/* * Copyright (c) 2025 Silicon Laboratories Inc. * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include #include #define DT_DRV_COMPAT silabs_usart_uart /** * @brief Config struct for UART */ struct uart_silabs_config { const struct pinctrl_dev_config *pcfg; const struct device *clock_dev; const struct silabs_clock_control_cmu_config clock_cfg; USART_TypeDef *base; #ifdef CONFIG_UART_INTERRUPT_DRIVEN void (*irq_config_func)(const struct device *dev); #endif }; struct uart_silabs_data { struct uart_config *uart_cfg; #ifdef CONFIG_UART_INTERRUPT_DRIVEN uart_irq_callback_user_data_t callback; void *cb_data; #endif }; static int uart_silabs_poll_in(const struct device *dev, unsigned char *c) { const struct uart_silabs_config *config = dev->config; uint32_t flags = USART_StatusGet(config->base); if (flags & USART_STATUS_RXDATAV) { *c = USART_Rx(config->base); return 0; } return -1; } static void uart_silabs_poll_out(const struct device *dev, unsigned char c) { const struct uart_silabs_config *config = dev->config; USART_Tx(config->base, c); } static int uart_silabs_err_check(const struct device *dev) { const struct uart_silabs_config *config = dev->config; uint32_t flags = USART_IntGet(config->base); int err = 0; if (flags & USART_IF_RXOF) { err |= UART_ERROR_OVERRUN; } if (flags & USART_IF_PERR) { err |= UART_ERROR_PARITY; } if (flags & USART_IF_FERR) { err |= UART_ERROR_FRAMING; } USART_IntClear(config->base, USART_IF_RXOF | USART_IF_PERR | USART_IF_FERR); return err; } #ifdef CONFIG_UART_INTERRUPT_DRIVEN static int uart_silabs_fifo_fill(const struct device *dev, const uint8_t *tx_data, int len) { const struct uart_silabs_config *config = dev->config; int i = 0; while ((i < len) && (config->base->STATUS & USART_STATUS_TXBL)) { config->base->TXDATA = tx_data[i++]; } return i; } static int uart_silabs_fifo_read(const struct device *dev, uint8_t *rx_data, const int len) { const struct uart_silabs_config *config = dev->config; int i = 0; while ((i < len) && (config->base->STATUS & USART_STATUS_RXDATAV)) { rx_data[i++] = (uint8_t)config->base->RXDATA; } return i; } static void uart_silabs_irq_tx_enable(const struct device *dev) { const struct uart_silabs_config *config = dev->config; USART_IntEnable(config->base, USART_IEN_TXBL | USART_IEN_TXC); } static void uart_silabs_irq_tx_disable(const struct device *dev) { const struct uart_silabs_config *config = dev->config; USART_IntDisable(config->base, USART_IEN_TXBL | USART_IEN_TXC); } static int uart_silabs_irq_tx_complete(const struct device *dev) { const struct uart_silabs_config *config = dev->config; uint32_t flags = USART_IntGet(config->base); USART_IntClear(config->base, USART_IF_TXC); return !!(flags & USART_IF_TXC); } static int uart_silabs_irq_tx_ready(const struct device *dev) { const struct uart_silabs_config *config = dev->config; uint32_t flags = USART_IntGetEnabled(config->base); return !!(flags & USART_IF_TXBL); } static void uart_silabs_irq_rx_enable(const struct device *dev) { const struct uart_silabs_config *config = dev->config; USART_IntEnable(config->base, USART_IEN_RXDATAV); } static void uart_silabs_irq_rx_disable(const struct device *dev) { const struct uart_silabs_config *config = dev->config; USART_IntDisable(config->base, USART_IEN_RXDATAV); } static int uart_silabs_irq_rx_full(const struct device *dev) { const struct uart_silabs_config *config = dev->config; uint32_t flags = USART_IntGet(config->base); return !!