zephyr/drivers/i2c/i2c_npcx_controller.c
Mulin Chao 40cadb320e driver: i2c: npcx: Prevent transaction result overwritten by recovery.
This CL prevents the transaction result overwritten by the recovery
function. Even if the recovery mechanism succeeds, the upper layer still
needs to know why the transaction failed.

Signed-off-by: Mulin Chao <mlchao@nuvoton.com>
2021-02-05 12:24:52 -05:00

924 lines
28 KiB
C

/*
* Copyright (c) 2020 Nuvoton Technology Corporation.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nuvoton_npcx_i2c_ctrl
/**
* @file
* @brief Nuvoton NPCX smb/i2c module (controller) driver
*
* This file contains the driver of SMB module (controller) which provides full
* support for a two-wire SMBus/I2C synchronous serial interface. The following
* is the state diagrams for each Zephyr i2c api functions.
*
* case 1: i2c_write()/i2c_burst_write()
*
* All msg data sent? Is there next msg?
* +<----------------+<----------------------+
* | No | | Yes
* +------+ +------------+ | +------- ----+ | +------- -------+ |
* +->| IDLE |-->| WAIT_START |--->| WRITE_FIFO |-+--->| WRITE_SUSPEND |--+
* | +------+ +------------+ +------------+ Yes +---------------+ |
* | Issue START START completed | No
* | +-----------+ |
* +--------------------------------------------| WAIT_STOP |<------------+
* STOP is completed +-----------+ Issue STOP
*
*
* case 2: i2c_read()
*
* All msg data received? Is there next msg?
* +<-----------------+<---------------------+
* | No | | Yes
* +------+ +------------+ | +------- ---+ | +------- ------+ |
* +->| IDLE |-->| WAIT_START |--->| READ_FIFO |---+--->| READ_SUSPEND |--+
* | +------+ +------------+ +------------+ Yes +--------------+ |
* | Issue START START completed | No
* | +-----------+ |
* +------------------------------------------| WAIT_STOP |<--------------+
* STOP is completed +-----------+ Issue STOP
*
*
* case 3: i2c_write_read()/i2c_burst_read()
*
* All msg data sent? Is there next write msg?
* +<----------------+<----------------------+
* | No | | Yes
* +------+ +------------+ | +------- ----+ | +------- -------+ |
* +->| IDLE |-->| WAIT_START |--->| WRITE_FIFO |-+--->| WRITE_SUSPEND |--+
* | +------+ +------------+ +------------+ Yes +---------------+ |
* | Issue START START completed | No
* | +---------------------------------------------------------------+
* | |
* | | All msg data received? Is there next read msg?
* | | +<-----------------+<-----------------------+
* | | | No | | Yes
* | | +--------------+ | +------- ---+ | +------- ------+ |
* | +--| WAIT_RESTART |--->| READ_FIFO |---+--->| READ_SUSPEND |----+
* | +--------------+ +-----------+ Yes +--------------+ |
* | Issue RESTART RESTART completed | No
* | +-----------+ |
* +-------------------------------------------| WAIT_STOP |<-------------+
* STOP is completed +-----------+ Issue STOP
*
*/
#include <assert.h>
#include <drivers/clock_control.h>
#include <drivers/i2c.h>
#include <soc.h>
#include <logging/log.h>
LOG_MODULE_REGISTER(i2c_npcx, LOG_LEVEL_ERR);
/* I2C controller mode */
#define NPCX_I2C_BANK_NORMAL 0
#define NPCX_I2C_BANK_FIFO 1
/* Timeout for device should be available after reset (SMBus spec. unit:ms) */
#define I2C_MAX_TIMEOUT 35
/* Timeout for SCL held to low by slave device . (SMBus spec. unit:ms). */
#define I2C_MIN_TIMEOUT 25
/* Default maximum time we allow for an I2C transfer (unit:ms) */
#define I2C_TRANS_TIMEOUT K_MSEC(100)
/*
* NPCX I2C module that supports FIFO mode has 32 bytes Tx FIFO and
* 32 bytes Rx FIFO.
