zephyr/drivers/adc/adc_sam.c
Pieter De Gendt 8442b6a83f drivers: adc: Place API into iterable section
Move all adc driver api structs into an iterable section, this allows us
to verify if an api pointer is located in compatible linker section.

Signed-off-by: Pieter De Gendt <pieter.degendt@basalte.be>
2024-11-29 14:50:40 +01:00

419 lines
11 KiB
C

/*
* Copyright (c) 2022, Basalte bv
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT atmel_sam_adc
#include <soc.h>
#include <zephyr/drivers/adc.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/clock_control/atmel_sam_pmc.h>
#define ADC_CONTEXT_USES_KERNEL_TIMER
#include "adc_context.h"
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
LOG_MODULE_REGISTER(adc_sam, CONFIG_ADC_LOG_LEVEL);
#define SAM_ADC_NUM_CHANNELS 16
#define SAM_ADC_TEMP_CHANNEL 15
struct adc_sam_config {
Adc *regs;
const struct atmel_sam_pmc_config clock_cfg;
uint8_t prescaler;
uint8_t startup_time;
uint8_t settling_time;
uint8_t tracking_time;
const struct pinctrl_dev_config *pcfg;
void (*config_func)(const struct device *dev);
};
struct adc_sam_data {
struct adc_context ctx;
const struct device *dev;
/* Pointer to the buffer in the sequence. */
uint16_t *buffer;
/* Pointer to the beginning of a sample. Consider the number of
* channels in the sequence: this buffer changes by that amount
* so all the channels would get repeated.
*/
uint16_t *repeat_buffer;
/* Number of active channels to fill buffer */
uint8_t num_active_channels;
};
static uint8_t count_bits(uint32_t val)
{
uint8_t res = 0;
while (val) {
res += val & 1U;
val >>= 1;
}
return res;
}
static int adc_sam_channel_setup(const struct device *dev,
const struct adc_channel_cfg *channel_cfg)
{
const struct adc_sam_config *const cfg = dev->config;
Adc *const adc = cfg->regs;
uint8_t channel_id = channel_cfg->channel_id;
if (channel_cfg->differential) {
if (channel_id != (channel_cfg->input_positive / 2U)
|| channel_id != (channel_cfg->input_negative / 2U)) {
LOG_ERR("Invalid ADC differential input for channel %u", channel_id);
return -EINVAL;
}
} else {
if (channel_id != channel_cfg->input_positive) {
LOG_ERR("Invalid ADC single-ended input for channel %u", channel_id);
return -EINVAL;
}
}
if (channel_cfg->acquisition_time != ADC_ACQ_TIME_DEFAULT) {
LOG_ERR("Invalid ADC channel acquisition time");
return -EINVAL;
}
if (channel_cfg->reference != ADC_REF_EXTERNAL0) {
LOG_ERR("Invalid ADC channel reference (%d)", channel_cfg->reference);
return -EINVAL;
}
/* Enable internal temperature sensor (channel 15 / single-ended) */
if (channel_cfg->channel_id == SAM_ADC_TEMP_CHANNEL) {
adc->ADC_ACR |= ADC_ACR_TSON;
}
/* Set channel mode, always on both inputs */
if (channel_cfg->differential) {
adc->ADC_COR |= (ADC_COR_DIFF0 | ADC_COR_DIFF1) << (channel_id * 2U);
} else {
adc->ADC_COR &= ~((ADC_COR_DIFF0 | ADC_COR_DIFF1) << (channel_id * 2U));
}
/* Reset current gain */
adc->ADC_CGR &= ~(ADC_CGR_GAIN0_Msk << (channel_id * 2U));
switch (channel_cfg->gain) {
case ADC_GAIN_1_2:
if (!channel_cfg->differential) {
LOG_ERR("ADC 1/2x gain only allowed for differential channel");
return -EINVAL;
}
/* NOP */
break;
case ADC_GAIN_1:
adc->ADC_CGR |= ADC_CGR_GAIN0(1) << (channel_id * 2U);
break;
case ADC_GAIN_2:
adc->ADC_CGR |= ADC_CGR_GAIN0(2) << (channel_id * 2U);
break;
case ADC_GAIN_4:
if (channel_cfg->differential) {
LOG_ERR("ADC 4x gain only allowed for single-ended channel");
return -EINVAL;
}
adc->ADC_CGR |= ADC_CGR_GAIN0(3) << (channel_id * 2U);
break;
default:
LOG_ERR("Invalid ADC channel gain (%d)", channel_cfg->gain);
return -EINVAL;
}
return 0;
}
static void adc_sam_start_conversion(const struct device *dev)
{
const struct adc_sam_config *const cfg = dev->config;
Adc *const adc = cfg->regs;
adc->ADC_CR = ADC_CR_START;
}
/**
* This is only called once at the beginning of all the conversions,
* all channels as a group.