(flags & USART_IF_RXDATAV); } static int uart_silabs_irq_rx_ready(const struct device *dev) { const struct uart_silabs_config *config = dev->config; return (config->base->IEN & USART_IEN_RXDATAV) && uart_silabs_irq_rx_full(dev); } static void uart_silabs_irq_err_enable(const struct device *dev) { const struct uart_silabs_config *config = dev->config; USART_IntEnable(config->base, USART_IF_RXOF | USART_IF_PERR | USART_IF_FERR); } static void uart_silabs_irq_err_disable(const struct device *dev) { const struct uart_silabs_config *config = dev->config; USART_IntDisable(config->base, USART_IF_RXOF | USART_IF_PERR | USART_IF_FERR); } static int uart_silabs_irq_is_pending(const struct device *dev) { return uart_silabs_irq_tx_ready(dev) || uart_silabs_irq_rx_ready(dev); } static int uart_silabs_irq_update(const struct device *dev) { return 1; } static void uart_silabs_irq_callback_set(const struct device *dev, uart_irq_callback_user_data_t cb, void *cb_data) { struct uart_silabs_data *data = dev->data; data->callback = cb; data->cb_data = cb_data; } static void uart_silabs_isr(const struct device *dev) { struct uart_silabs_data *data = dev->data; if (data->callback) { data->callback(dev, data->cb_data); } } #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ static inline USART_Parity_TypeDef uart_silabs_cfg2ll_parity(enum uart_config_parity parity) { switch (parity) { case UART_CFG_PARITY_ODD: return usartOddParity; case UART_CFG_PARITY_EVEN: return usartEvenParity; case UART_CFG_PARITY_NONE: default: return usartNoParity; } } static inline enum uart_config_parity uart_silabs_ll2cfg_parity(USART_Parity_TypeDef parity) { switch (parity) { case usartOddParity: return UART_CFG_PARITY_ODD; case usartEvenParity: return UART_CFG_PARITY_EVEN; case usartNoParity: default: return UART_CFG_PARITY_NONE; } } static inline USART_Stopbits_TypeDef uart_silabs_cfg2ll_stopbits(enum uart_config_stop_bits sb) { switch (sb) { case UART_CFG_STOP_BITS_0_5: return usartStopbits0p5; case UART_CFG_STOP_BITS_1: return usartStopbits1; case UART_CFG_STOP_BITS_2: return usartStopbits2; case UART_CFG_STOP_BITS_1_5: return usartStopbits1p5; default: return usartStopbits1; } } static inline enum uart_config_stop_bits uart_silabs_ll2cfg_stopbits(USART_Stopbits_TypeDef sb) { switch (sb) { case usartStopbits0p5: return UART_CFG_STOP_BITS_0_5; case usartStopbits1: return UART_CFG_STOP_BITS_1; case usartStopbits1p5: return UART_CFG_STOP_BITS_1_5; case usartStopbits2: return UART_CFG_STOP_BITS_2; default: return UART_CFG_STOP_BITS_1; } } static inline USART_Databits_TypeDef uart_silabs_cfg2ll_databits(enum uart_config_data_bits db, enum uart_config_parity p) { switch (db) { case UART_CFG_DATA_BITS_7: if (p == UART_CFG_PARITY_NONE) { return usartDatabits7; } else { return usartDatabits8; } case UART_CFG_DATA_BITS_9: return usartDatabits9; case UART_CFG_DATA_BITS_8: default: if (p == UART_CFG_PARITY_NONE) { return usartDatabits8; } else { return usartDatabits9; } return usartDatabits8; } } static inline enum uart_config_data_bits uart_silabs_ll2cfg_databits(USART_Databits_TypeDef db, USART_Parity_TypeDef p) { switch (db) { case usartDatabits7: if (p == usartNoParity) { return