zephyr/drivers/timer/stm32_lptim_timer.c
Francois Ramu 27bb4961b3 drivers: stm32 lptim driver with a exact LPTIM timeout value
With this change, the LPTIM counter will be able to set
its timeout to the st,timeout value. So that system can
sleep for that period without interruption.

Signed-off-by: Francois Ramu <francois.ramu@st.com>
2024-11-16 15:05:26 -05:00

650 lines
19 KiB
C

/*
* Copyright (c) 2018 Foundries.io Ltd
* Copyright (c) 2019 STMicroelectronics
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/init.h>
#include <soc.h>
#include <stm32_ll_lptim.h>
#include <stm32_ll_bus.h>
#include <stm32_ll_rcc.h>
#include <stm32_ll_pwr.h>
#include <stm32_ll_system.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
#include <zephyr/drivers/timer/system_timer.h>
#include <zephyr/sys_clock.h>
#include <zephyr/irq.h>
#include <zephyr/drivers/counter.h>
#include <zephyr/pm/policy.h>
#include <zephyr/spinlock.h>
#define DT_DRV_COMPAT st_stm32_lptim
#if DT_NUM_INST_STATUS_OKAY(DT_DRV_COMPAT) > 1
#error Only one LPTIM instance should be enabled
#endif
#define LPTIM (LPTIM_TypeDef *) DT_INST_REG_ADDR(0)
#if DT_INST_NUM_CLOCKS(0) == 1
#warning Kconfig for LPTIM source clock (LSI/LSE) is deprecated, use device tree.
static const struct stm32_pclken lptim_clk[] = {
STM32_CLOCK_INFO(0, DT_DRV_INST(0)),
/* Use Kconfig to configure source clocks fields */
/* Fortunately, values are consistent across enabled series */
#ifdef CONFIG_STM32_LPTIM_CLOCK_LSI
{.bus = STM32_SRC_LSI, .enr = LPTIM1_SEL(1)}
#else
{.bus = STM32_SRC_LSE, .enr = LPTIM1_SEL(3)}
#endif
};
#else
static const struct stm32_pclken lptim_clk[] = STM32_DT_INST_CLOCKS(0);
#endif
static const struct device *const clk_ctrl = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
/*
* Assumptions and limitations:
*
* - system clock based on an LPTIM instance, clocked by LSI or LSE
* - prescaler is set to a 2^value from 1 (division of the LPTIM source clock by 1)
* to 128 (division of the LPTIM source clock by 128)
* - using LPTIM AutoReload capability to trig the IRQ (timeout irq)
* - when timeout irq occurs the counter is already reset
* - the maximum timeout duration is reached with the lptim_time_base value
* - with prescaler of 1, the max timeout (LPTIM_TIMEBASE) is 2 seconds:
* 0xFFFF / (LSE freq (32768Hz) / 1)
* - with prescaler of 128, the max timeout (LPTIM_TIMEBASE) is 256 seconds:
* 0xFFFF / (LSE freq (32768Hz) / 128)
*/
static int32_t lptim_time_base;
static uint32_t lptim_clock_freq = CONFIG_STM32_LPTIM_CLOCK;
/* The prescaler given by the DTS and to apply to the lptim_clock_freq */
static uint32_t lptim_clock_presc = DT_PROP(DT_DRV_INST(0), st_prescaler);
/* Minimum nb of clock cycles to have to set autoreload register correctly */
#define LPTIM_GUARD_VALUE 2
/* A 32bit value cannot exceed 0xFFFFFFFF/LPTIM_TIMEBASE counting cycles.
* This is for example about of 65000 x 2000ms when clocked by LSI
*/
static uint32_t accumulated_lptim_cnt;
/* Next autoreload value to set */
static uint32_t autoreload_next;
/* Indicate if the autoreload register is ready for a write */
static bool autoreload_ready = true;
static struct k_spinlock lock;
#ifdef CONFIG_STM32_LPTIM_STDBY_TIMER
#define CURRENT_CPU \
(COND_CODE_1(CONFIG_SMP, (arch_curr_cpu()->id), (_current_cpu->id)))
#define cycle_t uint32_t
/* This local variable indicates that the timeout was set right before
* entering standby state.
*
* It is used for chips that has to use a separate standby timer in such
* case because the LPTIM is not clocked in some low power mode state.