*/
static void adc_context_start_sampling(struct adc_context *ctx)
{
struct adc_sam_data *data = CONTAINER_OF(ctx, struct adc_sam_data, ctx);
const struct adc_sam_config *const cfg = data->dev->config;
Adc *const adc = cfg->regs;
data->num_active_channels = count_bits(ctx->sequence.channels);
/* Disable all */
adc->ADC_CHDR = 0xffff;
/* Enable selected */
adc->ADC_CHER = ctx->sequence.channels;
LOG_DBG("Starting conversion for %u channels", data->num_active_channels);
adc_sam_start_conversion(data->dev);
}
static void adc_context_update_buffer_pointer(struct adc_context *ctx, bool repeat)
{
struct adc_sam_data *data = CONTAINER_OF(ctx, struct adc_sam_data, ctx);
if (repeat) {
data->buffer = data->repeat_buffer;
}
}
static int check_buffer_size(const struct adc_sequence *sequence,
uint8_t active_channels)
{
size_t needed_buffer_size = active_channels * sizeof(uint16_t);
if (sequence->options) {
needed_buffer_size *= (1 + sequence->options->extra_samplings);
}
if (sequence->buffer_size < needed_buffer_size) {
LOG_ERR("Provided buffer is too small (%u/%u)",
sequence->buffer_size, needed_buffer_size);
return -ENOMEM;
}
return 0;
}
static int start_read(const struct device *dev,
const struct adc_sequence *sequence)
{
struct adc_sam_data *data = dev->data;
uint32_t channels = sequence->channels;
int error;
/* Signal an error if the channel selection is invalid (no channels or
* a non-existing one is selected).
*/
if (channels == 0U ||
(channels & (~0UL << SAM_ADC_NUM_CHANNELS))) {
LOG_ERR("Invalid selection of channels");
return -EINVAL;
}
if (sequence->oversampling != 0U) {
LOG_ERR("Oversampling is not supported");
return -EINVAL;
}
if (sequence->resolution != 12U) {
LOG_ERR("ADC resolution %d is not valid", sequence->resolution);
return -EINVAL;
}
data->num_active_channels = count_bits(channels);
error = check_buffer_size(sequence, data->num_active_channels);
if (error) {
return error;
}
data->buffer = sequence->buffer;
data->repeat_buffer = sequence->buffer;
/* At this point we allow the scheduler to do other things while
* we wait for the conversions to complete. This is provided by the
* adc_context functions. However, the caller of this function is
* blocked until the results are in.
*/
adc_context_start_read(&data->ctx, sequence);
return adc_context_wait_for_completion(&data->ctx);
}
static int adc_sam_read(const struct device *dev,
const struct adc_sequence *sequence)
{
struct adc_sam_data *data = dev->data;
int error;
adc_context_lock(&data->ctx, false, NULL);
error = start_read(dev, sequence);
adc_context_release(&data->ctx, error);
return error;
}
static void adc_sam_isr(const struct device *dev)
{
const struct adc_sam_config *const cfg = dev->config;
struct adc_sam_data *data = dev->data;
Adc *const adc = cfg->regs;
uint16_t result;
if (adc->ADC_ISR & ADC_ISR_DRDY) {
result = adc->ADC_LCDR & ADC_LCDR_LDATA_Msk;
*data->buffer++ = result;
data->num_active_channels--;
if (data->num_active_channels == 0) {
/* Called once all conversions have completed.*/
adc_context_on_sampling_done(&data->ctx, dev);
} else {
adc_sam_start_conversion(dev);
}
}
}
static int adc_sam_init(const struct device *dev)
{
const struct adc_sam_config *const cfg = dev->config;
struct adc_sam_data *data = dev->data;
Adc *const adc = cfg->regs;
int ret;
uint32_t frequency, conv_periods;
/* Get peripheral clock frequency */
ret = clock_control_get_rate(SAM_DT_PMC_CONTROLLER,