UART_CFG_DATA_BITS_7; } else { return UART_CFG_DATA_BITS_6; } case usartDatabits9: if (p == usartNoParity) { return UART_CFG_DATA_BITS_9; } else { return UART_CFG_DATA_BITS_8; } case usartDatabits8: default: if (p == usartNoParity) { return UART_CFG_DATA_BITS_8; } else { return UART_CFG_DATA_BITS_7; } } } static inline USART_HwFlowControl_TypeDef uart_silabs_cfg2ll_hwctrl( enum uart_config_flow_control fc) { if (fc == UART_CFG_FLOW_CTRL_RTS_CTS) { return usartHwFlowControlCtsAndRts; } return usartHwFlowControlNone; } static inline enum uart_config_flow_control uart_silabs_ll2cfg_hwctrl( USART_HwFlowControl_TypeDef fc) { if (fc == usartHwFlowControlCtsAndRts) { return UART_CFG_FLOW_CTRL_RTS_CTS; } return UART_CFG_FLOW_CTRL_NONE; } #ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE static int uart_silabs_configure(const struct device *dev, const struct uart_config *cfg) { const struct uart_silabs_config *config = dev->config; USART_TypeDef *base = config->base; struct uart_silabs_data *data = dev->data; struct uart_config *uart_cfg = data->uart_cfg; USART_InitAsync_TypeDef usartInit = USART_INITASYNC_DEFAULT; if ((cfg->parity == UART_CFG_PARITY_MARK) || (cfg->parity == UART_CFG_PARITY_SPACE)) { return -ENOSYS; } if (cfg->flow_ctrl == UART_CFG_FLOW_CTRL_DTR_DSR || cfg->flow_ctrl == UART_CFG_FLOW_CTRL_RS485) { return -ENOSYS; } *uart_cfg = *cfg; usartInit.baudrate = uart_cfg->baudrate; usartInit.parity = uart_silabs_cfg2ll_parity(uart_cfg->parity); usartInit.stopbits = uart_silabs_cfg2ll_stopbits(uart_cfg->stop_bits); usartInit.databits = uart_silabs_cfg2ll_databits(uart_cfg->data_bits, uart_cfg->parity); usartInit.hwFlowControl = uart_silabs_cfg2ll_hwctrl(uart_cfg->flow_ctrl); USART_Enable(base, usartDisable); USART_InitAsync(base, &usartInit); USART_Enable(base, usartEnable); return 0; }; static int uart_silabs_config_get(const struct device *dev, struct uart_config *cfg) { struct uart_silabs_data *data = dev->data; struct uart_config *uart_cfg = data->uart_cfg; cfg->baudrate = uart_cfg->baudrate; cfg->parity = uart_cfg->parity; cfg->stop_bits = uart_cfg->stop_bits; cfg->data_bits = uart_cfg->data_bits; cfg->flow_ctrl = uart_cfg->flow_ctrl; return 0; } #endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */ static int uart_silabs_init(const struct device *dev) { int err; const struct uart_silabs_config *config = dev->config; const struct uart_silabs_data *data = dev->data; const struct uart_config *uart_cfg = data->uart_cfg; USART_InitAsync_TypeDef usartInit = USART_INITASYNC_DEFAULT; /* The peripheral and gpio clock are already enabled from soc and gpio driver */ /* Enable USART clock */ err = clock_control_on(config->clock_dev, (clock_control_subsys_t)&config->clock_cfg); if (err < 0) { return err; } err = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT); if (err < 0) { return err; } usartInit.baudrate = uart_cfg->baudrate; usartInit.parity = uart_silabs_cfg2ll_parity(uart_cfg->parity); usartInit.stopbits = uart_silabs_cfg2ll_stopbits(uart_cfg->stop_bits); usartInit.databits = uart_silabs_cfg2ll_databits(uart_cfg->data_bits, uart_cfg->parity); usartInit.hwFlowControl = uart_cfg->flow_ctrl ? usartHwFlowControlCtsAndRts : usartHwFlowControlNone; USART_InitAsync(config->base, &usartInit); #ifdef CONFIG_UART_INTERRUPT_DRIVEN config->irq_config_func(dev); #endif return 0; } #ifdef CONFIG_PM_DEVICE static int uart_silabs_pm_action(const struct device *dev, enum pm_device_action action) { __maybe_unused const struct uart_silabs_config *config = dev->config; switch (action) { case PM_DEVICE_ACTION_SUSPEND: /* Wait for TX FIFO to flush before suspending */ while (!