*/
#define NPCX_I2C_FIFO_MAX_SIZE 32
/* Valid bit fields in SMBST register */
#define NPCX_VALID_SMBST_MASK ~(BIT(NPCX_SMBST_XMIT) | BIT(NPCX_SMBST_MASTER))
/* Supported I2C bus frequency */
enum npcx_i2c_freq {
NPCX_I2C_BUS_SPEED_100KHZ,
NPCX_I2C_BUS_SPEED_400KHZ,
NPCX_I2C_BUS_SPEED_1MHZ,
};
/*
* Internal SMBus Interface driver states values, which reflect events
* which occurred on the bus
*/
enum npcx_i2c_oper_state {
NPCX_I2C_IDLE,
NPCX_I2C_WAIT_START,
NPCX_I2C_WAIT_RESTART,
NPCX_I2C_WRITE_FIFO,
NPCX_I2C_WRITE_SUSPEND,
NPCX_I2C_READ_FIFO,
NPCX_I2C_READ_SUSPEND,
NPCX_I2C_WAIT_STOP,
NPCX_I2C_ERROR_RECOVERY,
};
/* I2C timing configuration for each i2c speed */
struct npcx_i2c_timing_cfg {
uint8_t HLDT; /* i2c hold-time (Unit: clocks) */
uint8_t k1; /* k1 = SCL low-time (Unit: clocks) */
uint8_t k2; /* k2 = SCL high-time (Unit: clocks) */
};
/* Device config */
struct i2c_ctrl_config {
uintptr_t base; /* i2c controller base address */
struct npcx_clk_cfg clk_cfg; /* clock configuration */
uint8_t irq; /* i2c controller irq */
};
/* Driver data */
struct i2c_ctrl_data {
struct k_sem lock_sem; /* mutex of i2c controller */
struct k_sem sync_sem; /* semaphore used for synchronization */
uint32_t bus_freq; /* operation freq of i2c */
enum npcx_i2c_oper_state oper_state; /* controller operation state */
int trans_err; /* error code during transaction */
struct i2c_msg *msg; /* cache msg for transaction state machine */
int is_write; /* direction of current msg */
uint8_t *ptr_msg; /* current msg pointer for FIFO read/write */
uint16_t addr; /* slave address of transcation */
uint8_t port; /* current port used the controller */
};
/* Driver convenience defines */
#define DRV_CONFIG(dev) ((const struct i2c_ctrl_config *)(dev)->config)
#define DRV_DATA(dev) ((struct i2c_ctrl_data *)(dev)->data)
#define HAL_I2C_INSTANCE(dev) (struct smb_reg *)(DRV_CONFIG(dev)->base)
#define HAL_I2C_FIFO_INSTANCE(dev) \
(struct smb_fifo_reg *)(DRV_CONFIG(dev)->base)
/* Recommended I2C timing values are based on 15 MHz */
static const struct npcx_i2c_timing_cfg npcx_speed_confs[] = {
[NPCX_I2C_BUS_SPEED_100KHZ] = {.HLDT = 0, .k1 = 75, .k2 = 0},
[NPCX_I2C_BUS_SPEED_400KHZ] = {.HLDT = 7, .k1 = 24, .k2 = 18,},
[NPCX_I2C_BUS_SPEED_1MHZ] = {.HLDT = 7, .k1 = 14, .k2 = 10,},
};
/* I2C controller inline functions access shared registers */
static inline void i2c_ctrl_start(const struct device *dev)
{
struct smb_fifo_reg *const inst_fifo = HAL_I2C_FIFO_INSTANCE(dev);
inst_fifo->SMBCTL1 |= BIT(NPCX_SMBCTL1_START);
}
static inline void i2c_ctrl_stop(const struct device *dev)
{
struct smb_fifo_reg *const inst_fifo = HAL_I2C_FIFO_INSTANCE(dev);
inst_fifo->SMBCTL1 |= BIT(NPCX_SMBCTL1_STOP);
}
static inline int i2c_ctrl_bus_busy(const struct device *dev)
{
struct smb_fifo_reg *const inst_fifo = HAL_I2C_FIFO_INSTANCE(dev);
return IS_BIT_SET(inst_fifo->SMBCST, NPCX_SMBCST_BB);
}
static inline void i2c_ctrl_bank_sel(const struct device *dev, int bank)
{
struct smb_reg *const inst = HAL_I2C_INSTANCE(dev);
if (bank) {
inst->SMBCTL3 |= BIT(NPCX_SMBCTL3_BNK_SEL);
} else {
inst->SMBCTL3 &= ~BIT(NPCX_SMBCTL3_BNK_SEL);
}
}
static inline void i2c_ctrl_irq_enable(const struct device *dev, int enable)
{
const struct i2c_ctrl_config *const config = DRV_CONFIG(dev);
if (enable) {
irq_enable(config->irq);
} else {
irq_disable(config->irq);
}
}
/* I2C controller inline functions access registers in 'Normal' bank */
static inline void i2c_ctrl_norm_stall_scl(const struct device *dev)
{
struct smb_reg *const inst = HAL_I2C_INSTANCE(dev);
/* Enable writing to SCL_LVL/SDA_LVL bit in SMBnCTL3 */
inst->SMBCTL4 |= BIT(NPCX_SMBCTL4_LVL_WE);
/* Force SCL bus to low and keep SDA floating */
inst->SMBCTL3 = (inst->SMBCTL3 & ~BIT(NPCX_SMBCTL3_SCL_LVL))
| BIT(NPCX_SMBCTL3_SDA_LVL);
/* Disable writing to them */
inst->SMBCTL4 &= ~BIT(NPCX_SMBCTL4_LVL_WE);
}
static inline void i2c_ctrl_norm_free_scl(const struct device *dev)
{
struct smb_reg *const inst = HAL_I2C_INSTANCE(dev);
/* Enable writing to SCL_LVL/SDA_LVL bit in SMBnCTL3 */
inst->SMBCTL4 |= BIT(NPCX_SMBCTL4_LVL_WE);
/*
* Release SCL bus. Then it might be still driven by module itself or
* slave device.
