zephyr/kernel/mmu.c
Daniel Leung 01f8e0fa2d demand_paging: eviction: add kconfig CONFIG_EVICTION_TRACKING
This adds a new kconfig for eviction algorithm which needs page
tracking. When enabled, k_mem_paging_eviction_add()/_remove()
and k_mem_paging_eviction_accessed() must be implemented.
If an algorithm does not do page tracking, there is no need to
implement these functions, and no need for the kernel MMU code
to call into empty functions. This should save a few function
calls and some CPU cycles.

Note that arm64 unconditionally calls those functions so
forces CONFIG_EVICTION_TRACKING to be enabled there.

Signed-off-by: Daniel Leung <daniel.leung@intel.com>
2024-11-18 13:16:44 -05:00

1836 lines
53 KiB
C

/*
* Copyright (c) 2020 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*
* Routines for managing virtual address spaces
*/
#include <stdint.h>
#include <kernel_arch_interface.h>
#include <zephyr/spinlock.h>
#include <mmu.h>
#include <zephyr/init.h>
#include <kernel_internal.h>
#include <zephyr/internal/syscall_handler.h>
#include <zephyr/toolchain.h>
#include <zephyr/linker/linker-defs.h>
#include <zephyr/sys/bitarray.h>
#include <zephyr/sys/check.h>
#include <zephyr/sys/math_extras.h>
#include <zephyr/timing/timing.h>
#include <zephyr/logging/log.h>
LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL);
#ifdef CONFIG_DEMAND_PAGING
#include <zephyr/kernel/mm/demand_paging.h>
#endif /* CONFIG_DEMAND_PAGING */
/*
* General terminology:
* - A page frame is a page-sized physical memory region in RAM. It is a
* container where a data page may be placed. It is always referred to by
* physical address. We have a convention of using uintptr_t for physical
* addresses. We instantiate a struct k_mem_page_frame to store metadata for
* every page frame.
*
* - A data page is a page-sized region of data. It may exist in a page frame,
* or be paged out to some backing store. Its location can always be looked
* up in the CPU's page tables (or equivalent) by virtual address.
* The data type will always be void * or in some cases uint8_t * when we
* want to do pointer arithmetic.
*/
/* Spinlock to protect any globals in this file and serialize page table
* updates in arch code
*/
struct k_spinlock z_mm_lock;
/*
* General page frame management
*/
/* Database of all RAM page frames */
struct k_mem_page_frame k_mem_page_frames[K_MEM_NUM_PAGE_FRAMES];
#if __ASSERT_ON
/* Indicator that k_mem_page_frames has been initialized, many of these APIs do
* not work before POST_KERNEL
*/
static bool page_frames_initialized;
#endif
/* Add colors to page table dumps to indicate mapping type */
#define COLOR_PAGE_FRAMES 1
#if COLOR_PAGE_FRAMES
#define ANSI_DEFAULT "\x1B" "[0m"
#define ANSI_RED "\x1B" "[1;31m"
#define ANSI_GREEN "\x1B" "[1;32m"
#define ANSI_YELLOW "\x1B" "[1;33m"
#define ANSI_BLUE "\x1B" "[1;34m"
#define ANSI_MAGENTA "\x1B" "[1;35m"
#define ANSI_CYAN "\x1B" "[1;36m"
#define ANSI_GREY "\x1B" "[1;90m"
#define COLOR(x) printk(_CONCAT(ANSI_, x))
#else
#define COLOR(x) do { } while (false)
#endif /* COLOR_PAGE_FRAMES */
/* LCOV_EXCL_START */
static void page_frame_dump(struct k_mem_page_frame *pf)
{
if (k_mem_page_frame_is_free(pf)) {
COLOR(GREY);
printk("-");
} else if (k_mem_page_frame_is_reserved(pf)) {
COLOR(CYAN);
printk("R");
} else if (k_mem_page_frame_is_busy(pf)) {
COLOR(MAGENTA);
printk("B");
} else if (k_mem_page_frame_is_pinned(pf)) {
COLOR(YELLOW);
printk("P");
} else if (k_mem_page_frame_is_available(pf)) {
COLOR(GREY);
printk(".");
} else if (k_mem_page_frame_is_mapped(pf)) {
COLOR(DEFAULT);
printk("M");
} else {
COLOR(RED);
printk("?");
}
}
void k_mem_page_frames_dump(void)
{
int column = 0;
__ASSERT(page_frames_initialized, "%s called too early", __func__);
printk("Physical memory from 0x%lx to 0x%lx\n",
K_MEM_PHYS_RAM_START, K_MEM_PHYS_RAM_END);
for (int i = 0; i < K_MEM_NUM_PAGE_FRAMES; i++) {
struct k_mem_page_frame *pf = &k_mem_page_frames[i];
page_frame_dump(pf);
column++;
if (column == 64) {
column = 0;
printk("\n");
}
}
COLOR(DEFAULT);
if (column != 0) {
printk("\n");
}
}
/* LCOV_EXCL_STOP */
#define VIRT_FOREACH(_base, _size, _pos) \
for ((_pos) = (_base); \
(_pos) < ((uint8_t *)(_base) + (_size)); (_pos) += CONFIG_MMU_PAGE_SIZE)
#define PHYS_FOREACH(_base, _size, _pos) \
for ((_pos) = (_base); \
(_pos) < ((uintptr_t)(_base) + (_size)); (_pos) += CONFIG_MMU_PAGE_SIZE)
/*
* Virtual address space management
*
* Call all of these functions with z_mm_lock held.
*
* Overall virtual memory map: When the kernel starts, it resides in
* virtual memory in the region K_MEM_KERNEL_VIRT_START to
* K_MEM_KERNEL_VIRT_END. Unused virtual memory past this, up to the limit
* noted by CONFIG_KERNEL_VM_SIZE may be used for runtime memory mappings.
*
* If CONFIG_ARCH_MAPS_ALL_RAM is set, we do not just map the kernel image,
* but have a mapping for all RAM in place. This is for special architectural
* purposes and does not otherwise affect page frame accounting or flags;
* the only guarantee is that such RAM mapping outside of the Zephyr image
* won't be disturbed by subsequent memory mapping calls.
*
* +--------------+ <- K_MEM_VIRT_RAM_START
* | Undefined VM | <- May contain ancillary regions like x86_64's locore
* +--------------+ <- K_MEM_KERNEL_VIRT_START (often == K_MEM_VIRT_RAM_START)
* | Mapping for |
* | main kernel |
* | image |
* | |
* | |
* +--------------+ <- K_MEM_VM_FREE_START
* | |
* | Unused, |
* | Available VM |
* | |
* |..............| <- mapping_pos (grows downward as more mappings are made)
* | Mapping |
* +--------------+
* | Mapping |
* +--------------+
* | ... |
* +--------------+
* | Mapping |
* +--------------+ <- mappings start here
* | Reserved | <- special purpose virtual page(s) of size K_MEM_VM_RESERVED
* +--------------+ <- K_MEM_VIRT_RAM_END
*/
/* Bitmap of virtual addresses where one bit corresponds to one page.
* This is being used for virt_region_alloc() to figure out which
* region of virtual addresses can be used for memory mapping.
*
* Note that bit #0 is the highest address so that allocation is
* done in reverse from highest address.
*/
SYS_BITARRAY_DEFINE_STATIC(virt_region_bitmap,
CONFIG_KERNEL_VM_SIZE / CONFIG_MMU_PAGE_SIZE);
static bool virt_region_inited;
#define Z_VIRT_REGION_START_ADDR K_MEM_VM_FREE_START
#define Z_VIRT_REGION_END_ADDR (K_MEM_VIRT_RAM_END - K_MEM_VM_RESERVED)
static inline uintptr_t virt_from_bitmap_offset(size_t offset, size_t size)
{
return POINTER_TO_UINT(K_MEM_VIRT_RAM_END)
- (offset * CONFIG_MMU_PAGE_SIZE) - size;
}
static inline size_t virt_to_bitmap_offset(void *vaddr, size_t size)
{
return (POINTER_TO_UINT(K_MEM_VIRT_RAM_END)
- POINTER_TO_UINT(vaddr) - size) / CONFIG_MMU_PAGE_SIZE;
}
static void virt_region_init(void)
{
size_t offset, num_bits;
/* There are regions where we should never map via
* k_mem_map() and k_mem_map_phys_bare(). Mark them as
* already allocated so they will never be used.