(USART_StatusGet(config->base) & USART_STATUS_TXIDLE)) { } break; case PM_DEVICE_ACTION_RESUME: break; default: return -ENOTSUP; } return 0; } #endif static DEVICE_API(uart, uart_silabs_driver_api) = { .poll_in = uart_silabs_poll_in, .poll_out = uart_silabs_poll_out, .err_check = uart_silabs_err_check, #ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE .configure = uart_silabs_configure, .config_get = uart_silabs_config_get, #endif #ifdef CONFIG_UART_INTERRUPT_DRIVEN .fifo_fill = uart_silabs_fifo_fill, .fifo_read = uart_silabs_fifo_read, .irq_tx_enable = uart_silabs_irq_tx_enable, .irq_tx_disable = uart_silabs_irq_tx_disable, .irq_tx_complete = uart_silabs_irq_tx_complete, .irq_tx_ready = uart_silabs_irq_tx_ready, .irq_rx_enable = uart_silabs_irq_rx_enable, .irq_rx_disable = uart_silabs_irq_rx_disable, .irq_rx_ready = uart_silabs_irq_rx_ready, .irq_err_enable = uart_silabs_irq_err_enable, .irq_err_disable = uart_silabs_irq_err_disable, .irq_is_pending = uart_silabs_irq_is_pending, .irq_update = uart_silabs_irq_update, .irq_callback_set = uart_silabs_irq_callback_set, #endif }; #ifdef CONFIG_UART_INTERRUPT_DRIVEN #define SILABS_USART_IRQ_HANDLER_FUNC(idx) .irq_config_func = usart_silabs_config_func_##idx, #define SILABS_USART_IRQ_HANDLER(idx) \ static void usart_silabs_config_func_##idx(const struct device *dev) \ { \ IRQ_CONNECT(DT_INST_IRQ_BY_NAME(idx, rx, irq), \ DT_INST_IRQ_BY_NAME(idx, rx, priority), uart_silabs_isr, \ DEVICE_DT_INST_GET(idx), 0); \ IRQ_CONNECT(DT_INST_IRQ_BY_NAME(idx, tx, irq), \ DT_INST_IRQ_BY_NAME(idx, tx, priority), uart_silabs_isr, \ DEVICE_DT_INST_GET(idx), 0); \ \ irq_enable(DT_INST_IRQ_BY_NAME(idx, rx, irq)); \ irq_enable(DT_INST_IRQ_BY_NAME(idx, tx, irq)); \ } #else #define SILABS_USART_IRQ_HANDLER_FUNC(idx) #define SILABS_USART_IRQ_HANDLER(idx) #endif #define SILABS_USART_INIT(idx) \ SILABS_USART_IRQ_HANDLER(idx); \ PINCTRL_DT_INST_DEFINE(idx); \ PM_DEVICE_DT_INST_DEFINE(idx, uart_silabs_pm_action); \ \ static struct uart_config uart_cfg_##idx = { \ .baudrate = DT_INST_PROP(idx, current_speed), \ .parity = DT_INST_ENUM_IDX(idx, parity), \ .stop_bits = DT_INST_ENUM_IDX(idx, stop_bits), \ .data_bits = DT_INST_ENUM_IDX(idx, data_bits), \ .flow_ctrl = DT_INST_PROP(idx, hw_flow_control) ? UART_CFG_FLOW_CTRL_RTS_CTS \ : UART_CFG_FLOW_CTRL_NONE, \ }; \ \ static const struct uart_silabs_config uart_silabs_cfg_##idx = { \ .pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(idx), \ .base = (USART_TypeDef *)DT_INST_REG_ADDR(idx), \ .clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(idx)), \ .clock_cfg = SILABS_DT_INST_CLOCK_CFG(idx), \ SILABS_USART_IRQ_HANDLER_FUNC(idx) \ }; \ \ static struct uart_silabs_data uart_silabs_data_##idx = { \ .uart_cfg = &uart_cfg_##idx, \ }; \ \ DEVICE_DT_INST_DEFINE(idx, uart_silabs_init, PM_DEVICE_DT_INST_GET(idx), \ &uart_silabs_data_##idx, &uart_silabs_cfg_##idx, PRE_KERNEL_1, \ CONFIG_SERIAL_INIT_PRIORITY, &uart_silabs_driver_api); DT_INST_FOREACH_STATUS_OKAY(SILABS_USART_INIT)