zephyr/drivers/timer/riscv_machine_timer.c
Nicolas Pitre 16770c743e riscv: timer: avoid possible tick announcing overflow on boot
If for any reason the timer counter didn't hold a value close enough to
zero on boot then the cycle delta could overflow and the reported ticks
won't be right. Those who really want the hardware uptime where this
makes sense (as opposed to Zephyr's uptime) can still rely on
sys_clock_cycle_get_64().

Signed-off-by: Nicolas Pitre <npitre@baylibre.com>
2023-03-30 11:22:31 -04:00

227 lines
5.8 KiB
C

/*
* Copyright (c) 2018-2023 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <limits.h>
#include <zephyr/device.h>
#include <zephyr/devicetree.h>
#include <zephyr/drivers/timer/system_timer.h>
#include <zephyr/sys_clock.h>
#include <zephyr/spinlock.h>
#include <zephyr/irq.h>
/* andestech,machine-timer */
#if DT_HAS_COMPAT_STATUS_OKAY(andestech_machine_timer)
#define DT_DRV_COMPAT andestech_machine_timer
#define MTIME_REG DT_INST_REG_ADDR(0)
#define MTIMECMP_REG (DT_INST_REG_ADDR(0) + 8)
#define TIMER_IRQN DT_INST_IRQN(0)
/* neorv32-machine-timer */
#elif DT_HAS_COMPAT_STATUS_OKAY(neorv32_machine_timer)
#define DT_DRV_COMPAT neorv32_machine_timer
#define MTIME_REG DT_INST_REG_ADDR(0)
#define MTIMECMP_REG (DT_INST_REG_ADDR(0) + 8)
#define TIMER_IRQN DT_INST_IRQN(0)
/* nuclei,systimer */
#elif DT_HAS_COMPAT_STATUS_OKAY(nuclei_systimer)
#define DT_DRV_COMPAT nuclei_systimer
#define MTIME_REG DT_INST_REG_ADDR(0)
#define MTIMECMP_REG (DT_INST_REG_ADDR(0) + 8)
#define TIMER_IRQN DT_INST_IRQ_BY_IDX(0, 1, irq)
/* sifive,clint0 */
#elif DT_HAS_COMPAT_STATUS_OKAY(sifive_clint0)
#define DT_DRV_COMPAT sifive_clint0
#define MTIME_REG (DT_INST_REG_ADDR(0) + 0xbff8U)
#define MTIMECMP_REG (DT_INST_REG_ADDR(0) + 0x4000U)
#define TIMER_IRQN DT_INST_IRQ_BY_IDX(0, 1, irq)
/* telink,machine-timer */
#elif DT_HAS_COMPAT_STATUS_OKAY(telink_machine_timer)
#define DT_DRV_COMPAT telink_machine_timer
#define MTIME_REG DT_INST_REG_ADDR(0)
#define MTIMECMP_REG (DT_INST_REG_ADDR(0) + 8)
#define TIMER_IRQN DT_INST_IRQN(0)
/* lowrisc,machine-timer */
#elif DT_HAS_COMPAT_STATUS_OKAY(lowrisc_machine_timer)
#define DT_DRV_COMPAT lowrisc_machine_timer
#define MTIME_REG (DT_INST_REG_ADDR(0) + 0x110)
#define MTIMECMP_REG (DT_INST_REG_ADDR(0) + 0x118)
#define TIMER_IRQN DT_INST_IRQN(0)
/* niosv-machine-timer */
#elif DT_HAS_COMPAT_STATUS_OKAY(niosv_machine_timer)
#define DT_DRV_COMPAT niosv_machine_timer
#define MTIMECMP_REG DT_INST_REG_ADDR(0)
#define MTIME_REG (DT_INST_REG_ADDR(0) + 8)
#define TIMER_IRQN DT_INST_IRQN(0)
#endif
#define CYC_PER_TICK (uint32_t)(sys_clock_hw_cycles_per_sec() \
/ CONFIG_SYS_CLOCK_TICKS_PER_SEC)
/* the unsigned long cast limits divisions to native CPU register width */
#define cycle_diff_t unsigned long
static struct k_spinlock lock;
static uint64_t last_count;
static uint64_t last_ticks;
static uint32_t last_elapsed;
#if defined(CONFIG_TEST)
const int32_t z_sys_timer_irq_for_test = TIMER_IRQN;
#endif
static uintptr_t get_hart_mtimecmp(void)
{
return MTIMECMP_REG + (arch_proc_id() * 8);
}
static void set_mtimecmp(uint64_t time)
{
#ifdef CONFIG_64BIT
*(volatile uint64_t *)get_hart_mtimecmp() = time;