*/
if (K_MEM_VM_RESERVED > 0) {
/* Mark reserved region at end of virtual address space */
num_bits = K_MEM_VM_RESERVED / CONFIG_MMU_PAGE_SIZE;
(void)sys_bitarray_set_region(&virt_region_bitmap,
num_bits, 0);
}
/* Mark all bits up to Z_FREE_VM_START as allocated */
num_bits = POINTER_TO_UINT(K_MEM_VM_FREE_START)
- POINTER_TO_UINT(K_MEM_VIRT_RAM_START);
offset = virt_to_bitmap_offset(K_MEM_VIRT_RAM_START, num_bits);
num_bits /= CONFIG_MMU_PAGE_SIZE;
(void)sys_bitarray_set_region(&virt_region_bitmap,
num_bits, offset);
virt_region_inited = true;
}
static void virt_region_free(void *vaddr, size_t size)
{
size_t offset, num_bits;
uint8_t *vaddr_u8 = (uint8_t *)vaddr;
if (unlikely(!virt_region_inited)) {
virt_region_init();
}
#ifndef CONFIG_KERNEL_DIRECT_MAP
/* Without the need to support K_MEM_DIRECT_MAP, the region must be
* able to be represented in the bitmap. So this case is
* simple.
*/
__ASSERT((vaddr_u8 >= Z_VIRT_REGION_START_ADDR)
&& ((vaddr_u8 + size - 1) < Z_VIRT_REGION_END_ADDR),
"invalid virtual address region %p (%zu)", vaddr_u8, size);
if (!((vaddr_u8 >= Z_VIRT_REGION_START_ADDR)
&& ((vaddr_u8 + size - 1) < Z_VIRT_REGION_END_ADDR))) {
return;
}
offset = virt_to_bitmap_offset(vaddr, size);
num_bits = size / CONFIG_MMU_PAGE_SIZE;
(void)sys_bitarray_free(&virt_region_bitmap, num_bits, offset);
#else /* !CONFIG_KERNEL_DIRECT_MAP */
/* With K_MEM_DIRECT_MAP, the region can be outside of the virtual
* memory space, wholly within it, or overlap partially.
* So additional processing is needed to make sure we only
* mark the pages within the bitmap.
*/
if (((vaddr_u8 >= Z_VIRT_REGION_START_ADDR) &&
(vaddr_u8 < Z_VIRT_REGION_END_ADDR)) ||
(((vaddr_u8 + size - 1) >= Z_VIRT_REGION_START_ADDR) &&
((vaddr_u8 + size - 1) < Z_VIRT_REGION_END_ADDR))) {
uint8_t *adjusted_start = MAX(vaddr_u8, Z_VIRT_REGION_START_ADDR);
uint8_t *adjusted_end = MIN(vaddr_u8 + size,
Z_VIRT_REGION_END_ADDR);
size_t adjusted_sz = adjusted_end - adjusted_start;
offset = virt_to_bitmap_offset(adjusted_start, adjusted_sz);
num_bits = adjusted_sz / CONFIG_MMU_PAGE_SIZE;
(void)sys_bitarray_free(&virt_region_bitmap, num_bits, offset);
}
#endif /* !CONFIG_KERNEL_DIRECT_MAP */
}
static void *virt_region_alloc(size_t size, size_t align)
{
uintptr_t dest_addr;
size_t alloc_size;
size_t offset;
size_t num_bits;
int ret;
if (unlikely(!virt_region_inited)) {
virt_region_init();
}
/* Possibly request more pages to ensure we can get an aligned virtual address */
num_bits = (size + align - CONFIG_MMU_PAGE_SIZE) / CONFIG_MMU_PAGE_SIZE;
alloc_size = num_bits * CONFIG_MMU_PAGE_SIZE;
ret = sys_bitarray_alloc(&virt_region_bitmap, num_bits, &offset);
if (ret != 0) {
LOG_ERR("insufficient virtual address space (requested %zu)",
size);
return NULL;
}
/* Remember that bit #0 in bitmap corresponds to the highest
* virtual address. So here we need to go downwards (backwards?)
* to get the starting address of the allocated region.
*/
dest_addr = virt_from_bitmap_offset(offset, alloc_size);
if (alloc_size > size) {
uintptr_t aligned_dest_addr = ROUND_UP(dest_addr, align);
/* Here is the memory organization when trying to get an aligned
* virtual address:
*
* +--------------+ <- K_MEM_VIRT_RAM_START
* | Undefined VM |
* +--------------+ <- K_MEM_KERNEL_VIRT_START (often == K_MEM_VIRT_RAM_START)
* | Mapping for |
* | main kernel |
* | image |
* | |
* | |
* +--------------+ <- K_MEM_VM_FREE_START
* | ... |
* +==============+ <- dest_addr
* | Unused |
* |..............| <- aligned_dest_addr
* | |
* | Aligned |
* | Mapping |
* | |
* |..............| <- aligned_dest_addr + size
* | Unused |
* +==============+ <- offset from K_MEM_VIRT_RAM_END == dest_addr + alloc_size
* | ... |
* +--------------+
* | Mapping |
* +--------------+
* | Reserved |
* +--------------+ <- K_MEM_VIRT_RAM_END
*/
/* Free the two unused regions */
virt_region_free(UINT_TO_POINTER(dest_addr),
aligned_dest_addr - dest_addr);
if (((dest_addr + alloc_size) - (aligned_dest_addr + size)) > 0) {
virt_region_free(UINT_TO_POINTER(aligned_dest_addr + size),
(dest_addr + alloc_size) - (aligned_dest_addr + size));
}
dest_addr = aligned_dest_addr;
}
/* Need to make sure this does not step into kernel memory */
if (dest_addr < POINTER_TO_UINT(Z_VIRT_REGION_START_ADDR)) {
(void)sys_bitarray_free(&virt_region_bitmap, size, offset);
return NULL;
}
return UINT_TO_POINTER(dest_addr);
}
/*
* Free page frames management
*
* Call all of these functions with z_mm_lock held.
*/
/* Linked list of unused and available page frames.
*
* TODO: This is very simple and treats all free page frames as being equal.
* However, there are use-cases to consolidate free pages such that entire
* SRAM banks can be switched off to save power, and so obtaining free pages
* may require a more complex ontology which prefers page frames in RAM banks
* which are still active.
*
* This implies in the future there may be multiple slists managing physical
* pages. Each page frame will still just have one snode link.
*/
static sys_sflist_t free_page_frame_list;
/* Number of unused and available free page frames.
* This information may go stale immediately.
*/
static size_t z_free_page_count;
#define PF_ASSERT(pf, expr, fmt, ...) \
__ASSERT(expr, "page frame 0x%lx: " fmt, k_mem_page_frame_to_phys(pf), \
##__VA_ARGS__)
/* Get an unused page frame. don't care which one, or NULL if there are none */
static struct k_mem_page_frame *free_page_frame_list_get(void)
{
sys_sfnode_t *node;
struct k_mem_page_frame *pf = NULL;
node = sys_sflist_get(&free_page_frame_list);
if (node != NULL) {
z_free_page_count--;
pf = CONTAINER_OF(node, struct k_mem_page_frame, node);
PF_ASSERT(pf, k_mem_page_frame_is_free(pf),
"on free list but not free");
pf->va_and_flags = 0;
}
return pf;
}
/* Release a page frame back into the list of free pages */
static void free_page_frame_list_put(struct k_mem_page_frame *pf)
{
PF_ASSERT(pf, k_mem_page_frame_is_available(pf),
"unavailable page put on free list");
sys_sfnode_init(&pf->node, K_MEM_PAGE_FRAME_FREE);
sys_sflist_append(&free_page_frame_list, &pf->node);
z_free_page_count++;
}
static void free_page_frame_list_init(void)
{
sys_sflist_init(&free_page_frame_list);
}
static void page_frame_free_locked(struct k_mem_page_frame *pf)
{
pf->va_and_flags = 0;
free_page_frame_list_put(pf);
}
/*
* Memory Mapping
*/
/* Called after the frame is mapped in the arch layer, to update our
* local ontology (and do some assertions while we're at it)
*/
static void frame_mapped_set(struct k_mem_page_frame *pf, void *addr)
{
PF_ASSERT(pf, !k_mem_page_frame_is_free(pf),
"attempted to map a page frame on the free list");
PF_ASSERT(pf, !k_mem_page_frame_is_reserved(pf),
"attempted to map a reserved page frame");
/* We do allow multiple mappings for pinned page frames
* since we will never need to reverse map them.
