logging: uart: support multiple instances

Extends the log_backend_uart to support logging to multiple
UART instances.

Signed-off-by: Christopher Friedt <cfriedt@meta.com>
This commit is contained in:
Chris Friedt 2023-11-08 17:29:26 +08:00 committed by Carles Cufí
parent b89095cf12
commit c0064f1de8
3 changed files with 103 additions and 31 deletions

View file

@ -424,6 +424,9 @@ device.
interprocess-communication (IPC)
* - zephyr,itcm
- Instruction Tightly Coupled Memory node on some Arm SoCs
* - zephyr,log-uart
- Sets the UART device(s) used by the logging subsystem's UART backend.
If defined, the UART log backend would output to the devices listed in this node.
* - zephyr,ocm
- On-chip memory node on Xilinx Zynq-7000 and ZynqMP SoCs
* - zephyr,osdp-uart

View file

@ -0,0 +1,16 @@
# Copyright (c) 2023 Meta
# SPDX-License-Identifier: Apache-2.0
description: Log Backend UART
compatible: "zephyr,log-uart"
include: [base.yaml]
properties:
uarts:
type: phandles
required: true
description: |
UART devices to be used by the UART log backend.

View file

@ -1,5 +1,6 @@
/*
* Copyright (c) 2018 Nordic Semiconductor ASA
* Copyright (c) 2023 Meta
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -18,32 +19,43 @@
#include <zephyr/pm/device_runtime.h>
LOG_MODULE_REGISTER(log_uart);
struct lbu_data {
struct k_sem sem;
uint32_t log_format_current;
volatile bool in_panic;
bool use_async;
};
struct lbu_cb_ctx {
const struct log_output *output;
const struct device *device;
struct lbu_data *data;
};
/* Fixed size to avoid auto-added trailing '\0'.
* Used if CONFIG_LOG_BACKEND_UART_OUTPUT_DICTIONARY_HEX.
*/
static const char LOG_HEX_SEP[10] = "##ZLOGV1##";
static const struct device *const uart_dev =
DEVICE_DT_GET(DT_CHOSEN(zephyr_console));
static struct k_sem sem;
static volatile bool in_panic;
static bool use_async;
static uint32_t log_format_current = CONFIG_LOG_BACKEND_UART_OUTPUT_DEFAULT;
static void uart_callback(const struct device *dev,
struct uart_event *evt,
void *user_data)
{
const struct lbu_cb_ctx *ctx = user_data;
struct lbu_data *data = ctx->data;
ARG_UNUSED(dev);
switch (evt->type) {
case UART_TX_DONE:
k_sem_give(&sem);
k_sem_give(&data->sem);
break;
default:
break;
}
}
static void dict_char_out_hex(uint8_t *data, size_t length)
static void dict_char_out_hex(const struct device *uart_dev, uint8_t *data, size_t length)
{
for (size_t i = 0; i < length; i++) {
char c;
@ -63,8 +75,10 @@ static void dict_char_out_hex(uint8_t *data, size_t length)
static int char_out(uint8_t *data, size_t length, void *ctx)
{
ARG_UNUSED(ctx);
int err;
const struct lbu_cb_ctx *cb_ctx = ctx;
struct lbu_data *lb_data = cb_ctx->data;
const struct device *uart_dev = cb_ctx->device;
if (pm_device_runtime_is_enabled(uart_dev) && !k_is_in_isr()) {
if (pm_device_runtime_get(uart_dev) < 0) {
@ -76,11 +90,12 @@ static int char_out(uint8_t *data, size_t length, void *ctx)
}
if (IS_ENABLED(CONFIG_LOG_BACKEND_UART_OUTPUT_DICTIONARY_HEX)) {
dict_char_out_hex(data, length);
dict_char_out_hex(uart_dev, data, length);
goto cleanup;
}
if (!IS_ENABLED(CONFIG_LOG_BACKEND_UART_ASYNC) || in_panic || !use_async) {
if (!IS_ENABLED(CONFIG_LOG_BACKEND_UART_ASYNC) || lb_data->in_panic ||
!lb_data->use_async) {
for (size_t i = 0; i < length; i++) {
uart_poll_out(uart_dev, data[i]);
}
@ -90,7 +105,7 @@ static int char_out(uint8_t *data, size_t length, void *ctx)
err = uart_tx(uart_dev, data, length, SYS_FOREVER_US);
__ASSERT_NO_MSG(err == 0);
err = k_sem_take(&sem, K_FOREVER);
err = k_sem_take(&lb_data->sem, K_FOREVER);
__ASSERT_NO_MSG(err == 0);
(void)err;
@ -103,29 +118,37 @@ cleanup:
return length;
}
static uint8_t uart_output_buf[CONFIG_LOG_BACKEND_UART_BUFFER_SIZE];
LOG_OUTPUT_DEFINE(log_output_uart, char_out, uart_output_buf, sizeof(uart_output_buf));
static void process(const struct log_backend *const backend,
union log_msg_generic *msg)