#else
volatile uint32_t *r = (uint32_t *)get_hart_mtimecmp();
/* Per spec, the RISC-V MTIME/MTIMECMP registers are 64 bit,
* but are NOT internally latched for multiword transfers. So
* we have to be careful about sequencing to avoid triggering
* spurious interrupts: always set the high word to a max
* value first.
*/
r[1] = 0xffffffff;
r[0] = (uint32_t)time;
r[1] = (uint32_t)(time >> 32);
#endif
}
static uint64_t mtime(void)
{
#ifdef CONFIG_64BIT
return *(volatile uint64_t *)MTIME_REG;
#else
volatile uint32_t *r = (uint32_t *)MTIME_REG;
uint32_t lo, hi;
/* Likewise, must guard against rollover when reading */
do {
hi = r[1];
lo = r[0];
} while (r[1] != hi);
return (((uint64_t)hi) << 32) | lo;
#endif
}
static void timer_isr(const void *arg)
{
ARG_UNUSED(arg);
k_spinlock_key_t key = k_spin_lock(&lock);
uint64_t now = mtime();
uint64_t dcycles = now - last_count;
uint32_t dticks = (cycle_diff_t)dcycles / CYC_PER_TICK;
last_count += (cycle_diff_t)dticks * CYC_PER_TICK;
last_ticks += dticks;
last_elapsed = 0;
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
uint64_t next = last_count + CYC_PER_TICK;
set_mtimecmp(next);
}
k_spin_unlock(&lock, key);
sys_clock_announce(dticks);
}
void sys_clock_set_timeout(int32_t ticks, bool idle)
{
ARG_UNUSED(idle);
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
return;
}
if (ticks == K_TICKS_FOREVER) {
set_mtimecmp(UINT64_MAX);
return;
}
/*
* Clamp the max period length to a number of cycles that can fit
* in half the range of a cycle_diff_t for native width divisions
* to be usable elsewhere. Also clamp it to half the range of an
* int32_t as this is the type used for elapsed tick announcements.
* The half range gives us extra room to cope with the unavoidable IRQ
* servicing latency. The compiler should optimize away the least
* restrictive of those tests automatically.
*/
ticks = CLAMP(ticks, 0, (cycle_diff_t)-1 / 2 / CYC_PER_TICK);
ticks = CLAMP(ticks, 0, INT32_MAX / 2);
k_spinlock_key_t key = k_spin_lock(&lock);
uint64_t cyc = (last_ticks + last_elapsed + ticks) * CYC_PER_TICK;
set_mtimecmp(cyc);
k_spin_unlock(&lock, key);
}
uint32_t sys_clock_elapsed(void)
{
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
return 0;
}
k_spinlock_key_t key = k_spin_lock(&lock);
uint64_t now = mtime();
uint64_t dcycles = now - last_count;
uint32_t dticks = (cycle_diff_t)dcycles / CYC_PER_TICK;
last_elapsed = dticks;
k_spin_unlock(&lock, key);
return dticks;
}
uint32_t sys_clock_cycle_get_32(void)
{
return ((uint32_t)mtime()) << CONFIG_RISCV_MACHINE_TIMER_SYSTEM_CLOCK_DIVIDER;
}
uint64_t sys_clock_cycle_get_64(void)
{
return mtime() << CONFIG_RISCV_MACHINE_TIMER_SYSTEM_CLOCK_DIVIDER;
}
static int sys_clock_driver_init(const struct device *dev)
{
ARG_UNUSED(dev);
IRQ_CONNECT(TIMER_IRQN, 0, timer_isr, NULL, 0);
last_ticks = mtime() / CYC_PER_TICK;
last_count = last_ticks * CYC_PER_TICK;
set_mtimecmp(last_count + CYC_PER_TICK);
irq_enable(TIMER_IRQN);
return 0;
}
#ifdef CONFIG_SMP
void smp_timer_init(void)
{
set_mtimecmp(last_count + CYC_PER_TICK);
irq_enable(TIMER_IRQN);
}
#endif
SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2,
CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);