* This is uncommon, use-cases are for things like the
* Zephyr equivalent of VSDOs
*/
PF_ASSERT(pf, !k_mem_page_frame_is_mapped(pf) || k_mem_page_frame_is_pinned(pf),
"non-pinned and already mapped to %p",
k_mem_page_frame_to_virt(pf));
uintptr_t flags_mask = CONFIG_MMU_PAGE_SIZE - 1;
uintptr_t va = (uintptr_t)addr & ~flags_mask;
pf->va_and_flags &= flags_mask;
pf->va_and_flags |= va | K_MEM_PAGE_FRAME_MAPPED;
}
/* LCOV_EXCL_START */
/* Go through page frames to find the physical address mapped
* by a virtual address.
*
* @param[in] virt Virtual Address
* @param[out] phys Physical address mapped to the input virtual address
* if such mapping exists.
*
* @retval 0 if mapping is found and valid
* @retval -EFAULT if virtual address is not mapped
*/
static int virt_to_page_frame(void *virt, uintptr_t *phys)
{
uintptr_t paddr;
struct k_mem_page_frame *pf;
int ret = -EFAULT;
K_MEM_PAGE_FRAME_FOREACH(paddr, pf) {
if (k_mem_page_frame_is_mapped(pf)) {
if (virt == k_mem_page_frame_to_virt(pf)) {
ret = 0;
if (phys != NULL) {
*phys = k_mem_page_frame_to_phys(pf);
}
break;
}
}
}
return ret;
}
/* LCOV_EXCL_STOP */
__weak FUNC_ALIAS(virt_to_page_frame, arch_page_phys_get, int);
#ifdef CONFIG_DEMAND_PAGING
static int page_frame_prepare_locked(struct k_mem_page_frame *pf, bool *dirty_ptr,
bool page_in, uintptr_t *location_ptr);
static inline void do_backing_store_page_in(uintptr_t location);
static inline void do_backing_store_page_out(uintptr_t location);
#endif /* CONFIG_DEMAND_PAGING */
/* Allocate a free page frame, and map it to a specified virtual address
*
* TODO: Add optional support for copy-on-write mappings to a zero page instead
* of allocating, in which case page frames will be allocated lazily as
* the mappings to the zero page get touched. This will avoid expensive
* page-ins as memory is mapped and physical RAM or backing store storage will
* not be used if the mapped memory is unused. The cost is an empty physical
* page of zeroes.
*/
static int map_anon_page(void *addr, uint32_t flags)
{
struct k_mem_page_frame *pf;
uintptr_t phys;
bool lock = (flags & K_MEM_MAP_LOCK) != 0U;
pf = free_page_frame_list_get();
if (pf == NULL) {
#ifdef CONFIG_DEMAND_PAGING
uintptr_t location;
bool dirty;
int ret;
pf = k_mem_paging_eviction_select(&dirty);
__ASSERT(pf != NULL, "failed to get a page frame");
LOG_DBG("evicting %p at 0x%lx",
k_mem_page_frame_to_virt(pf),
k_mem_page_frame_to_phys(pf));
ret = page_frame_prepare_locked(pf, &dirty, false, &location);
if (ret != 0) {
return -ENOMEM;
}
if (dirty) {
do_backing_store_page_out(location);
}
pf->va_and_flags = 0;
#else
return -ENOMEM;
#endif /* CONFIG_DEMAND_PAGING */
}
phys = k_mem_page_frame_to_phys(pf);
arch_mem_map(addr, phys, CONFIG_MMU_PAGE_SIZE, flags);
if (lock) {
k_mem_page_frame_set(pf, K_MEM_PAGE_FRAME_PINNED);
}
frame_mapped_set(pf, addr);
#ifdef CONFIG_DEMAND_PAGING
if (IS_ENABLED(CONFIG_EVICTION_TRACKING) && (!lock)) {
k_mem_paging_eviction_add(pf);
}
#endif
LOG_DBG("memory mapping anon page %p -> 0x%lx", addr, phys);
return 0;
}
void *k_mem_map_phys_guard(uintptr_t phys, size_t size, uint32_t flags, bool is_anon)
{
uint8_t *dst;
size_t total_size;
int ret;
k_spinlock_key_t key;
uint8_t *pos;
bool uninit = (flags & K_MEM_MAP_UNINIT) != 0U;
__ASSERT(!is_anon || (is_anon && page_frames_initialized),
"%s called too early", __func__);
__ASSERT((flags & K_MEM_CACHE_MASK) == 0U,
"%s does not support explicit cache settings", __func__);
if (((flags & K_MEM_PERM_USER) != 0U) &&
((flags & K_MEM_MAP_UNINIT) != 0U)) {
LOG_ERR("user access to anonymous uninitialized pages is forbidden");
return NULL;
}
if ((size % CONFIG_MMU_PAGE_SIZE) != 0U) {
LOG_ERR("unaligned size %zu passed to %s", size, __func__);
return NULL;
}
if (size == 0) {
LOG_ERR("zero sized memory mapping");
return NULL;
}
/* Need extra for the guard pages (before and after) which we
* won't map.
*/
if (size_add_overflow(size, CONFIG_MMU_PAGE_SIZE * 2, &total_size)) {
LOG_ERR("too large size %zu passed to %s", size, __func__);
return NULL;
}
key = k_spin_lock(&z_mm_lock);
dst = virt_region_alloc(total_size, CONFIG_MMU_PAGE_SIZE);
if (dst == NULL) {
/* Address space has no free region */
goto out;
}
/* Unmap both guard pages to make sure accessing them
* will generate fault.
*/
arch_mem_unmap(dst, CONFIG_MMU_PAGE_SIZE);
arch_mem_unmap(dst + CONFIG_MMU_PAGE_SIZE + size,
CONFIG_MMU_PAGE_SIZE);
/* Skip over the "before" guard page in returned address. */
dst += CONFIG_MMU_PAGE_SIZE;
if (is_anon) {
/* Mapping from anonymous memory */
flags |= K_MEM_CACHE_WB;
#ifdef CONFIG_DEMAND_MAPPING
if ((flags & K_MEM_MAP_LOCK) == 0) {
flags |= K_MEM_MAP_UNPAGED;
VIRT_FOREACH(dst, size, pos) {
arch_mem_map(pos,
uninit ? ARCH_UNPAGED_ANON_UNINIT
: ARCH_UNPAGED_ANON_ZERO,
CONFIG_MMU_PAGE_SIZE, flags);
}
LOG_DBG("memory mapping anon pages %p to %p unpaged", dst, pos-1);
/* skip the memset() below */
uninit = true;
} else
#endif
{
VIRT_FOREACH(dst, size, pos) {
ret = map_anon_page(pos, flags);
if (ret != 0) {
/* TODO:
* call k_mem_unmap(dst, pos - dst)
* when implemented in #28990 and
* release any guard virtual page as well.
*/
dst = NULL;
goto out;
}
}
}
} else {
/* Mapping known physical memory.
*
* arch_mem_map() is a void function and does not return
* anything. Arch code usually uses ASSERT() to catch
* mapping errors. Assume this works correctly for now.