*/
inst->SMBCTL3 |= BIT(NPCX_SMBCTL3_SCL_LVL) | BIT(NPCX_SMBCTL3_SDA_LVL);
/* Disable writing to them */
inst->SMBCTL4 &= ~BIT(NPCX_SMBCTL4_LVL_WE);
}
/* I2C controller inline functions access registers in 'FIFO' bank */
static inline void i2c_ctrl_fifo_write(const struct device *dev, uint8_t data)
{
struct smb_fifo_reg *const inst_fifo = HAL_I2C_FIFO_INSTANCE(dev);
inst_fifo->SMBSDA = data;
}
static inline uint8_t i2c_ctrl_fifo_read(const struct device *dev)
{
struct smb_fifo_reg *const inst_fifo = HAL_I2C_FIFO_INSTANCE(dev);
return inst_fifo->SMBSDA;
}
static inline int i2c_ctrl_fifo_tx_avail(const struct device *dev)
{
struct smb_fifo_reg *const inst_fifo = HAL_I2C_FIFO_INSTANCE(dev);
return NPCX_I2C_FIFO_MAX_SIZE - (inst_fifo->SMBTXF_STS & 0x3f);
}
static inline int i2c_ctrl_fifo_rx_occupied(const struct device *dev)
{
struct smb_fifo_reg *const inst_fifo = HAL_I2C_FIFO_INSTANCE(dev);
return inst_fifo->SMBRXF_STS & 0x3f;
}
static inline void i2c_ctrl_fifo_rx_setup_threshold_nack(
const struct device *dev, int threshold, int last)
{
struct smb_fifo_reg *const inst_fifo = HAL_I2C_FIFO_INSTANCE(dev);
uint8_t value = MIN(threshold, NPCX_I2C_FIFO_MAX_SIZE);
SET_FIELD(inst_fifo->SMBRXF_CTL, NPCX_SMBRXF_CTL_RX_THR, value);
/*
* Is it last received transaction? If so, set LAST bit. Then the
* hardware will generate NACK automatically when receiving last byte.
*/
if (last && (value == threshold)) {
inst_fifo->SMBRXF_CTL |= BIT(NPCX_SMBRXF_CTL_LAST);
}
}
static inline void i2c_ctrl_fifo_clear_status(const struct device *dev)
{
struct smb_fifo_reg *const inst_fifo = HAL_I2C_FIFO_INSTANCE(dev);
inst_fifo->SMBFIF_CTS |= BIT(NPCX_SMBFIF_CTS_CLR_FIFO);
}
/*
* I2C local functions which touch the registers in 'Normal' bank. These
* utilities will change bank back to FIFO mode when leaving themselves in case
* the other utilities acces the registers in 'FIFO' bank.
