
ret = dma_get_status(config->tx_dma.dev, config->tx_dma.channel, &dma_stat);
if (!dma_stat.busy) {
irq_unlock(key);
return 0;
}
bytes_sent = (ret == 0) ? (data->async.tx.len - dma_stat.pending_length) : 0;
ret = dma_stop(config->tx_dma.dev, config->tx_dma.channel);
irq_unlock(key);
if (ret == 0) {
struct uart_event tx_aborted = {
.type = UART_TX_ABORTED,
.data.tx.buf = data->async.tx.buf,
.data.tx.len = bytes_sent,
};
async_user_callback(dev, &tx_aborted);
}
return 0;
}
static void uart_max32_async_tx_timeout(struct k_work *work)
{
struct k_work_delayable *dwork = k_work_delayable_from_work(work);
struct max32_uart_async_tx *tx =
CONTAINER_OF(dwork, struct max32_uart_async_tx, timeout_work);
struct max32_uart_async_data *async = CONTAINER_OF(tx, struct max32_uart_async_data, tx);
struct max32_uart_data *data = CONTAINER_OF(async, struct max32_uart_data, async);
api_tx_abort(data->async.uart_dev);
}
static int api_rx_disable(const struct device *dev)
{
struct max32_uart_data *data = dev->data;
const struct max32_uart_config *config = dev->config;
int ret;
unsigned int key = irq_lock();
k_work_cancel_delayable(&data->async.rx.timeout_work);
Wrap_MXC_UART_DisableRxDMA(config->regs);
ret = dma_stop(config->rx_dma.dev, config->rx_dma.channel);
if (ret) {
LOG_ERR("Error stopping Rx DMA (%d)", ret);
irq_unlock(key);
return ret;
}
api_irq_rx_disable(dev);
irq_unlock(key);
/* Release current buffer event */
struct uart_event rel_event = {
.type = UART_RX_BUF_RELEASED,
.data.rx_buf.buf = data->async.rx.buf,
};
async_user_callback(dev, &rel_event);
/* Disable RX event */
struct uart_event rx_disabled = {.type = UART_RX_DISABLED};
async_user_callback(dev, &rx_disabled);
data->async.rx.buf = NULL;
data->async.rx.len = 0;
data->async.rx.counter = 0;
data->async.rx.offset = 0;
if (data->async.rx.next_buf) {
/* Release next buffer event */
struct uart_event next_rel_event = {
.type = UART_RX_BUF_RELEASED,
.data.rx_buf.buf = data->async.rx.next_buf,
};
async_user_callback(dev, &next_rel_event);
data->async.rx.next_buf = NULL;
data->async.rx.next_len = 0;
}
return 0;
}
static void uart_max32_async_rx_callback(const struct device *dma_dev, void *user_data,
uint32_t channel, int status)
{
const struct device *dev = user_data;
const struct max32_uart_config *config = dev->config;
struct max32_uart_data *data = dev->data;
struct max32_uart_async_data *async = &data->async;
struct dma_status dma_stat;
size_t total_rx;
unsigned int key = irq_lock();
dma_get_status(config->rx_dma.dev, config->rx_dma.channel, &dma_stat);
total_rx = async->rx.len - dma_stat.pending_length;
api_irq_rx_disable(dev);
irq_unlock(key);
if (total_rx > async->rx.offset) {
async->rx.counter = total_rx - async->rx.offset;
struct uart_event rdy_event = {
.type = UART_RX_RDY,
.data.rx.buf = async->rx.buf,
.data.rx.len = async->rx.counter,
.data.rx.offset = async->rx.offset,
};
async_user_callback(dev, &rdy_event);
}
if (async->rx.next_buf) {
async->rx.offset = 0;
async->rx.counter = 0;
struct uart_event rel_event = {
.type = UART_RX_BUF_RELEASED,
.data.rx_buf.buf = async->rx.buf,
};
async_user_callback(dev, &rel_event);
async->rx.buf = async->rx.next_buf;
async->rx.len = async->rx.next_len;
async->rx.next_buf = NULL;
async->rx.next_len = 0;
struct uart_event req_event = {
.type = UART_RX_BUF_REQUEST,
};
async_user_callback(dev, &req_event);
dma_reload(config->rx_dma.dev, config->rx_dma.channel, config->rx_dma.slot,
(uint32_t)async->rx.buf, async->rx.len);
dma_start(config->rx_dma.dev, config->rx_dma.channel);
api_irq_rx_enable(dev);