*/
arch_mem_map(dst, phys, size, flags);
}
out:
k_spin_unlock(&z_mm_lock, key);
if (dst != NULL && !uninit) {
/* If we later implement mappings to a copy-on-write
* zero page, won't need this step
*/
memset(dst, 0, size);
}
return dst;
}
void k_mem_unmap_phys_guard(void *addr, size_t size, bool is_anon)
{
uintptr_t phys;
uint8_t *pos;
struct k_mem_page_frame *pf;
k_spinlock_key_t key;
size_t total_size;
int ret;
/* Need space for the "before" guard page */
__ASSERT_NO_MSG(POINTER_TO_UINT(addr) >= CONFIG_MMU_PAGE_SIZE);
/* Make sure address range is still valid after accounting
* for two guard pages.
*/
pos = (uint8_t *)addr - CONFIG_MMU_PAGE_SIZE;
k_mem_assert_virtual_region(pos, size + (CONFIG_MMU_PAGE_SIZE * 2));
key = k_spin_lock(&z_mm_lock);
/* Check if both guard pages are unmapped.
* Bail if not, as this is probably a region not mapped
* using k_mem_map().
*/
pos = addr;
ret = arch_page_phys_get(pos - CONFIG_MMU_PAGE_SIZE, NULL);
if (ret == 0) {
__ASSERT(ret == 0,
"%s: cannot find preceding guard page for (%p, %zu)",
__func__, addr, size);
goto out;
}
ret = arch_page_phys_get(pos + size, NULL);
if (ret == 0) {
__ASSERT(ret == 0,
"%s: cannot find succeeding guard page for (%p, %zu)",
__func__, addr, size);
goto out;
}
if (is_anon) {
/* Unmapping anonymous memory */
VIRT_FOREACH(addr, size, pos) {
#ifdef CONFIG_DEMAND_PAGING
enum arch_page_location status;
uintptr_t location;
status = arch_page_location_get(pos, &location);
switch (status) {
case ARCH_PAGE_LOCATION_PAGED_OUT:
/*
* No pf is associated with this mapping.
* Simply get rid of the MMU entry and free
* corresponding backing store.
*/
arch_mem_unmap(pos, CONFIG_MMU_PAGE_SIZE);
k_mem_paging_backing_store_location_free(location);
continue;
case ARCH_PAGE_LOCATION_PAGED_IN:
/*
* The page is in memory but it may not be
* accessible in order to manage tracking
* of the ARCH_DATA_PAGE_ACCESSED flag
* meaning arch_page_phys_get() could fail.
* Still, we know the actual phys address.
*/
phys = location;
ret = 0;
break;
default:
ret = arch_page_phys_get(pos, &phys);
break;
}
#else
ret = arch_page_phys_get(pos, &phys);
#endif
__ASSERT(ret == 0,
"%s: cannot unmap an unmapped address %p",
__func__, pos);
if (ret != 0) {
/* Found an address not mapped. Do not continue. */
goto out;
}
__ASSERT(k_mem_is_page_frame(phys),
"%s: 0x%lx is not a page frame", __func__, phys);
if (!k_mem_is_page_frame(phys)) {
/* Physical address has no corresponding page frame
* description in the page frame array.
* This should not happen. Do not continue.
*/
goto out;
}
/* Grab the corresponding page frame from physical address */
pf = k_mem_phys_to_page_frame(phys);
__ASSERT(k_mem_page_frame_is_mapped(pf),
"%s: 0x%lx is not a mapped page frame", __func__, phys);
if (!k_mem_page_frame_is_mapped(pf)) {
/* Page frame is not marked mapped.
* This should not happen. Do not continue.
*/
goto out;
}
arch_mem_unmap(pos, CONFIG_MMU_PAGE_SIZE);
#ifdef CONFIG_DEMAND_PAGING
if (IS_ENABLED(CONFIG_EVICTION_TRACKING) &&
(!k_mem_page_frame_is_pinned(pf))) {
k_mem_paging_eviction_remove(pf);
}
#endif
/* Put the page frame back into free list */
page_frame_free_locked(pf);
}
} else {
/*
* Unmapping previous mapped memory with specific physical address.
*
* Note that we don't have to unmap the guard pages, as they should
* have been unmapped. We just need to unmapped the in-between
* region [addr, (addr + size)).
*/
arch_mem_unmap(addr, size);
}
/* There are guard pages just before and after the mapped
* region. So we also need to free them from the bitmap.
*/
pos = (uint8_t *)addr - CONFIG_MMU_PAGE_SIZE;
total_size = size + (CONFIG_MMU_PAGE_SIZE * 2);
virt_region_free(pos, total_size);
out:
k_spin_unlock(&z_mm_lock, key);
}
int k_mem_update_flags(void *addr, size_t size, uint32_t flags)
{
uintptr_t phys;
k_spinlock_key_t key;
int ret;
k_mem_assert_virtual_region(addr, size);
key = k_spin_lock(&z_mm_lock);
/*
* We can achieve desired result without explicit architecture support
* by unmapping and remapping the same physical memory using new flags.
*/
ret = arch_page_phys_get(addr, &phys);
if (ret < 0) {
goto out;
}
/* TODO: detect and handle paged-out memory as well */
arch_mem_unmap(addr, size);
arch_mem_map(addr, phys, size, flags);
out:
k_spin_unlock(&z_mm_lock, key);
return ret;
}
size_t k_mem_free_get(void)
{
size_t ret;
k_spinlock_key_t key;
__ASSERT(page_frames_initialized, "%s called too early", __func__);
key = k_spin_lock(&z_mm_lock);
#ifdef CONFIG_DEMAND_PAGING
if (z_free_page_count > CONFIG_DEMAND_PAGING_PAGE_FRAMES_RESERVE) {
ret = z_free_page_count - CONFIG_DEMAND_PAGING_PAGE_FRAMES_RESERVE;
} else {
ret = 0;
}
#else
ret = z_free_page_count;
#endif /* CONFIG_DEMAND_PAGING */
k_spin_unlock(&z_mm_lock, key);
return ret * (size_t)CONFIG_MMU_PAGE_SIZE;
}
/* Get the default virtual region alignment, here the default MMU page size
*
* @param[in] phys Physical address of region to be mapped, aligned to MMU_PAGE_SIZE
* @param[in] size Size of region to be mapped, aligned to MMU_PAGE_SIZE
*
* @retval alignment to apply on the virtual address of this region
*/
static size_t virt_region_align(uintptr_t phys, size_t size)
{
ARG_UNUSED(phys);
ARG_UNUSED(size);
return CONFIG_MMU_PAGE_SIZE;
}
__weak FUNC_ALIAS(virt_region_align, arch_virt_region_align, size_t);
/* This may be called from arch early boot code before z_cstart() is invoked.
* Data will be copied and BSS zeroed, but this must not rely on any
* initialization functions being called prior to work correctly.
*/
void k_mem_map_phys_bare(uint8_t **virt_ptr, uintptr_t phys, size_t size, uint32_t flags)
{
uintptr_t aligned_phys, addr_offset;
size_t aligned_size, align_boundary;
k_spinlock_key_t key;
uint8_t *dest_addr;
size_t num_bits;
size_t offset;
#ifndef CONFIG_KERNEL_DIRECT_MAP
__ASSERT(!(flags & K_MEM_DIRECT_MAP), "The direct-map is not enabled");
#endif /* CONFIG_KERNEL_DIRECT_MAP */
addr_offset = k_mem_region_align(&aligned_phys, &aligned_size,
phys, size,
CONFIG_MMU_PAGE_SIZE);
__ASSERT(aligned_size != 0U, "0-length mapping at 0x%lx", aligned_phys);
__ASSERT(aligned_phys < (aligned_phys + (aligned_size - 1)),
"wraparound for physical address 0x%lx (size %zu)",
aligned_phys, aligned_size);
align_boundary = arch_virt_region_align(aligned_phys, aligned_size);
key = k_spin_lock(&z_mm_lock);
if (IS_ENABLED(CONFIG_KERNEL_DIRECT_MAP) &&
(flags & K_MEM_DIRECT_MAP)) {
dest_addr = (uint8_t *)aligned_phys;
/* Mark the region of virtual memory bitmap as used
* if the region overlaps the virtual memory space.