*/
static void i2c_ctrl_hold_bus(const struct device *dev, int stall)
{
i2c_ctrl_bank_sel(dev, NPCX_I2C_BANK_NORMAL);
if (stall) {
i2c_ctrl_norm_stall_scl(dev);
} else {
i2c_ctrl_norm_free_scl(dev);
}
i2c_ctrl_bank_sel(dev, NPCX_I2C_BANK_FIFO);
}
static void i2c_ctrl_init_module(const struct device *dev)
{
struct smb_reg *const inst = HAL_I2C_INSTANCE(dev);
i2c_ctrl_bank_sel(dev, NPCX_I2C_BANK_NORMAL);
/* Enable FIFO mode first */
inst->SMBFIF_CTL |= BIT(NPCX_SMBFIF_CTL_FIFO_EN);
/* Enable module - before configuring CTL1 */
inst->SMBCTL2 |= BIT(NPCX_SMBCTL2_ENABLE);
/* Enable SMB interrupt and 'New Address Match' interrupt source */
inst->SMBCTL1 |= BIT(NPCX_SMBCTL1_NMINTE) | BIT(NPCX_SMBCTL1_INTEN);
i2c_ctrl_bank_sel(dev, NPCX_I2C_BANK_FIFO);
}
static void i2c_ctrl_config_bus_freq(const struct device *dev,
enum npcx_i2c_freq bus_freq)
{
struct smb_reg *const inst = HAL_I2C_INSTANCE(dev);
const struct npcx_i2c_timing_cfg bus_cfg = npcx_speed_confs[bus_freq];
/* Switch to bank 0 to configure bus speed */
i2c_ctrl_bank_sel(dev, NPCX_I2C_BANK_NORMAL);
/* Configure bus speed */
if (bus_freq == NPCX_I2C_BUS_SPEED_100KHZ) {
/* Enable 'Normal' Mode */
inst->SMBCTL3 &= ~(BIT(NPCX_SMBCTL3_400K));
/* Set freq of SCL */
SET_FIELD(inst->SMBCTL2, NPCX_SMBCTL2_SCLFRQ0_6_FIELD,
bus_cfg.k1/2 & 0x7f);
SET_FIELD(inst->SMBCTL3, NPCX_SMBCTL3_SCLFRQ7_8_FIELD,
bus_cfg.k2/2 >> 7);
} else {
/* Enable 'Fast' Mode for 400K or higher freq. */
inst->SMBCTL3 |= BIT(NPCX_SMBCTL3_400K);
/* Set high/low time of SCL and hold-time */
inst->SMBSCLLT = bus_cfg.k1/2;
inst->SMBSCLHT = bus_cfg.k2/2;
SET_FIELD(inst->SMBCTL4, NPCX_SMBCTL4_HLDT_FIELD,
bus_cfg.HLDT);
}
/* Switch to bank 1 to access I2C FIFO registers */
i2c_ctrl_bank_sel(dev, NPCX_I2C_BANK_FIFO);
}
/* I2C controller local functions */
static int i2c_ctrl_wait_stop_completed(const struct device *dev, int timeout)
{
struct smb_fifo_reg *const inst_fifo = HAL_I2C_FIFO_INSTANCE(dev);
if (timeout <= 0) {
return -EINVAL;
}
do {
/*
* Wait till i2c bus is idle. This bit is cleared to 0
* automatically after the STOP condition is generated.
*/
if (!IS_BIT_SET(inst_fifo->SMBCTL1, NPCX_SMBCTL1_STOP))
break;
k_msleep(1);
} while (--timeout);
if (timeout > 0) {
return 0;
} else {
return -ETIMEDOUT;
}
}
static int i2c_ctrl_wait_idle_completed(const struct device *dev, int timeout)
{
struct smb_fifo_reg *const inst_fifo = HAL_I2C_FIFO_INSTANCE(dev);
if (timeout <= 0) {
return -EINVAL;
}
do {
/* Wait for both SCL & SDA lines are high */
if (IS_BIT_SET(inst_fifo->SMBCTL3, NPCX_SMBCTL3_SCL_LVL)
&& IS_BIT_SET(inst_fifo->SMBCTL3, NPCX_SMBCTL3_SDA_LVL)) {
break;
}
k_msleep(1);
} while (--timeout);
if (timeout > 0) {
return 0;
} else {
return -ETIMEDOUT;
}
}
static int i2c_ctrl_recovery(const struct device *dev)
{
struct smb_fifo_reg *const inst_fifo = HAL_I2C_FIFO_INSTANCE(dev);
struct i2c_ctrl_data *const data = DRV_DATA(dev);
int ret;
if (data->oper_state != NPCX_I2C_ERROR_RECOVERY) {
data->oper_state = NPCX_I2C_ERROR_RECOVERY;
}
/* Step 1: Make sure the bus is not stalled before exit. */
i2c_ctrl_hold_bus(dev, 0);
/*
* Step 2: Abort data, wait for STOP condition completed.