*/
static bool timeout_stdby;
/* Cycle counter before entering the standby state. */
static cycle_t lptim_cnt_pre_stdby;
/* Standby timer value before entering the standby state. */
static uint32_t stdby_timer_pre_stdby;
/* Standby timer used for timer while entering the standby state */
static const struct device *stdby_timer = DEVICE_DT_GET(DT_CHOSEN(st_lptim_stdby_timer));
#endif /* CONFIG_STM32_LPTIM_STDBY_TIMER */
static inline bool arrm_state_get(void)
{
return (LL_LPTIM_IsActiveFlag_ARRM(LPTIM) && LL_LPTIM_IsEnabledIT_ARRM(LPTIM));
}
static void lptim_irq_handler(const struct device *unused)
{
ARG_UNUSED(unused);
uint32_t autoreload = LL_LPTIM_GetAutoReload(LPTIM);
if ((LL_LPTIM_IsActiveFlag_ARROK(LPTIM) != 0)
&& LL_LPTIM_IsEnabledIT_ARROK(LPTIM) != 0) {
LL_LPTIM_ClearFlag_ARROK(LPTIM);
if ((autoreload_next > 0) && (autoreload_next != autoreload)) {
/* the new autoreload value change, we set it */
autoreload_ready = false;
LL_LPTIM_SetAutoReload(LPTIM, autoreload_next);
} else {
autoreload_ready = true;
}
}
if (arrm_state_get()) {
k_spinlock_key_t key = k_spin_lock(&lock);
/* do not change ARR yet, sys_clock_announce will do */
LL_LPTIM_ClearFLAG_ARRM(LPTIM);
/* increase the total nb of autoreload count
* used in the sys_clock_cycle_get_32() function.
*/
autoreload++;
accumulated_lptim_cnt += autoreload;
k_spin_unlock(&lock, key);
/* announce the elapsed time in ms (count register is 16bit) */
uint32_t dticks = (autoreload
* CONFIG_SYS_CLOCK_TICKS_PER_SEC)
/ lptim_clock_freq;
sys_clock_announce(IS_ENABLED(CONFIG_TICKLESS_KERNEL)
? dticks : (dticks > 0));
}
}
static void lptim_set_autoreload(uint32_t arr)
{
/* Update autoreload register */
autoreload_next = arr;
if (!autoreload_ready) {
return;
}
/* The ARR register ready, we could set it directly */
if ((arr > 0) && (arr != LL_LPTIM_GetAutoReload(LPTIM))) {
/* The new autoreload value change, we set it */
autoreload_ready = false;
LL_LPTIM_ClearFlag_ARROK(LPTIM);
LL_LPTIM_SetAutoReload(LPTIM, arr);
}
}
static inline uint32_t z_clock_lptim_getcounter(void)
{
uint32_t lp_time;
uint32_t lp_time_prev_read;
/* It should be noted that to read reliably the content
* of the LPTIM_CNT register, two successive read accesses
* must be performed and compared
*/
lp_time = LL_LPTIM_GetCounter(LPTIM);
do {
lp_time_prev_read = lp_time;
lp_time = LL_LPTIM_GetCounter(LPTIM);
} while (lp_time != lp_time_prev_read);
return lp_time;
}
void sys_clock_set_timeout(int32_t ticks, bool idle)
{
/* new LPTIM AutoReload value to set (aligned on Kernel ticks) */
uint32_t next_arr = 0;
int err;
ARG_UNUSED(idle);
#ifdef CONFIG_STM32_LPTIM_STDBY_TIMER
const struct pm_state_info *next;
next = pm_policy_next_state(CURRENT_CPU, ticks);
/* Check if STANBY or STOP3 is requested */
timeout_stdby = false;
if ((next != NULL) && idle) {
#ifdef CONFIG_PM_S2RAM
if (next->state == PM_STATE_SUSPEND_TO_RAM) {
timeout_stdby = true;
}
#endif
#ifdef CONFIG_STM32_STOP3_LP_MODE
if ((next->state == PM_STATE_SUSPEND_TO_IDLE) && (next->substate_id == 4)) {
timeout_stdby = true;
}
#endif
}
if (timeout_stdby) {
uint64_t timeout_us =
((uint64_t)ticks * USEC_PER_SEC) / CONFIG_SYS_CLOCK_TICKS_PER_SEC;
struct counter_alarm_cfg cfg = {
.callback = NULL,
.ticks = counter_us_to_ticks(stdby_timer, timeout_us),
.user_data = NULL,
.flags = 0,
};
/* Set the alarm using timer that runs the standby.