*
* Basically if either end of region is within
* virtual memory space, we need to mark the bits.
*/
if (IN_RANGE(aligned_phys,
(uintptr_t)K_MEM_VIRT_RAM_START,
(uintptr_t)(K_MEM_VIRT_RAM_END - 1)) ||
IN_RANGE(aligned_phys + aligned_size - 1,
(uintptr_t)K_MEM_VIRT_RAM_START,
(uintptr_t)(K_MEM_VIRT_RAM_END - 1))) {
uint8_t *adjusted_start = MAX(dest_addr, K_MEM_VIRT_RAM_START);
uint8_t *adjusted_end = MIN(dest_addr + aligned_size,
K_MEM_VIRT_RAM_END);
size_t adjusted_sz = adjusted_end - adjusted_start;
num_bits = adjusted_sz / CONFIG_MMU_PAGE_SIZE;
offset = virt_to_bitmap_offset(adjusted_start, adjusted_sz);
if (sys_bitarray_test_and_set_region(
&virt_region_bitmap, num_bits, offset, true)) {
goto fail;
}
}
} else {
/* Obtain an appropriately sized chunk of virtual memory */
dest_addr = virt_region_alloc(aligned_size, align_boundary);
if (!dest_addr) {
goto fail;
}
}
/* If this fails there's something amiss with virt_region_get */
__ASSERT((uintptr_t)dest_addr <
((uintptr_t)dest_addr + (size - 1)),
"wraparound for virtual address %p (size %zu)",
dest_addr, size);
LOG_DBG("arch_mem_map(%p, 0x%lx, %zu, %x) offset %lu", dest_addr,
aligned_phys, aligned_size, flags, addr_offset);
arch_mem_map(dest_addr, aligned_phys, aligned_size, flags);
k_spin_unlock(&z_mm_lock, key);
*virt_ptr = dest_addr + addr_offset;
return;
fail:
/* May re-visit this in the future, but for now running out of
* virtual address space or failing the arch_mem_map() call is
* an unrecoverable situation.
*
* Other problems not related to resource exhaustion we leave as
* assertions since they are clearly programming mistakes.
*/
LOG_ERR("memory mapping 0x%lx (size %zu, flags 0x%x) failed",
phys, size, flags);
k_panic();
}
void k_mem_unmap_phys_bare(uint8_t *virt, size_t size)
{
uintptr_t aligned_virt, addr_offset;
size_t aligned_size;
k_spinlock_key_t key;
addr_offset = k_mem_region_align(&aligned_virt, &aligned_size,
POINTER_TO_UINT(virt), size,
CONFIG_MMU_PAGE_SIZE);
__ASSERT(aligned_size != 0U, "0-length mapping at 0x%lx", aligned_virt);
__ASSERT(aligned_virt < (aligned_virt + (aligned_size - 1)),
"wraparound for virtual address 0x%lx (size %zu)",
aligned_virt, aligned_size);
key = k_spin_lock(&z_mm_lock);
LOG_DBG("arch_mem_unmap(0x%lx, %zu) offset %lu",
aligned_virt, aligned_size, addr_offset);
arch_mem_unmap(UINT_TO_POINTER(aligned_virt), aligned_size);
virt_region_free(UINT_TO_POINTER(aligned_virt), aligned_size);
k_spin_unlock(&z_mm_lock, key);
}
/*
* Miscellaneous
*/
size_t k_mem_region_align(uintptr_t *aligned_addr, size_t *aligned_size,
uintptr_t addr, size_t size, size_t align)
{
size_t addr_offset;
/* The actual mapped region must be page-aligned. Round down the
* physical address and pad the region size appropriately
*/
*aligned_addr = ROUND_DOWN(addr, align);
addr_offset = addr - *aligned_addr;
*aligned_size = ROUND_UP(size + addr_offset, align);
return addr_offset;
}
#if defined(CONFIG_LINKER_USE_BOOT_SECTION) || defined(CONFIG_LINKER_USE_PINNED_SECTION)
static void mark_linker_section_pinned(void *start_addr, void *end_addr,
bool pin)
{
struct k_mem_page_frame *pf;
uint8_t *addr;
uintptr_t pinned_start = ROUND_DOWN(POINTER_TO_UINT(start_addr),
CONFIG_MMU_PAGE_SIZE);
uintptr_t pinned_end = ROUND_UP(POINTER_TO_UINT(end_addr),
CONFIG_MMU_PAGE_SIZE);
size_t pinned_size = pinned_end - pinned_start;
VIRT_FOREACH(UINT_TO_POINTER(pinned_start), pinned_size, addr)
{
pf = k_mem_phys_to_page_frame(K_MEM_BOOT_VIRT_TO_PHYS(addr));
frame_mapped_set(pf, addr);
if (pin) {
k_mem_page_frame_set(pf, K_MEM_PAGE_FRAME_PINNED);
} else {
k_mem_page_frame_clear(pf, K_MEM_PAGE_FRAME_PINNED);
#ifdef CONFIG_DEMAND_PAGING
if (IS_ENABLED(CONFIG_EVICTION_TRACKING) &&
k_mem_page_frame_is_evictable(pf)) {
k_mem_paging_eviction_add(pf);
}
#endif
}
}
}
#endif /* CONFIG_LINKER_USE_BOOT_SECTION) || CONFIG_LINKER_USE_PINNED_SECTION */
#ifdef CONFIG_LINKER_USE_ONDEMAND_SECTION
static void z_paging_ondemand_section_map(void)
{
uint8_t *addr;
size_t size;
uintptr_t location;
uint32_t flags;
size = (uintptr_t)lnkr_ondemand_text_size;
flags = K_MEM_MAP_UNPAGED | K_MEM_PERM_EXEC | K_MEM_CACHE_WB;
VIRT_FOREACH(lnkr_ondemand_text_start, size, addr) {
k_mem_paging_backing_store_location_query(addr, &location);
arch_mem_map(addr, location, CONFIG_MMU_PAGE_SIZE, flags);
sys_bitarray_set_region(&virt_region_bitmap, 1,
virt_to_bitmap_offset(addr, CONFIG_MMU_PAGE_SIZE));
}
size = (uintptr_t)lnkr_ondemand_rodata_size;
flags = K_MEM_MAP_UNPAGED | K_MEM_CACHE_WB;
VIRT_FOREACH(lnkr_ondemand_rodata_start, size, addr) {
k_mem_paging_backing_store_location_query(addr, &location);
arch_mem_map(addr, location, CONFIG_MMU_PAGE_SIZE, flags);
sys_bitarray_set_region(&virt_region_bitmap, 1,
virt_to_bitmap_offset(addr, CONFIG_MMU_PAGE_SIZE));
}
}
#endif /* CONFIG_LINKER_USE_ONDEMAND_SECTION */
void z_mem_manage_init(void)
{
uintptr_t phys;
uint8_t *addr;
struct k_mem_page_frame *pf;
k_spinlock_key_t key = k_spin_lock(&z_mm_lock);
free_page_frame_list_init();
ARG_UNUSED(addr);
#ifdef CONFIG_ARCH_HAS_RESERVED_PAGE_FRAMES
/* If some page frames are unavailable for use as memory, arch
* code will mark K_MEM_PAGE_FRAME_RESERVED in their flags
*/
arch_reserved_pages_update();
#endif /* CONFIG_ARCH_HAS_RESERVED_PAGE_FRAMES */
#ifdef CONFIG_LINKER_GENERIC_SECTIONS_PRESENT_AT_BOOT
/* All pages composing the Zephyr image are mapped at boot in a
* predictable way. This can change at runtime.