async_timer_start(&async->rx.timeout_work, async->rx.timeout);
} else {
api_rx_disable(dev);
}
}
static int api_rx_enable(const struct device *dev, uint8_t *buf, size_t len, int32_t timeout)
{
struct max32_uart_data *data = dev->data;
const struct max32_uart_config *config = dev->config;
struct dma_status dma_stat;
struct dma_config dma_cfg = {0};
struct dma_block_config dma_blk = {0};
int ret;
unsigned int key = irq_lock();
if (config->rx_dma.channel == 0xFF) {
LOG_ERR("Rx DMA channel is not configured");
irq_unlock(key);
return -ENOTSUP;
}
ret = dma_get_status(config->rx_dma.dev, config->rx_dma.channel, &dma_stat);
if (ret < 0 || dma_stat.busy) {
LOG_ERR("DMA Rx %s", ret < 0 ? "error" : "busy");
irq_unlock(key);
return ret < 0 ? ret : -EBUSY;
}
data->async.rx.buf = buf;
data->async.rx.len = len;
dma_cfg.channel_direction = MEMORY_TO_PERIPHERAL;
dma_cfg.dma_callback = uart_max32_async_rx_callback;
dma_cfg.user_data = (void *)dev;
dma_cfg.dma_slot = config->rx_dma.slot;
dma_cfg.block_count = 1;
dma_cfg.source_data_size = 1U;
dma_cfg.source_burst_length = 1U;
dma_cfg.dest_data_size = 1U;
dma_cfg.head_block = &dma_blk;
dma_blk.block_size = len;
dma_blk.dest_address = (uint32_t)buf;
ret = dma_config(config->rx_dma.dev, config->rx_dma.channel, &dma_cfg);
if (ret < 0) {
LOG_ERR("Error configuring Rx DMA (%d)", ret);
irq_unlock(key);
return ret;
}
ret = dma_start(config->rx_dma.dev, config->rx_dma.channel);
if (ret < 0) {
LOG_ERR("Error starting Rx DMA (%d)", ret);
irq_unlock(key);
return ret;
}
data->async.rx.timeout = timeout;
Wrap_MXC_UART_SetRxDMALevel(config->regs, 1);
Wrap_MXC_UART_EnableRxDMA(config->regs);
struct uart_event buf_req = {
.type = UART_RX_BUF_REQUEST,
};
async_user_callback(dev, &buf_req);
api_irq_rx_enable(dev);
async_timer_start(&data->async.rx.timeout_work, timeout);
irq_unlock(key);
return ret;
}
static int api_rx_buf_rsp(const struct device *dev, uint8_t *buf, size_t len)
{
struct max32_uart_data *data = dev->data;
data->async.rx.next_buf = buf;
data->async.rx.next_len = len;
return 0;
}
static void uart_max32_async_rx_timeout(struct k_work *work)
{
struct k_work_delayable *dwork = k_work_delayable_from_work(work);
struct max32_uart_async_rx *rx =
CONTAINER_OF(dwork, struct max32_uart_async_rx, timeout_work);
struct max32_uart_async_data *async = CONTAINER_OF(rx, struct max32_uart_async_data, rx);
struct max32_uart_data *data = CONTAINER_OF(async, struct max32_uart_data, async);
const struct max32_uart_config *config = data->async.uart_dev->config;
struct dma_status dma_stat;
uint32_t total_rx;
unsigned int key = irq_lock();
dma_get_status(config->rx_dma.dev, config->rx_dma.channel, &dma_stat);
api_irq_rx_disable(data->async.uart_dev);
k_work_cancel_delayable(&data->async.rx.timeout_work);
irq_unlock(key);
total_rx = async->rx.len - dma_stat.pending_length;
if (total_rx > async->rx.offset) {
async->rx.counter = total_rx - async->rx.offset;
struct uart_event rdy_event = {
.type = UART_RX_RDY,
.data.rx.buf = async->rx.buf,
.data.rx.len = async->rx.counter,
.data.rx.offset = async->rx.offset,
};
async_user_callback(async->uart_dev, &rdy_event);
}
async->rx.offset += async->rx.counter;
async->rx.counter = 0;
api_irq_rx_enable(data->async.uart_dev);
}
#endif
static DEVICE_API(uart, uart_max32_driver_api) = { static DEVICE_API(uart, uart_max32_driver_api) = {
.poll_in = api_poll_in, .poll_in = api_poll_in,
@ -419,12 +903,46 @@ static DEVICE_API(uart, uart_max32_driver_api) = {
.irq_update = api_irq_update, .irq_update = api_irq_update,
.irq_callback_set = api_irq_callback_set, .irq_callback_set = api_irq_callback_set,