* - Clearing NEGACK and BER bits first
* - Wait for STOP condition completed
* - Then clear BB (BUS BUSY) bit
*/
inst_fifo->SMBST = BIT(NPCX_SMBST_BER) | BIT(NPCX_SMBST_NEGACK);
ret = i2c_ctrl_wait_stop_completed(dev, I2C_MAX_TIMEOUT);
inst_fifo->SMBCST |= BIT(NPCX_SMBCST_BB);
if (ret != 0) {
LOG_ERR("Abort i2c port%02x fail! Bus might be stalled.",
data->port);
}
/*
* Step 3: Reset i2c module to clear all internal state machine of it
* - Disable the SMB module first
* - Wait both SCL/SDA line are high
* - Enable i2c module again
*/
inst_fifo->SMBCTL2 &= ~BIT(NPCX_SMBCTL2_ENABLE);
ret = i2c_ctrl_wait_idle_completed(dev, I2C_MAX_TIMEOUT);
if (ret != 0) {
LOG_ERR("Reset i2c port%02x fail! Bus might be stalled.",
data->port);
return -EIO;
}
/* Reset module and internal state machine */
i2c_ctrl_init_module(dev);
/* Recovery is completed */
data->oper_state = NPCX_I2C_IDLE;
return 0;
}
static void i2c_ctrl_notify(const struct device *dev, int error)
{
struct i2c_ctrl_data *const data = DRV_DATA(dev);
data->trans_err = error;
k_sem_give(&data->sync_sem);
}
static int i2c_ctrl_wait_completion(const struct device *dev)
{
struct i2c_ctrl_data *const data = DRV_DATA(dev);
if (k_sem_take(&data->sync_sem, I2C_TRANS_TIMEOUT) == 0) {
return data->trans_err;
} else {
return -ETIMEDOUT;
}
}
size_t i2c_ctrl_calculate_msg_remains(const struct device *dev)
{
struct i2c_ctrl_data *const data = DRV_DATA(dev);
uint8_t *buf_end = data->msg->buf + data->msg->len;
return (buf_end > data->ptr_msg) ? (buf_end - data->ptr_msg) : 0;
}
static void i2c_ctrl_handle_write_int_event(const struct device *dev)
{
struct i2c_ctrl_data *const data = DRV_DATA(dev);
/* START condition is issued */
if (data->oper_state == NPCX_I2C_WAIT_START) {
/* Write slave address with W bit */
i2c_ctrl_fifo_write(dev, ((data->addr << 1) & ~BIT(0)));
/* Start to proceed write process */
data->oper_state = NPCX_I2C_WRITE_FIFO;
return;
}
/* Write message data bytes to FIFO */
if (data->oper_state == NPCX_I2C_WRITE_FIFO) {
/* Calculate how many remaining bytes need to transmit */
size_t tx_remain = i2c_ctrl_calculate_msg_remains(dev);
size_t tx_avail = MIN(tx_remain, i2c_ctrl_fifo_tx_avail(dev));
LOG_DBG("tx remains %d, avail %d", tx_remain, tx_avail);
for (int i = 0U; i < tx_avail; i++)
i2c_ctrl_fifo_write(dev, *(data->ptr_msg++));
/* Is there any remaining bytes? */
if (data->ptr_msg == data->msg->buf + data->msg->len) {
data->oper_state = NPCX_I2C_WRITE_SUSPEND;
}
return;
}
/* Issue STOP after sending message? */
if (data->oper_state == NPCX_I2C_WRITE_SUSPEND) {
if (data->msg->flags & I2C_MSG_STOP) {
/* Generate a STOP condition immediately */
i2c_ctrl_stop(dev);
/* Clear rx FIFO threshold and status bits */
i2c_ctrl_fifo_clear_status(dev);
/* Wait for STOP completed */
data->oper_state = NPCX_I2C_WAIT_STOP;
} else {
/* Disable interrupt and handle next message */
i2c_ctrl_irq_enable(dev, 0);
}
}
return i2c_ctrl_notify(dev, 0);
}
static void i2c_ctrl_handle_read_int_event(const struct device *dev)
{
struct i2c_ctrl_data *const data = DRV_DATA(dev);
/* START or RESTART condition is issued */
if (data->oper_state == NPCX_I2C_WAIT_START ||
data->oper_state == NPCX_I2C_WAIT_RESTART) {
/* Setup threshold of rx FIFO before sending address byte */
i2c_ctrl_fifo_rx_setup_threshold_nack(dev, data->msg->len,
(data->msg->flags & I2C_MSG_STOP) != 0);
/* Write slave address with R bit */
i2c_ctrl_fifo_write(dev, ((data->addr << 1) | BIT(0)));
/* Start to proceed read process */
data->oper_state = NPCX_I2C_READ_FIFO;
return;
}
/* Read message data bytes from FIFO */
if (data->oper_state == NPCX_I2C_READ_FIFO) {
/* Calculate how many remaining bytes need to receive */
size_t rx_remain = i2c_ctrl_calculate_msg_remains(dev);
size_t rx_occupied = i2c_ctrl_fifo_rx_occupied(dev);
LOG_DBG("rx remains %d, occupied %d", rx_remain, rx_occupied);
/*
* Hold SCL line before reading data bytes from FIFO. Or the
* hardware will release bus immediately before the driver
* handles incoming data.