*/
VIRT_FOREACH(K_MEM_KERNEL_VIRT_START, K_MEM_KERNEL_VIRT_SIZE, addr)
{
pf = k_mem_phys_to_page_frame(K_MEM_BOOT_VIRT_TO_PHYS(addr));
frame_mapped_set(pf, addr);
/* TODO: for now we pin the whole Zephyr image. Demand paging
* currently tested with anonymously-mapped pages which are not
* pinned.
*
* We will need to setup linker regions for a subset of kernel
* code/data pages which are pinned in memory and
* may not be evicted. This will contain critical CPU data
* structures, and any code used to perform page fault
* handling, page-ins, etc.
*/
k_mem_page_frame_set(pf, K_MEM_PAGE_FRAME_PINNED);
}
#endif /* CONFIG_LINKER_GENERIC_SECTIONS_PRESENT_AT_BOOT */
#ifdef CONFIG_LINKER_USE_BOOT_SECTION
/* Pin the boot section to prevent it from being swapped out during
* boot process. Will be un-pinned once boot process completes.
*/
mark_linker_section_pinned(lnkr_boot_start, lnkr_boot_end, true);
#endif /* CONFIG_LINKER_USE_BOOT_SECTION */
#ifdef CONFIG_LINKER_USE_PINNED_SECTION
/* Pin the page frames correspondng to the pinned symbols */
mark_linker_section_pinned(lnkr_pinned_start, lnkr_pinned_end, true);
#endif /* CONFIG_LINKER_USE_PINNED_SECTION */
/* Any remaining pages that aren't mapped, reserved, or pinned get
* added to the free pages list
*/
K_MEM_PAGE_FRAME_FOREACH(phys, pf) {
if (k_mem_page_frame_is_available(pf)) {
free_page_frame_list_put(pf);
}
}
LOG_DBG("free page frames: %zu", z_free_page_count);
#ifdef CONFIG_DEMAND_PAGING
#ifdef CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM
z_paging_histogram_init();
#endif /* CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM */
k_mem_paging_backing_store_init();
k_mem_paging_eviction_init();
if (IS_ENABLED(CONFIG_EVICTION_TRACKING)) {
/* start tracking evictable page installed above if any */
K_MEM_PAGE_FRAME_FOREACH(phys, pf) {
if (k_mem_page_frame_is_evictable(pf)) {
k_mem_paging_eviction_add(pf);
}
}
}
#endif /* CONFIG_DEMAND_PAGING */
#ifdef CONFIG_LINKER_USE_ONDEMAND_SECTION
z_paging_ondemand_section_map();
#endif
#if __ASSERT_ON
page_frames_initialized = true;
#endif
k_spin_unlock(&z_mm_lock, key);
#ifndef CONFIG_LINKER_GENERIC_SECTIONS_PRESENT_AT_BOOT
/* If BSS section is not present in memory at boot,
* it would not have been cleared. This needs to be
* done now since paging mechanism has been initialized
* and the BSS pages can be brought into physical
* memory to be cleared.
*/
z_bss_zero();
#endif /* CONFIG_LINKER_GENERIC_SECTIONS_PRESENT_AT_BOOT */
}
void z_mem_manage_boot_finish(void)
{
#ifdef CONFIG_LINKER_USE_BOOT_SECTION
/* At the end of boot process, unpin the boot sections
* as they don't need to be in memory all the time anymore.
*/
mark_linker_section_pinned(lnkr_boot_start, lnkr_boot_end, false);
#endif /* CONFIG_LINKER_USE_BOOT_SECTION */
}
#ifdef CONFIG_DEMAND_PAGING
#ifdef CONFIG_DEMAND_PAGING_STATS
struct k_mem_paging_stats_t paging_stats;
extern struct k_mem_paging_histogram_t z_paging_histogram_eviction;
extern struct k_mem_paging_histogram_t z_paging_histogram_backing_store_page_in;
extern struct k_mem_paging_histogram_t z_paging_histogram_backing_store_page_out;
#endif /* CONFIG_DEMAND_PAGING_STATS */
static inline void do_backing_store_page_in(uintptr_t location)
{
#ifdef CONFIG_DEMAND_MAPPING
/* Check for special cases */
switch (location) {
case ARCH_UNPAGED_ANON_ZERO:
memset(K_MEM_SCRATCH_PAGE, 0, CONFIG_MMU_PAGE_SIZE);
__fallthrough;
case ARCH_UNPAGED_ANON_UNINIT:
/* nothing else to do */
return;
default:
break;
}
#endif /* CONFIG_DEMAND_MAPPING */
#ifdef CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM
uint32_t time_diff;
#ifdef CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS
timing_t time_start, time_end;
time_start = timing_counter_get();
#else
uint32_t time_start;
time_start = k_cycle_get_32();
#endif /* CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS */
#endif /* CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM */
k_mem_paging_backing_store_page_in(location);
#ifdef CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM
#ifdef CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS
time_end = timing_counter_get();
time_diff = (uint32_t)timing_cycles_get(&time_start, &time_end);
#else
time_diff = k_cycle_get_32() - time_start;
#endif /* CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS */
z_paging_histogram_inc(&z_paging_histogram_backing_store_page_in,
time_diff);
#endif /* CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM */
}
static inline void do_backing_store_page_out(uintptr_t location)
{
#ifdef CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM
uint32_t time_diff;
#ifdef CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS
timing_t time_start, time_end;
time_start = timing_counter_get();
#else
uint32_t time_start;
time_start = k_cycle_get_32();
#endif /* CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS */
#endif /* CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM */
k_mem_paging_backing_store_page_out(location);
#ifdef CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM
#ifdef CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS
time_end = timing_counter_get();
time_diff = (uint32_t)timing_cycles_get(&time_start, &time_end);
#else
time_diff = k_cycle_get_32() - time_start;
#endif /* CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS */
z_paging_histogram_inc(&z_paging_histogram_backing_store_page_out,
time_diff);
#endif /* CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM */
}
#if defined(CONFIG_SMP) && defined(CONFIG_DEMAND_PAGING_ALLOW_IRQ)
/*
* SMP support is very simple. Some resources such as the scratch page could
* be made per CPU, backing store driver execution be confined to the faulting
* CPU, statistics be made to cope with access concurrency, etc. But in the
* end we're dealing with memory transfer to/from some external storage which
* is inherently slow and whose access is most likely serialized anyway.
* So let's simply enforce global demand paging serialization across all CPUs
* with a mutex as there is no real gain from added parallelism here.
*/
static K_MUTEX_DEFINE(z_mm_paging_lock);
#endif
static void virt_region_foreach(void *addr, size_t size,
void (*func)(void *))
{
k_mem_assert_virtual_region(addr, size);
for (size_t offset = 0; offset < size; offset += CONFIG_MMU_PAGE_SIZE) {
func((uint8_t *)addr + offset);
}
}
/*
* Perform some preparatory steps before paging out. The provided page frame
* must be evicted to the backing store immediately after this is called
* with a call to k_mem_paging_backing_store_page_out() if it contains
* a data page.
*
* - Map page frame to scratch area if requested. This always is true if we're
* doing a page fault, but is only set on manual evictions if the page is
* dirty.
* - If mapped:
* - obtain backing store location and populate location parameter
* - Update page tables with location
* - Mark page frame as busy
*
* Returns -ENOMEM if the backing store is full
*/
static int page_frame_prepare_locked(struct k_mem_page_frame *pf, bool *dirty_ptr,
bool page_fault, uintptr_t *location_ptr)
{
uintptr_t phys;
int ret;
bool dirty = *dirty_ptr;
phys = k_mem_page_frame_to_phys(pf);
__ASSERT(!k_mem_page_frame_is_pinned(pf), "page frame 0x%lx is pinned",
phys);
/* If the backing store doesn't have a copy of the page, even if it
* wasn't modified, treat as dirty. This can happen for a few
* reasons:
* 1) Page has never been swapped out before, and the backing store
* wasn't pre-populated with this data page.
* 2) Page was swapped out before, but the page contents were not
* preserved after swapping back in.
* 3) Page contents were preserved when swapped back in, but were later
* evicted from the backing store to make room for other evicted
* pages.