* Needed rump-up/setting time, lower accurency etc. should be
* included in the exit-latency in the power state definition.
*/
counter_cancel_channel_alarm(stdby_timer, 0);
counter_set_channel_alarm(stdby_timer, 0, &cfg);
/* Store current values to calculate a difference in
* measurements after exiting the standby state.
*/
counter_get_value(stdby_timer, &stdby_timer_pre_stdby);
lptim_cnt_pre_stdby = z_clock_lptim_getcounter();
/* Stop clocks for LPTIM, since RTC is used instead */
clock_control_off(clk_ctrl, (clock_control_subsys_t) &lptim_clk[0]);
return;
}
#endif /* CONFIG_STM32_LPTIM_STDBY_TIMER */
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
return;
}
/*
* When CONFIG_SYSTEM_CLOCK_SLOPPY_IDLE = y, ticks equals to -1
* is treated as a lptim off ; never waking up ; lptim not clocked anymore
*/
if (ticks == K_TICKS_FOREVER) {
clock_control_off(clk_ctrl, (clock_control_subsys_t) &lptim_clk[0]);
return;
}
/*
* When CONFIG_SYSTEM_CLOCK_SLOPPY_IDLE = n, ticks equals to INT_MAX
* is treated as a maximum possible value LPTIM_MAX_TIMEBASE (16bit counter)
*/
/* if LPTIM clock was previously stopped, it must now be restored */
err = clock_control_on(clk_ctrl, (clock_control_subsys_t) &lptim_clk[0]);
if (err < 0) {
return;
}
/* passing ticks==1 means "announce the next tick",
* ticks value of zero (or even negative) is legal and
* treated identically: it simply indicates the kernel would like the
* next tick announcement as soon as possible.
*/
ticks = CLAMP(ticks - 1, 1, lptim_time_base);
k_spinlock_key_t key = k_spin_lock(&lock);
/* read current counter value (cannot exceed 16bit) */
uint32_t lp_time = z_clock_lptim_getcounter();
uint32_t autoreload = LL_LPTIM_GetAutoReload(LPTIM);
if (LL_LPTIM_IsActiveFlag_ARRM(LPTIM)
|| ((autoreload - lp_time) < LPTIM_GUARD_VALUE)) {
/* interrupt happens or happens soon.
* It's impossible to set autoreload value.
*/
k_spin_unlock(&lock, key);
return;
}
/* calculate the next arr value (cannot exceed 16bit)
* adjust the next ARR match value to align on Ticks
* from the current counter value to first next Tick
*/
next_arr = (((lp_time * CONFIG_SYS_CLOCK_TICKS_PER_SEC)
/ lptim_clock_freq) + 1) * lptim_clock_freq
/ (CONFIG_SYS_CLOCK_TICKS_PER_SEC);
next_arr = next_arr + ((uint32_t)(ticks) * lptim_clock_freq)
/ CONFIG_SYS_CLOCK_TICKS_PER_SEC;
/* if the lptim_clock_freq < one ticks/sec, then next_arr must be > 0 */
/* maximise to TIMEBASE */
if (next_arr > lptim_time_base) {
next_arr = lptim_time_base;
}
/* The new autoreload value must be LPTIM_GUARD_VALUE clock cycles
* after current lptim to make sure we don't miss
* an autoreload interrupt
*/
else if (next_arr < (lp_time + LPTIM_GUARD_VALUE)) {
next_arr = lp_time + LPTIM_GUARD_VALUE;
}
/* with slow lptim_clock_freq, LPTIM_GUARD_VALUE of 1 is enough */
next_arr = next_arr - 1;