*/
i2c_ctrl_hold_bus(dev, 1);
/* Read data bytes from FIFO */
for (int i = 0; i < rx_occupied; i++) {
*(data->ptr_msg++) = i2c_ctrl_fifo_read(dev);
}
rx_remain = i2c_ctrl_calculate_msg_remains(dev);
/* Setup threshold of RX FIFO next time */
if (rx_remain > 0) {
i2c_ctrl_fifo_rx_setup_threshold_nack(dev, rx_remain,
(data->msg->flags & I2C_MSG_STOP) != 0);
/* Release bus */
i2c_ctrl_hold_bus(dev, 0);
return;
}
}
/* Issue STOP after receiving message? */
if ((data->msg->flags & I2C_MSG_STOP) != 0) {
/* Release bus */
i2c_ctrl_hold_bus(dev, 0);
/* Generate a STOP condition immediately */
i2c_ctrl_stop(dev);
/* Clear rx FIFO threshold and status bits */
i2c_ctrl_fifo_clear_status(dev);
/* Wait for STOP completed */
data->oper_state = NPCX_I2C_WAIT_STOP;
} else {
/* Disable i2c interrupt first */
i2c_ctrl_irq_enable(dev, 0);
data->oper_state = NPCX_I2C_READ_SUSPEND;
}
return i2c_ctrl_notify(dev, 0);
}
static int i2c_ctrl_proc_write_msg(const struct device *dev,
struct i2c_msg *msg)
{
struct i2c_ctrl_data *const data = DRV_DATA(dev);
data->is_write = 1;
data->ptr_msg = msg->buf;
data->msg = msg;
if (data->oper_state == NPCX_I2C_IDLE) {
data->oper_state = NPCX_I2C_WAIT_START;
/* Issue a START, wait for transaction completed */
i2c_ctrl_start(dev);
return i2c_ctrl_wait_completion(dev);
} else if (data->oper_state == NPCX_I2C_WRITE_SUSPEND) {
data->oper_state = NPCX_I2C_WRITE_FIFO;
i2c_ctrl_irq_enable(dev, 1);
return i2c_ctrl_wait_completion(dev);
}
LOG_ERR("Unexpected state %d during writing i2c port%02x!",
data->oper_state, data->port);
data->trans_err = -EIO;
return data->trans_err;
}
static int i2c_ctrl_proc_read_msg(const struct device *dev, struct i2c_msg *msg)
{
struct i2c_ctrl_data *const data = DRV_DATA(dev);
data->is_write = 0;
data->ptr_msg = msg->buf;
data->msg = msg;
if (data->oper_state == NPCX_I2C_IDLE) {
data->oper_state = NPCX_I2C_WAIT_START;
/* Issue a START, wait for transaction completed */
i2c_ctrl_start(dev);
return i2c_ctrl_wait_completion(dev);
} else if (data->oper_state == NPCX_I2C_WRITE_SUSPEND) {
data->oper_state = NPCX_I2C_WAIT_RESTART;
/* Issue a RESTART, wait for transaction completed */
i2c_ctrl_start(dev);
i2c_ctrl_irq_enable(dev, 1);
return i2c_ctrl_wait_completion(dev);
} else if (data->oper_state == NPCX_I2C_READ_SUSPEND) {
data->oper_state = NPCX_I2C_READ_FIFO;
/* Setup threshold of RX FIFO first */
i2c_ctrl_fifo_rx_setup_threshold_nack(dev, msg->len,
(msg->flags & I2C_MSG_STOP) != 0);
/* Release bus */
i2c_ctrl_hold_bus(dev, 0);
/* Enable i2c interrupt first */
i2c_ctrl_irq_enable(dev, 1);
return i2c_ctrl_wait_completion(dev);
}
LOG_ERR("Unexpected state %d during reading i2c port%02x!",
data->oper_state, data->port);
data->trans_err = -EIO;
return data->trans_err;
}
/* I2C controller isr function */
static void i2c_ctrl_isr(const struct device *dev)
{
struct smb_fifo_reg *const inst_fifo = HAL_I2C_FIFO_INSTANCE(dev);
struct i2c_ctrl_data *const data = DRV_DATA(dev);