(clock_control_subsys_t)&cfg->clock_cfg,
&frequency);
if (ret < 0) {
LOG_ERR("Failed to get ADC peripheral clock rate (%d)", ret);
return -ENODEV;
}
/* Calculate ADC clock frequency */
frequency = frequency / 2U / (cfg->prescaler + 1U);
if (frequency < 1000000U || frequency > 22000000U) {
LOG_ERR("Invalid ADC clock frequency %d (1MHz < freq < 22Mhz)", frequency);
return -EINVAL;
}
/* The number of ADC pulses for conversion */
conv_periods = MAX(20U, cfg->tracking_time + 6U);
/* Calculate the sampling frequency */
frequency /= conv_periods;
/* Reset ADC controller */
adc->ADC_CR = ADC_CR_SWRST;
/* Reset Mode */
adc->ADC_MR = 0U;
/* Reset PDC transfer */
adc->ADC_PTCR = ADC_PTCR_RXTDIS | ADC_PTCR_TXTDIS;
adc->ADC_RCR = 0U;
adc->ADC_RNCR = 0U;
/* Set prescaler, timings and allow different analog settings for each channel */
adc->ADC_MR = ADC_MR_PRESCAL(cfg->prescaler)
| ADC_MR_STARTUP(cfg->startup_time)
| ADC_MR_SETTLING(cfg->settling_time)
| ADC_MR_TRACKTIM(cfg->tracking_time)
| ADC_MR_TRANSFER(2U) /* Should be 2 to guarantee the optimal hold time. */
| ADC_MR_ANACH_ALLOWED;
/**
* Set bias current control
* IBCTL = 00 is the required value for a sampling frequency below 500 kHz,
* and IBCTL = 01 for a sampling frequency between 500 kHz and 1 MHz.
*/
adc->ADC_ACR = ADC_ACR_IBCTL(frequency < 500000U ? 0U : 1U);
/* Enable ADC clock in PMC */
ret = clock_control_on(SAM_DT_PMC_CONTROLLER,
(clock_control_subsys_t)&cfg->clock_cfg);
if (ret < 0) {
LOG_ERR("Failed to enable ADC clock (%d)", ret);
return -ENODEV;
}
ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
if (ret < 0) {
return ret;
}
cfg->config_func(dev);
/* Enable data ready interrupt */
adc->ADC_IER = ADC_IER_DRDY;
data->dev = dev;
adc_context_unlock_unconditionally(&data->ctx);
return 0;
}
#ifdef CONFIG_ADC_ASYNC
static int adc_sam_read_async(const struct device *dev,
const struct adc_sequence *sequence,
struct k_poll_signal *async)
{
struct adc_sam_data *data = dev->data;
int error;
adc_context_lock(&data->ctx, true, async);
error = start_read(dev, sequence);
adc_context_release(&data->ctx, error);
return error;
}
#endif
static DEVICE_API(adc, adc_sam_api) = {
.channel_setup = adc_sam_channel_setup,
.read = adc_sam_read,
#ifdef CONFIG_ADC_ASYNC
.read_async = adc_sam_read_async,
#endif
};
#define ADC_SAM_DEVICE(n) \
PINCTRL_DT_INST_DEFINE(n); \
static void adc_sam_irq_config_##n(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(n), \
DT_INST_IRQ(n, priority), \
adc_sam_isr, \
DEVICE_DT_INST_GET(n), 0); \
irq_enable(DT_INST_IRQN(n)); \
} \
static const struct adc_sam_config adc_sam_config_##n = { \
.regs = (Adc *)DT_INST_REG_ADDR(n), \
.clock_cfg = SAM_DT_INST_CLOCK_PMC_CFG(n), \
.prescaler = DT_INST_PROP(n, prescaler), \
.startup_time = DT_INST_ENUM_IDX(n, startup_time), \
.settling_time = DT_INST_ENUM_IDX(n, settling_time), \
.tracking_time = DT_INST_ENUM_IDX(n, tracking_time), \
.config_func = &adc_sam_irq_config_##n, \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
}; \
static struct adc_sam_data adc_sam_data_##n = { \
ADC_CONTEXT_INIT_TIMER(adc_sam_data_##n, ctx), \
ADC_CONTEXT_INIT_LOCK(adc_sam_data_##n, ctx), \
ADC_CONTEXT_INIT_SYNC(adc_sam_data_##n, ctx), \
.dev = DEVICE_DT_INST_GET(n), \
}; \
DEVICE_DT_INST_DEFINE(n, adc_sam_init, NULL, \
&adc_sam_data_##n, \
&adc_sam_config_##n, POST_KERNEL, \
CONFIG_ADC_INIT_PRIORITY, \
&adc_sam_api);
DT_INST_FOREACH_STATUS_OKAY(ADC_SAM_DEVICE)