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */ #endif /* CONFIG_UART_INTERRUPT_DRIVEN */
#ifdef CONFIG_UART_ASYNC_API
.callback_set = api_callback_set,
.tx = api_tx,
.tx_abort = api_tx_abort,
.rx_enable = api_rx_enable,
.rx_buf_rsp = api_rx_buf_rsp,
.rx_disable = api_rx_disable,
#endif /* CONFIG_UART_ASYNC_API */
}; };
#ifdef CONFIG_UART_ASYNC_API
#define MAX32_DT_INST_DMA_CTLR(n, name) \
COND_CODE_1(DT_INST_NODE_HAS_PROP(n, dmas), \
(DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(n, name))), (NULL))
#define MAX32_DT_INST_DMA_CELL(n, name, cell) \
COND_CODE_1(DT_INST_NODE_HAS_PROP(n, dmas), (DT_INST_DMAS_CELL_BY_NAME(n, name, cell)), \
(0xff))
#define MAX32_UART_DMA_INIT(n) \
.tx_dma.dev = MAX32_DT_INST_DMA_CTLR(n, tx), \
.tx_dma.channel = MAX32_DT_INST_DMA_CELL(n, tx, channel), \
.tx_dma.slot = MAX32_DT_INST_DMA_CELL(n, tx, slot), \
.rx_dma.dev = MAX32_DT_INST_DMA_CTLR(n, rx), \
.rx_dma.channel = MAX32_DT_INST_DMA_CELL(n, rx, channel), \
.rx_dma.slot = MAX32_DT_INST_DMA_CELL(n, rx, slot),
#else
#define MAX32_UART_DMA_INIT(n)
#endif
#if defined(CONFIG_UART_INTERRUPT_DRIVEN) || defined(CONFIG_UART_ASYNC_API)
#define MAX32_UART_USE_IRQ 1
#else
#define MAX32_UART_USE_IRQ 0
#endif
#define MAX32_UART_INIT(_num) \ #define MAX32_UART_INIT(_num) \
PINCTRL_DT_INST_DEFINE(_num); \ PINCTRL_DT_INST_DEFINE(_num); \
IF_ENABLED(CONFIG_UART_INTERRUPT_DRIVEN, \ IF_ENABLED(MAX32_UART_USE_IRQ, \
(static void uart_max32_irq_init_##_num(const struct device *dev) \ (static void uart_max32_irq_init_##_num(const struct device *dev) \
{ \ { \
IRQ_CONNECT(DT_INST_IRQN(_num), DT_INST_IRQ(_num, priority), \ IRQ_CONNECT(DT_INST_IRQN(_num), DT_INST_IRQ(_num, priority), \
uart_max32_isr, DEVICE_DT_INST_GET(_num), 0); \ uart_max32_isr, DEVICE_DT_INST_GET(_num), 0); \
@ -443,9 +961,9 @@ static DEVICE_API(uart, uart_max32_driver_api) = {
.uart_conf.data_bits = DT_INST_ENUM_IDX(_num, data_bits), \ .uart_conf.data_bits = DT_INST_ENUM_IDX(_num, data_bits), \
.uart_conf.stop_bits = DT_INST_ENUM_IDX(_num, stop_bits), \ .uart_conf.stop_bits = DT_INST_ENUM_IDX(_num, stop_bits), \
.uart_conf.flow_ctrl = \ .uart_conf.flow_ctrl = \
DT_INST_PROP_OR(_num, hw_flow_control, UART_CFG_FLOW_CTRL_NONE), \ DT_INST_PROP_OR(index, hw_flow_control, UART_CFG_FLOW_CTRL_NONE), \
IF_ENABLED(CONFIG_UART_INTERRUPT_DRIVEN, \ MAX32_UART_DMA_INIT(_num) IF_ENABLED( \
(.irq_config_func = uart_max32_irq_init_##_num,))}; \ MAX32_UART_USE_IRQ, (.irq_config_func = uart_max32_irq_init_##_num,))}; \
static struct max32_uart_data max32_uart_data##_num = { \ static struct max32_uart_data max32_uart_data##_num = { \
IF_ENABLED(CONFIG_UART_INTERRUPT_DRIVEN, (.cb = NULL,))}; \ IF_ENABLED(CONFIG_UART_INTERRUPT_DRIVEN, (.cb = NULL,))}; \
DEVICE_DT_INST_DEFINE(_num, uart_max32_init, NULL, &max32_uart_data##_num, \ DEVICE_DT_INST_DEFINE(_num, uart_max32_init, NULL, &max32_uart_data##_num, \

View file

@ -49,3 +49,19 @@ properties:
description: | description: |
Sets the number of data bits. Defaults to standard of 8 if not specified. Sets the number of data bits. Defaults to standard of 8 if not specified.
default: 8 default: 8
dmas:
description: |
DMA configuration used by asynchronous UART. Consists of a DMA instance,
channel number and a matching DMA slot.
For example dmas for TX, RX on UART2
dmas = <&dma0 1 MAX32_DMA_SLOT_UART2_TX>, <&dma0 2 MAX32_DMA_SLOT_UART2_RX>;
dma-names:
description: |
Required if the dmas property exists. This should be "tx" and "rx"
to match the dmas property.
For example
dma-names = "tx", "rx";