/* Update autoreload register */
lptim_set_autoreload(next_arr);
k_spin_unlock(&lock, key);
}
static uint32_t sys_clock_lp_time_get(void)
{
uint32_t lp_time;
do {
/* In case of counter roll-over, add the autoreload value,
* because the irq has not yet been handled
*/
if (arrm_state_get()) {
lp_time = LL_LPTIM_GetAutoReload(LPTIM) + 1;
lp_time += z_clock_lptim_getcounter();
break;
}
lp_time = z_clock_lptim_getcounter();
/* Check if the flag ARRM wasn't be set during the process */
} while (arrm_state_get());
return lp_time;
}
uint32_t sys_clock_elapsed(void)
{
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
return 0;
}
k_spinlock_key_t key = k_spin_lock(&lock);
uint32_t lp_time = sys_clock_lp_time_get();
k_spin_unlock(&lock, key);
/* gives the value of LPTIM counter (ms)
* since the previous 'announce'
*/
uint64_t ret = ((uint64_t)lp_time * CONFIG_SYS_CLOCK_TICKS_PER_SEC) / lptim_clock_freq;
return (uint32_t)(ret);
}
uint32_t sys_clock_cycle_get_32(void)
{
/* just gives the accumulated count in a number of hw cycles */
k_spinlock_key_t key = k_spin_lock(&lock);
uint32_t lp_time = sys_clock_lp_time_get();
lp_time += accumulated_lptim_cnt;
/* convert lptim count in a nb of hw cycles with precision */
uint64_t ret = ((uint64_t)lp_time * sys_clock_hw_cycles_per_sec()) / lptim_clock_freq;
k_spin_unlock(&lock, key);
/* convert in hw cycles (keeping 32bit value) */
return (uint32_t)(ret);
}
/* Wait for the IER register of the stm32U5 ready, after any bit write operation */
void stm32_lptim_wait_ready(void)
{
#ifdef CONFIG_SOC_SERIES_STM32U5X
while (LL_LPTIM_IsActiveFlag_DIEROK(LPTIM) == 0) {
}
LL_LPTIM_ClearFlag_DIEROK(LPTIM);
#else
/* Empty : not relevant */
#endif
}
static int sys_clock_driver_init(void)
{
uint32_t count_per_tick;
int err;
if (!device_is_ready(clk_ctrl)) {
return -ENODEV;
}
/* Enable LPTIM bus clock */
err = clock_control_on(clk_ctrl, (clock_control_subsys_t) &lptim_clk[0]);
if (err < 0) {
return -EIO;
}
#if defined(LL_SRDAMR_GRP1_PERIPH_LPTIM1AMEN)
LL_SRDAMR_GRP1_EnableAutonomousClock(LL_SRDAMR_GRP1_PERIPH_LPTIM1AMEN);
#endif
/* Enable LPTIM clock source */
err = clock_control_configure(clk_ctrl,
(clock_control_subsys_t) &lptim_clk[1],
NULL);
if (err < 0) {
return -EIO;
}
/* Get LPTIM clock freq */
err = clock_control_get_rate(clk_ctrl, (clock_control_subsys_t) &lptim_clk[1],
&lptim_clock_freq);
if (err < 0) {
return -EIO;
}
#if defined(CONFIG_SOC_SERIES_STM32L0X)
/* Driver only supports freqs up to 32768Hz. On L0, LSI freq is 37KHz,
* which will overflow the LPTIM counter.
* Previous LPTIM configuration using device tree was doing forcing this
* with a Kconfig default. Impact is that time is 1.13 faster than reality.
* Following lines reproduce this behavior in order not to change behavior.
* This issue will be fixed by implementation LPTIM prescaler support.