uint8_t status, tmp;
status = inst_fifo->SMBST & NPCX_VALID_SMBST_MASK;
LOG_DBG("status: %02x, %d", status, data->oper_state);
/* A 'Bus Error' has been identified */
if (IS_BIT_SET(status, NPCX_SMBST_BER)) {
/* Generate a STOP condition immediately */
i2c_ctrl_stop(dev);
/* Clear BER Bit */
inst_fifo->SMBST = BIT(NPCX_SMBST_BER);
/* Make sure slave doesn't hold bus by reading FIFO again */
tmp = i2c_ctrl_fifo_read(dev);
LOG_ERR("Bus error occurred on i2c port%02x!", data->port);
data->oper_state = NPCX_I2C_ERROR_RECOVERY;
/* I/O error occurred */
i2c_ctrl_notify(dev, -EIO);
return;
}
/* A negative acknowledge has occurred */
if (IS_BIT_SET(status, NPCX_SMBST_NEGACK)) {
/* Generate a STOP condition immediately */
i2c_ctrl_stop(dev);
/* Clear NEGACK Bit */
inst_fifo->SMBST = BIT(NPCX_SMBST_NEGACK);
/* End transaction */
data->oper_state = NPCX_I2C_WAIT_STOP;
/* No such device or address */
return i2c_ctrl_notify(dev, -ENXIO);
}
/* START, tx FIFO empty or rx FIFO full has occurred */
if (IS_BIT_SET(status, NPCX_SMBST_SDAST)) {
if (data->is_write) {
return i2c_ctrl_handle_write_int_event(dev);
} else {
return i2c_ctrl_handle_read_int_event(dev);
}
}
/* Clear unexpected status bits */
inst_fifo->SMBST = status;
LOG_ERR("Unexpected SMBST 0x%02x occurred on i2c port%02x!", status,
data->port);
}
/* NPCX specific I2C controller functions */
void npcx_i2c_ctrl_mutex_lock(const struct device *i2c_dev)
{
struct i2c_ctrl_data *const data = DRV_DATA(i2c_dev);
k_sem_take(&data->lock_sem, K_FOREVER);
}
void npcx_i2c_ctrl_mutex_unlock(const struct device *i2c_dev)
{
struct i2c_ctrl_data *const data = DRV_DATA(i2c_dev);
k_sem_give(&data->lock_sem);
}
int npcx_i2c_ctrl_configure(const struct device *i2c_dev, uint32_t dev_config)
{
struct i2c_ctrl_data *const data = DRV_DATA(i2c_dev);
switch (I2C_SPEED_GET(dev_config)) {
case I2C_SPEED_STANDARD:
data->bus_freq = NPCX_I2C_BUS_SPEED_100KHZ;
break;
case I2C_SPEED_FAST:
data->bus_freq = NPCX_I2C_BUS_SPEED_400KHZ;
break;
case I2C_SPEED_FAST_PLUS:
data->bus_freq = NPCX_I2C_BUS_SPEED_1MHZ;
break;
default:
return -ERANGE;
}
i2c_ctrl_config_bus_freq(i2c_dev, data->bus_freq);
return 0;
}
int npcx_i2c_ctrl_transfer(const struct device *i2c_dev, struct i2c_msg *msgs,
uint8_t num_msgs, uint16_t addr, int port)
{
struct i2c_ctrl_data *const data = DRV_DATA(i2c_dev);
int ret = 0;
uint8_t i;
/* Does bus need recovery? */
if (data->oper_state != NPCX_I2C_WRITE_SUSPEND &&
data->oper_state != NPCX_I2C_READ_SUSPEND) {
if (i2c_ctrl_bus_busy(i2c_dev) ||
data->oper_state == NPCX_I2C_ERROR_RECOVERY) {
ret = i2c_ctrl_recovery(i2c_dev);
/* Recovery failed, return it immediately */
if (ret) {
return ret;
}
}
}
/* Start i2c transaction */
data->port = port;
data->trans_err = 0;
data->addr = addr;
/*
* Reset i2c event-completed semaphore before starting transactions.
* Some interrupt events such as BUS_ERROR might change its counter
* when bus is idle.