*/
if (k_mem_page_frame_is_mapped(pf)) {
dirty = dirty || !k_mem_page_frame_is_backed(pf);
}
if (dirty || page_fault) {
arch_mem_scratch(phys);
}
if (k_mem_page_frame_is_mapped(pf)) {
ret = k_mem_paging_backing_store_location_get(pf, location_ptr,
page_fault);
if (ret != 0) {
LOG_ERR("out of backing store memory");
return -ENOMEM;
}
arch_mem_page_out(k_mem_page_frame_to_virt(pf), *location_ptr);
if (IS_ENABLED(CONFIG_EVICTION_TRACKING)) {
k_mem_paging_eviction_remove(pf);
}
} else {
/* Shouldn't happen unless this function is mis-used */
__ASSERT(!dirty, "un-mapped page determined to be dirty");
}
#ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ
/* Mark as busy so that k_mem_page_frame_is_evictable() returns false */
__ASSERT(!k_mem_page_frame_is_busy(pf), "page frame 0x%lx is already busy",
phys);
k_mem_page_frame_set(pf, K_MEM_PAGE_FRAME_BUSY);
#endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */
/* Update dirty parameter, since we set to true if it wasn't backed
* even if otherwise clean
*/
*dirty_ptr = dirty;
return 0;
}
static int do_mem_evict(void *addr)
{
bool dirty;
struct k_mem_page_frame *pf;
uintptr_t location;
k_spinlock_key_t key;
uintptr_t flags, phys;
int ret;
#if CONFIG_DEMAND_PAGING_ALLOW_IRQ
__ASSERT(!k_is_in_isr(),
"%s is unavailable in ISRs with CONFIG_DEMAND_PAGING_ALLOW_IRQ",
__func__);
#ifdef CONFIG_SMP
k_mutex_lock(&z_mm_paging_lock, K_FOREVER);
#else
k_sched_lock();
#endif
#endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */
key = k_spin_lock(&z_mm_lock);
flags = arch_page_info_get(addr, &phys, false);
__ASSERT((flags & ARCH_DATA_PAGE_NOT_MAPPED) == 0,
"address %p isn't mapped", addr);
if ((flags & ARCH_DATA_PAGE_LOADED) == 0) {
/* Un-mapped or already evicted. Nothing to do */
ret = 0;
goto out;
}
dirty = (flags & ARCH_DATA_PAGE_DIRTY) != 0;
pf = k_mem_phys_to_page_frame(phys);
__ASSERT(k_mem_page_frame_to_virt(pf) == addr, "page frame address mismatch");
ret = page_frame_prepare_locked(pf, &dirty, false, &location);
if (ret != 0) {
goto out;
}
__ASSERT(ret == 0, "failed to prepare page frame");
#ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ
k_spin_unlock(&z_mm_lock, key);
#endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */
if (dirty) {
do_backing_store_page_out(location);
}
#ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ
key = k_spin_lock(&z_mm_lock);
#endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */
page_frame_free_locked(pf);
out:
k_spin_unlock(&z_mm_lock, key);
#ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ
#ifdef CONFIG_SMP
k_mutex_unlock(&z_mm_paging_lock);
#else
k_sched_unlock();
#endif
#endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */
return ret;
}
int k_mem_page_out(void *addr, size_t size)
{
__ASSERT(page_frames_initialized, "%s called on %p too early", __func__,
addr);
k_mem_assert_virtual_region(addr, size);
for (size_t offset = 0; offset < size; offset += CONFIG_MMU_PAGE_SIZE) {
void *pos = (uint8_t *)addr + offset;
int ret;
ret = do_mem_evict(pos);
if (ret != 0) {
return ret;
}
}
return 0;
}
int k_mem_page_frame_evict(uintptr_t phys)
{
k_spinlock_key_t key;
struct k_mem_page_frame *pf;
bool dirty;
uintptr_t flags;
uintptr_t location;
int ret;
__ASSERT(page_frames_initialized, "%s called on 0x%lx too early",
__func__, phys);
/* Implementation is similar to do_page_fault() except there is no
* data page to page-in, see comments in that function.
*/
#ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ
__ASSERT(!k_is_in_isr(),
"%s is unavailable in ISRs with CONFIG_DEMAND_PAGING_ALLOW_IRQ",
__func__);
#ifdef CONFIG_SMP
k_mutex_lock(&z_mm_paging_lock, K_FOREVER);
#else
k_sched_lock();
#endif
#endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */
key = k_spin_lock(&z_mm_lock);
pf = k_mem_phys_to_page_frame(phys);
if (!k_mem_page_frame_is_mapped(pf)) {
/* Nothing to do, free page */
ret = 0;
goto out;
}
flags = arch_page_info_get(k_mem_page_frame_to_virt(pf), NULL, false);
/* Shouldn't ever happen */
__ASSERT((flags & ARCH_DATA_PAGE_LOADED) != 0, "data page not loaded");
dirty = (flags & ARCH_DATA_PAGE_DIRTY) != 0;
ret = page_frame_prepare_locked(pf, &dirty, false, &location);
if (ret != 0) {
goto out;
}
#ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ
k_spin_unlock(&z_mm_lock, key);
#endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */
if (dirty) {
do_backing_store_page_out(location);
}
#ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ
k_spin_unlock(&z_mm_lock, key);
#endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */
page_frame_free_locked(pf);
out:
k_spin_unlock(&z_mm_lock, key);
#ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ
#ifdef CONFIG_SMP
k_mutex_unlock(&z_mm_paging_lock);
#else
k_sched_unlock();
#endif
#endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */
return ret;
}
static inline void paging_stats_faults_inc(struct k_thread *faulting_thread,
int key)
{
#ifdef CONFIG_DEMAND_PAGING_STATS
bool is_irq_unlocked = arch_irq_unlocked(key);
paging_stats.pagefaults.cnt++;
if (is_irq_unlocked) {
paging_stats.pagefaults.irq_unlocked++;
} else {
paging_stats.pagefaults.irq_locked++;
}
#ifdef CONFIG_DEMAND_PAGING_THREAD_STATS
faulting_thread->paging_stats.pagefaults.cnt++;
if (is_irq_unlocked) {
faulting_thread->paging_stats.pagefaults.irq_unlocked++;
} else {
faulting_thread->paging_stats.pagefaults.irq_locked++;
}
#else
ARG_UNUSED(faulting_thread);
#endif /* CONFIG_DEMAND_PAGING_THREAD_STATS */
#ifndef CONFIG_DEMAND_PAGING_ALLOW_IRQ
if (k_is_in_isr()) {
paging_stats.pagefaults.in_isr++;
#ifdef CONFIG_DEMAND_PAGING_THREAD_STATS
faulting_thread->paging_stats.pagefaults.in_isr++;
#endif /* CONFIG_DEMAND_PAGING_THREAD_STATS */
}
#endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */
#endif /* CONFIG_DEMAND_PAGING_STATS */
}
static inline void paging_stats_eviction_inc(struct k_thread *faulting_thread,
bool dirty)
{
#ifdef CONFIG_DEMAND_PAGING_STATS
if (dirty) {
paging_stats.eviction.dirty++;
} else {
paging_stats.eviction.clean++;
}
#ifdef CONFIG_DEMAND_PAGING_THREAD_STATS
if (dirty) {
faulting_thread->paging_stats.eviction.dirty++;
} else {
faulting_thread->paging_stats.eviction.clean++;
}
#else
ARG_UNUSED(faulting_thread);
#endif /* CONFIG_DEMAND_PAGING_THREAD_STATS */
#endif /* CONFIG_DEMAND_PAGING_STATS */
}
static inline struct k_mem_page_frame *do_eviction_select(bool *dirty)
{
struct k_mem_page_frame *pf;
#ifdef CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM
uint32_t time_diff;
#ifdef CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS
timing_t time_start, time_end;
time_start = timing_counter_get();
#else
uint32_t time_start;
time_start = k_cycle_get_32();
#endif /* CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS */
#endif /* CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM */
pf = k_mem_paging_eviction_select(dirty);
#ifdef CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM
#ifdef CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS
time_end = timing_counter_get();
time_diff = (uint32_t)timing_cycles_get(&time_start, &time_end);
#else
time_diff = k_cycle_get_32() - time_start;
#endif /* CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS */
z_paging_histogram_inc(&z_paging_histogram_eviction, time_diff);
#endif /* CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM */
return pf;
}
static bool do_page_fault(void *addr, bool pin)
{
struct k_mem_page_frame *pf;
k_spinlock_key_t key;
uintptr_t page_in_location, page_out_location;
enum arch_page_location status;
bool result;
bool dirty = false;
struct k_thread *faulting_thread;
int ret;
__ASSERT(page_frames_initialized, "page fault at %p happened too early",
addr);
LOG_DBG("page fault at %p", addr);
/*
* TODO: Add performance accounting:
* - k_mem_paging_eviction_select() metrics
* * periodic timer execution time histogram (if implemented)
*/
#ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ
/*
* We do re-enable interrupts during the page-in/page-out operation
* if and only if interrupts were enabled when the exception was
* taken; in this configuration page faults in an ISR are a bug; all
* their code/data must be pinned.