*/
if (lptim_clk[1].bus == STM32_SRC_LSI) {
lptim_clock_freq = KHZ(32);
}
#endif
#if DT_INST_NODE_HAS_PROP(0, st_timeout)
/*
* Check if prescaler corresponding to the DT_INST_PROP(0, st_timeout)
* is matching the lptim_clock_presc calculated one from the lptim_clock_freq
* max lptim period is 0xFFFF/(lptim_clock_freq/lptim_clock_presc)
*/
if (DT_INST_PROP(0, st_timeout) >
(lptim_clock_presc / lptim_clock_freq) * 0xFFFF) {
return -EIO;
}
/*
* LPTIM is counting DT_INST_PROP(0, st_timeout),
* seconds at lptim_clock_freq divided lptim_clock_presc) Hz",
* lptim_time_base is the autoreload counter
*/
lptim_time_base = 2 * (lptim_clock_freq *
(uint32_t)DT_INST_PROP(0, st_timeout))
/ lptim_clock_presc;
#else
/* Set LPTIM time base based on clock source freq */
if (lptim_clock_freq == KHZ(32)) {
lptim_time_base = 0xF9FF;
} else if (lptim_clock_freq == 32768) {
lptim_time_base = 0xFFFF;
} else {
return -EIO;
}
#endif /* st_timeout */
#if !defined(CONFIG_STM32_LPTIM_TICK_FREQ_RATIO_OVERRIDE)
/*
* Check coherency between CONFIG_SYS_CLOCK_TICKS_PER_SEC
* and the lptim_clock_freq which is the CONFIG_STM32_LPTIM_CLOCK reduced
* by the lptim_clock_presc
*/
if (lptim_clock_presc <= 8) {
__ASSERT(CONFIG_STM32_LPTIM_CLOCK / 8 >= CONFIG_SYS_CLOCK_TICKS_PER_SEC,
"It is recommended to set SYS_CLOCK_TICKS_PER_SEC to CONFIG_STM32_LPTIM_CLOCK/8");
} else {
__ASSERT(CONFIG_STM32_LPTIM_CLOCK / lptim_clock_presc >=
CONFIG_SYS_CLOCK_TICKS_PER_SEC,
"Set SYS_CLOCK_TICKS_PER_SEC to CONFIG_STM32_LPTIM_CLOCK/lptim_clock_presc");
}
#endif /* !CONFIG_STM32_LPTIM_TICK_FREQ_RATIO_OVERRIDE */
/* Actual lptim clock freq when the clock source is reduced by the prescaler */
lptim_clock_freq = lptim_clock_freq / lptim_clock_presc;
/* Clear the event flag and possible pending interrupt */
IRQ_CONNECT(DT_INST_IRQN(0),
DT_INST_IRQ(0, priority),
lptim_irq_handler, 0, 0);
irq_enable(DT_INST_IRQN(0));
#ifdef CONFIG_SOC_SERIES_STM32WLX
/* Enable the LPTIM wakeup EXTI line */
LL_EXTI_EnableIT_0_31(LL_EXTI_LINE_29);
#endif
/* configure the LPTIM counter */
LL_LPTIM_SetClockSource(LPTIM, LL_LPTIM_CLK_SOURCE_INTERNAL);
/* the LPTIM clock freq is affected by the prescaler */
LL_LPTIM_SetPrescaler(LPTIM, (__CLZ(__RBIT(lptim_clock_presc)) << LPTIM_CFGR_PRESC_Pos));
#if defined(CONFIG_SOC_SERIES_STM32U5X) || \
defined(CONFIG_SOC_SERIES_STM32H5X) || \
defined(CONFIG_SOC_SERIES_STM32WBAX)
LL_LPTIM_OC_SetPolarity(LPTIM, LL_LPTIM_CHANNEL_CH1,
LL_LPTIM_OUTPUT_POLARITY_REGULAR);
#else
LL_LPTIM_SetPolarity(LPTIM, LL_LPTIM_OUTPUT_POLARITY_REGULAR);
#endif
LL_LPTIM_SetUpdateMode(LPTIM, LL_LPTIM_UPDATE_MODE_IMMEDIATE);
LL_LPTIM_SetCounterMode(LPTIM, LL_LPTIM_COUNTER_MODE_INTERNAL);
LL_LPTIM_DisableTimeout(LPTIM);
/* counting start is initiated by software */
LL_LPTIM_TrigSw(LPTIM);
#if defined(CONFIG_SOC_SERIES_STM32U5X) || \
defined(CONFIG_SOC_SERIES_STM32H5X) || \
defined(CONFIG_SOC_SERIES_STM32WBAX)
/* Enable the LPTIM before proceeding with configuration */
LL_LPTIM_Enable(LPTIM);
LL_LPTIM_DisableIT_CC1(LPTIM);
stm32_lptim_wait_ready();
LL_LPTIM_ClearFLAG_CC1(LPTIM);
#else
/* LPTIM interrupt set-up before enabling */
/* no Compare match Interrupt */