*/
k_sem_reset(&data->sync_sem);
for (i = 0U; i < num_msgs; i++) {
struct i2c_msg *msg = msgs + i;
/* Handle write transaction */
if ((msg->flags & I2C_MSG_RW_MASK) == I2C_MSG_WRITE) {
ret = i2c_ctrl_proc_write_msg(i2c_dev, msg);
} else {/* Handle read transaction */
ret = i2c_ctrl_proc_read_msg(i2c_dev, msg);
}
if (ret < 0) {
break;
}
}
/* Check STOP completed? */
if (data->oper_state == NPCX_I2C_WAIT_STOP) {
data->trans_err = i2c_ctrl_wait_stop_completed(i2c_dev,
I2C_MIN_TIMEOUT);
if (data->trans_err == 0) {
data->oper_state = NPCX_I2C_IDLE;
} else {
LOG_ERR("STOP fail! bus is held on i2c port%02x!",
data->port);
data->oper_state = NPCX_I2C_ERROR_RECOVERY;
}
}
if (data->oper_state == NPCX_I2C_ERROR_RECOVERY) {
int recovery_error = i2c_ctrl_recovery(i2c_dev);
/*
* Recovery failed, return it immediately. Otherwise, the upper
* layer still needs to know why the transaction failed.
*/
if (recovery_error != 0) {
return recovery_error;
}
}
return ret;
}
/* I2C controller driver registration */
static int i2c_ctrl_init(const struct device *dev)
{
const struct i2c_ctrl_config *const config = DRV_CONFIG(dev);
struct i2c_ctrl_data *const data = DRV_DATA(dev);
const struct device *const clk_dev =
device_get_binding(NPCX_CLK_CTRL_NAME);
uint32_t i2c_rate;
/* Turn on device clock first and get source clock freq. */
if (clock_control_on(clk_dev,
(clock_control_subsys_t *) &config->clk_cfg) != 0) {
LOG_ERR("Turn on %s clock fail.", dev->name);
return -EIO;
}
/*
* If apb2/3's clock is not 15MHz, we need to add the other timing
* configuration of the device to meet SMBus timing spec. Please refer
* Table 21/22/23 and section 7.5.9 SMBus Timing for more detail.
*/
if (clock_control_get_rate(clk_dev, (clock_control_subsys_t *)
&config->clk_cfg, &i2c_rate) != 0) {
LOG_ERR("Get %s clock rate error.", dev->name);
return -EIO;
}
__ASSERT(i2c_rate == 15000000, "Unsupported apb2/3 freq for I2C!");
/* Initialize i2c module */
i2c_ctrl_init_module(dev);
/* initialize mutux and semaphore for i2c/smb controller */
k_sem_init(&data->lock_sem, 1, 1);
k_sem_init(&data->sync_sem, 0, UINT_MAX);
/* Initialize driver status machine */
data->oper_state = NPCX_I2C_IDLE;
return 0;
}
/* I2C controller init macro functions */
#define NPCX_I2C_CTRL_INIT_FUNC(inst) _CONCAT(i2c_ctrl_init_, inst)
#define NPCX_I2C_CTRL_INIT_FUNC_DECL(inst) \
static int i2c_ctrl_init_##inst(const struct device *dev)
#define NPCX_I2C_CTRL_INIT_FUNC_IMPL(inst) \
static int i2c_ctrl_init_##inst(const struct device *dev) \
{ \
int ret; \
\
ret = i2c_ctrl_init(dev); \
IRQ_CONNECT(DT_INST_IRQN(inst), \
DT_INST_IRQ(inst, priority), \
i2c_ctrl_isr, \
DEVICE_DT_INST_GET(inst), \
0); \
irq_enable(DT_INST_IRQN(inst)); \
\
return ret; \
}
#define NPCX_I2C_CTRL_INIT(inst) \
NPCX_I2C_CTRL_INIT_FUNC_DECL(inst); \
\
static const struct i2c_ctrl_config i2c_ctrl_cfg_##inst = { \
.base = DT_INST_REG_ADDR(inst), \
.irq = DT_INST_IRQN(inst), \
.clk_cfg = NPCX_DT_CLK_CFG_ITEM(inst), \
}; \
\
static struct i2c_ctrl_data i2c_ctrl_data_##inst; \
\
DEVICE_DT_INST_DEFINE(inst, \
NPCX_I2C_CTRL_INIT_FUNC(inst), \
device_pm_control_nop, \
&i2c_ctrl_data_##inst, &i2c_ctrl_cfg_##inst, \
PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, \
NULL); \
\
NPCX_I2C_CTRL_INIT_FUNC_IMPL(inst)
DT_INST_FOREACH_STATUS_OKAY(NPCX_I2C_CTRL_INIT)