*
* If interrupts were disabled when the exception was taken, the
* arch code is responsible for keeping them that way when entering
* this function.
*
* If this is not enabled, then interrupts are always locked for the
* entire operation. This is far worse for system interrupt latency
* but requires less pinned pages and ISRs may also take page faults.
*
* On UP we lock the scheduler so that other threads are never
* scheduled during the page-in/out operation. Support for
* allowing k_mem_paging_backing_store_page_out() and
* k_mem_paging_backing_store_page_in() to also sleep and allow
* other threads to run (such as in the case where the transfer is
* async DMA) is not supported on UP. Even if limited to thread
* context, arbitrary memory access triggering exceptions that put
* a thread to sleep on a contended page fault operation will break
* scheduling assumptions of cooperative threads or threads that
* implement critical sections with spinlocks or disabling IRQs.
*
* On SMP, though, exclusivity cannot be assumed solely from being
* a cooperative thread. Another thread with any prio may be running
* on another CPU so exclusion must already be enforced by other
* means. Therefore trying to prevent scheduling on SMP is pointless,
* and k_sched_lock() is equivalent to a no-op on SMP anyway.
* As a result, sleeping/rescheduling in the SMP case is fine.
*/
__ASSERT(!k_is_in_isr(), "ISR page faults are forbidden");
#ifdef CONFIG_SMP
k_mutex_lock(&z_mm_paging_lock, K_FOREVER);
#else
k_sched_lock();
#endif
#endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */
key = k_spin_lock(&z_mm_lock);
faulting_thread = _current_cpu->current;
status = arch_page_location_get(addr, &page_in_location);
if (status == ARCH_PAGE_LOCATION_BAD) {
/* Return false to treat as a fatal error */
result = false;
goto out;
}
result = true;
if (status == ARCH_PAGE_LOCATION_PAGED_IN) {
if (pin) {
/* It's a physical memory address */
uintptr_t phys = page_in_location;
pf = k_mem_phys_to_page_frame(phys);
if (!k_mem_page_frame_is_pinned(pf)) {
if (IS_ENABLED(CONFIG_EVICTION_TRACKING)) {
k_mem_paging_eviction_remove(pf);
}
k_mem_page_frame_set(pf, K_MEM_PAGE_FRAME_PINNED);
}
}
/* This if-block is to pin the page if it is
* already present in physical memory. There is
* no need to go through the following code to
* pull in the data pages. So skip to the end.
*/
goto out;
}
__ASSERT(status == ARCH_PAGE_LOCATION_PAGED_OUT,
"unexpected status value %d", status);
paging_stats_faults_inc(faulting_thread, key.key);
pf = free_page_frame_list_get();
if (pf == NULL) {
/* Need to evict a page frame */
pf = do_eviction_select(&dirty);
__ASSERT(pf != NULL, "failed to get a page frame");
LOG_DBG("evicting %p at 0x%lx",
k_mem_page_frame_to_virt(pf),
k_mem_page_frame_to_phys(pf));
paging_stats_eviction_inc(faulting_thread, dirty);
}
ret = page_frame_prepare_locked(pf, &dirty, true, &page_out_location);
__ASSERT(ret == 0, "failed to prepare page frame");
#ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ
k_spin_unlock(&z_mm_lock, key);
/* Interrupts are now unlocked if they were not locked when we entered
* this function, and we may service ISRs. The scheduler is still
* locked.
*/
#endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */
if (dirty) {
do_backing_store_page_out(page_out_location);
}
do_backing_store_page_in(page_in_location);
#ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ
key = k_spin_lock(&z_mm_lock);
k_mem_page_frame_clear(pf, K_MEM_PAGE_FRAME_BUSY);
#endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */
k_mem_page_frame_clear(pf, K_MEM_PAGE_FRAME_MAPPED);
frame_mapped_set(pf, addr);
if (pin) {
k_mem_page_frame_set(pf, K_MEM_PAGE_FRAME_PINNED);
}
arch_mem_page_in(addr, k_mem_page_frame_to_phys(pf));
k_mem_paging_backing_store_page_finalize(pf, page_in_location);
if (IS_ENABLED(CONFIG_EVICTION_TRACKING) && (!pin)) {
k_mem_paging_eviction_add(pf);
}
out:
k_spin_unlock(&z_mm_lock, key);
#ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ
#ifdef CONFIG_SMP
k_mutex_unlock(&z_mm_paging_lock);
#else
k_sched_unlock();
#endif
#endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */
return result;
}
static void do_page_in(void *addr)
{
bool ret;
ret = do_page_fault(addr, false);
__ASSERT(ret, "unmapped memory address %p", addr);
(void)ret;
}
void k_mem_page_in(void *addr, size_t size)
{
__ASSERT(!IS_ENABLED(CONFIG_DEMAND_PAGING_ALLOW_IRQ) || !k_is_in_isr(),
"%s may not be called in ISRs if CONFIG_DEMAND_PAGING_ALLOW_IRQ is enabled",
__func__);
virt_region_foreach(addr, size, do_page_in);
}
static void do_mem_pin(void *addr)
{
bool ret;
ret = do_page_fault(addr, true);
__ASSERT(ret, "unmapped memory address %p", addr);
(void)ret;
}
void k_mem_pin(void *addr, size_t size)
{
__ASSERT(!IS_ENABLED(CONFIG_DEMAND_PAGING_ALLOW_IRQ) || !k_is_in_isr(),
"%s may not be called in ISRs if CONFIG_DEMAND_PAGING_ALLOW_IRQ is enabled",
__func__);
virt_region_foreach(addr, size, do_mem_pin);
}
bool k_mem_page_fault(void *addr)
{
return do_page_fault(addr, false);
}
static void do_mem_unpin(void *addr)
{
struct k_mem_page_frame *pf;
k_spinlock_key_t key;
uintptr_t flags, phys;
key = k_spin_lock(&z_mm_lock);
flags = arch_page_info_get(addr, &phys, false);
__ASSERT((flags & ARCH_DATA_PAGE_NOT_MAPPED) == 0,
"invalid data page at %p", addr);
if ((flags & ARCH_DATA_PAGE_LOADED) != 0) {
pf = k_mem_phys_to_page_frame(phys);
if (k_mem_page_frame_is_pinned(pf)) {
k_mem_page_frame_clear(pf, K_MEM_PAGE_FRAME_PINNED);
if (IS_ENABLED(CONFIG_EVICTION_TRACKING)) {
k_mem_paging_eviction_add(pf);
}
}
}
k_spin_unlock(&z_mm_lock, key);
}
void k_mem_unpin(void *addr, size_t size)
{
__ASSERT(page_frames_initialized, "%s called on %p too early", __func__,
addr);
virt_region_foreach(addr, size, do_mem_unpin);
}
#endif /* CONFIG_DEMAND_PAGING */