{
const struct lbu_cb_ctx *ctx = backend->cb->ctx;
struct lbu_data *data = ctx->data;
uint32_t flags = log_backend_std_get_flags();
log_format_func_t log_output_func = log_format_func_t_get(data->log_format_current);
log_format_func_t log_output_func = log_format_func_t_get(log_format_current);
log_output_func(&log_output_uart, &msg->log, flags);
log_output_func(ctx->output, &msg->log, flags);
}
static int format_set(const struct log_backend *const backend, uint32_t log_type)
{
log_format_current = log_type;
const struct lbu_cb_ctx *ctx = backend->cb->ctx;
struct lbu_data *data = ctx->data;
data->log_format_current = log_type;
return 0;
}
static void log_backend_uart_init(struct log_backend const *const backend)
{
const struct lbu_cb_ctx *ctx = backend->cb->ctx;
const struct device *uart_dev = ctx->device;
struct lbu_data *data = ctx->data;
__ASSERT_NO_MSG(device_is_ready(uart_dev));
log_output_ctx_set(ctx->output, (void *)ctx);
if (IS_ENABLED(CONFIG_LOG_BACKEND_UART_OUTPUT_DICTIONARY_HEX)) {
/* Print a separator so the output can be fed into
* log parser directly. This is useful when capturing
@ -140,20 +163,25 @@ static void log_backend_uart_init(struct log_backend const *const backend)
}
if (IS_ENABLED(CONFIG_LOG_BACKEND_UART_ASYNC)) {
int err = uart_callback_set(uart_dev, uart_callback, NULL);
int err = uart_callback_set(uart_dev, uart_callback, (void *)ctx);
if (err == 0) {
use_async = true;
k_sem_init(&sem, 0, 1);
data->use_async = true;
k_sem_init(&data->sem, 0, 1);
} else {
LOG_WRN("Failed to initialize asynchronous mode (err:%d). "
"Fallback to polling.", err);
"Fallback to polling.",
err);
}
}
}
static void panic(struct log_backend const *const backend)
{
const struct lbu_cb_ctx *ctx = backend->cb->ctx;
struct lbu_data *data = ctx->data;
const struct device *uart_dev = ctx->device;
/* Ensure that the UART device is in active mode */
#if defined(CONFIG_PM_DEVICE_RUNTIME)
if (pm_device_runtime_is_enabled(uart_dev)) {
@ -172,20 +200,22 @@ static void panic(struct log_backend const *const backend)
if ((rc == 0) && (pm_state == PM_DEVICE_STATE_SUSPENDED)) {
pm_device_action_run(uart_dev, PM_DEVICE_ACTION_RESUME);
}
#else
ARG_UNUSED(uart_dev);
#endif /* CONFIG_PM_DEVICE */
in_panic = true;
log_backend_std_panic(&log_output_uart);
data->in_panic = true;
log_backend_std_panic(ctx->output);
}
static void dropped(const struct log_backend *const backend, uint32_t cnt)
{
ARG_UNUSED(backend);
const struct lbu_cb_ctx *ctx = backend->cb->ctx;
if (IS_ENABLED(CONFIG_LOG_BACKEND_UART_OUTPUT_DICTIONARY)) {
log_dict_output_dropped_process(&log_output_uart, cnt);
log_dict_output_dropped_process(ctx->output, cnt);
} else {
log_backend_std_dropped(&log_output_uart, cnt);
log_backend_std_dropped(ctx->output, cnt);
}
}
@ -197,5 +227,28 @@ const struct log_backend_api log_backend_uart_api = {
.format_set = format_set,
};
LOG_BACKEND_DEFINE(log_backend_uart, log_backend_uart_api,
IS_ENABLED(CONFIG_LOG_BACKEND_UART_AUTOSTART));
#define LBU_DEFINE(node_id, idx) \
static uint8_t lbu_buffer_##idx[CONFIG_LOG_BACKEND_UART_BUFFER_SIZE]; \
LOG_OUTPUT_DEFINE(lbu_output_##idx, char_out, lbu_buffer_##idx, \
CONFIG_LOG_BACKEND_UART_BUFFER_SIZE); \
\
static struct lbu_data lbu_data_##idx = { \
.log_format_current = CONFIG_LOG_BACKEND_UART_OUTPUT_DEFAULT, \
}; \
\
static const struct lbu_cb_ctx lbu_cb_ctx_##idx = { \
.output = &lbu_output_##idx, \
.device = DEVICE_DT_GET(node_id), \
.data = &lbu_data_##idx, \
}; \
\
LOG_BACKEND_DEFINE(log_backend_uart##idx, log_backend_uart_api, \
IS_ENABLED(CONFIG_LOG_BACKEND_UART_AUTOSTART), \
(void *)&lbu_cb_ctx_##idx);
#if DT_HAS_CHOSEN(zephyr_log_uart)
#define LBU_PHA_FN(node_id, prop, idx) LBU_DEFINE(DT_PHANDLE_BY_IDX(node_id, prop, idx), idx)
DT_FOREACH_PROP_ELEM_SEP(DT_CHOSEN(zephyr_log_uart), uarts, LBU_PHA_FN, ());
#else
LBU_DEFINE(DT_CHOSEN(zephyr_console), 0);
#endif