LL_LPTIM_DisableIT_CMPM(LPTIM);
LL_LPTIM_ClearFLAG_CMPM(LPTIM);
#endif
/* Autoreload match Interrupt */
LL_LPTIM_EnableIT_ARRM(LPTIM);
stm32_lptim_wait_ready();
LL_LPTIM_ClearFLAG_ARRM(LPTIM);
/* ARROK bit validates the write operation to ARR register */
LL_LPTIM_EnableIT_ARROK(LPTIM);
stm32_lptim_wait_ready();
LL_LPTIM_ClearFlag_ARROK(LPTIM);
#if !defined(CONFIG_SOC_SERIES_STM32U5X) && \
!defined(CONFIG_SOC_SERIES_STM32H5X) && \
!defined(CONFIG_SOC_SERIES_STM32WBAX)
/* Enable the LPTIM counter */
LL_LPTIM_Enable(LPTIM);
#endif
/* Set the Autoreload value once the timer is enabled */
if (IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
/* LPTIM is triggered on a LPTIM_TIMEBASE period */
lptim_set_autoreload(lptim_time_base);
} else {
/* nb of LPTIM counter unit per kernel tick (depends on lptim clock prescaler) */
count_per_tick = (lptim_clock_freq / CONFIG_SYS_CLOCK_TICKS_PER_SEC);
/* LPTIM is triggered on a Tick period */
lptim_set_autoreload(count_per_tick - 1);
}
/* Start the LPTIM counter in continuous mode */
LL_LPTIM_StartCounter(LPTIM, LL_LPTIM_OPERATING_MODE_CONTINUOUS);
#ifdef CONFIG_DEBUG
/* stop LPTIM during DEBUG */
#if defined(LL_DBGMCU_APB1_GRP1_LPTIM1_STOP)
LL_DBGMCU_APB1_GRP1_FreezePeriph(LL_DBGMCU_APB1_GRP1_LPTIM1_STOP);
#elif defined(LL_DBGMCU_APB3_GRP1_LPTIM1_STOP)
LL_DBGMCU_APB3_GRP1_FreezePeriph(LL_DBGMCU_APB3_GRP1_LPTIM1_STOP);
#endif
#endif
return 0;
}
void stm32_clock_control_standby_exit(void)
{
#ifdef CONFIG_STM32_LPTIM_STDBY_TIMER
if (clock_control_get_status(clk_ctrl,
(clock_control_subsys_t) &lptim_clk[0])
!= CLOCK_CONTROL_STATUS_ON) {
sys_clock_driver_init();
}
#endif /* CONFIG_STM32_LPTIM_STDBY_TIMER */
}
void sys_clock_idle_exit(void)
{
#ifdef CONFIG_STM32_LPTIM_STDBY_TIMER
if (timeout_stdby) {
cycle_t missed_lptim_cnt;
uint32_t stdby_timer_diff, stdby_timer_post, dticks;
uint64_t stdby_timer_us;
/* Get current value for standby timer and reset LPTIM counter value
* to start anew.
*/
LL_LPTIM_ResetCounter(LPTIM);
counter_get_value(stdby_timer, &stdby_timer_post);
/* Calculate how much time has passed since last measurement for standby timer */
/* Check IDLE timer overflow */
if (stdby_timer_pre_stdby > stdby_timer_post) {
stdby_timer_diff =
(counter_get_top_value(stdby_timer) - stdby_timer_pre_stdby) +
stdby_timer_post + 1;
} else {
stdby_timer_diff = stdby_timer_post - stdby_timer_pre_stdby;
}
stdby_timer_us = counter_ticks_to_us(stdby_timer, stdby_timer_diff);
/* Convert standby time in LPTIM cnt */
missed_lptim_cnt = (sys_clock_hw_cycles_per_sec() * stdby_timer_us) /
USEC_PER_SEC;
/* Add the LPTIM cnt pre standby */
missed_lptim_cnt += lptim_cnt_pre_stdby;
/* Update the cycle counter to include the cycles missed in standby */
accumulated_lptim_cnt += missed_lptim_cnt;
/* Announce the passed ticks to the kernel */
dticks = (missed_lptim_cnt * CONFIG_SYS_CLOCK_TICKS_PER_SEC)
/ lptim_clock_freq;
sys_clock_announce(dticks);
/* We've already performed all needed operations */
timeout_stdby = false;
}
#endif /* CONFIG_STM32_LPTIM_STDBY_TIMER */
}
SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2,
CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);