zephyr/include/zephyr/toolchain/common.h
Gerard Marull-Paretas 7525a551cf toolchain: add STRUCT_SECTION_START|END helpers
Even though they are just wrappers around TYPE_SECTION_START|END, it
allows using the STRUCT_SECTION* API namespace everywhere when working
with struct-based iterable sections.

Signed-off-by: Gerard Marull-Paretas <gerard.marull@nordicsemi.no>
2023-05-12 12:01:10 +02:00

450 lines
14 KiB
C

/*
* Copyright (c) 2010-2014 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
#ifndef ZEPHYR_INCLUDE_TOOLCHAIN_COMMON_H_
#define ZEPHYR_INCLUDE_TOOLCHAIN_COMMON_H_
/**
* @file
* @brief Common toolchain abstraction
*
* Macros to abstract compiler capabilities (common to all toolchains).
*/
/* Abstract use of extern keyword for compatibility between C and C++ */
#ifdef __cplusplus
#define EXTERN_C extern "C"
#else
#define EXTERN_C extern
#endif
/* Use TASK_ENTRY_CPP to tag task entry points defined in C++ files. */
#ifdef __cplusplus
#define TASK_ENTRY_CPP extern "C"
#endif
#ifndef ZRESTRICT
#ifndef __cplusplus
#define ZRESTRICT restrict
#else
#define ZRESTRICT
#endif
#endif
/*
* Generate a reference to an external symbol.
* The reference indicates to the linker that the symbol is required
* by the module containing the reference and should be included
* in the image if the module is in the image.
*
* The assembler directive ".set" is used to define a local symbol.
* No memory is allocated, and the local symbol does not appear in
* the symbol table.
*/
#ifdef _ASMLANGUAGE
#define REQUIRES(sym) .set sym ## _Requires, sym
#else
#define REQUIRES(sym) __asm__ (".set " # sym "_Requires, " # sym "\n\t");
#endif
#ifdef _ASMLANGUAGE
#define SECTION .section
#endif
/*
* If the project is being built for speed (i.e. not for minimum size) then
* align functions and branches in executable sections to improve performance.
*/
#ifdef _ASMLANGUAGE
#if defined(CONFIG_X86)
#ifdef PERF_OPT
#define PERFOPT_ALIGN .balign 16
#else
#define PERFOPT_ALIGN .balign 1
#endif
#elif defined(CONFIG_ARM) || defined(CONFIG_ARM64)
#define PERFOPT_ALIGN .balign 4
#elif defined(CONFIG_ARC)
/* .align assembler directive is supposed by all ARC toolchains and it is
* implemented in a same way across ARC toolchains.
*/
#define PERFOPT_ALIGN .align 4
#elif defined(CONFIG_NIOS2) || defined(CONFIG_RISCV) || \
defined(CONFIG_XTENSA) || defined(CONFIG_MIPS)
#define PERFOPT_ALIGN .balign 4
#elif defined(CONFIG_ARCH_POSIX)
#elif defined(CONFIG_SPARC)
#define PERFOPT_ALIGN .align 4
#else
#error Architecture unsupported
#endif
#define GC_SECTION(sym) SECTION .text.##sym, "ax"
#endif /* _ASMLANGUAGE */
/* force inlining a function */
#if !defined(_ASMLANGUAGE)
#ifdef CONFIG_COVERAGE
/*
* The always_inline attribute forces a function to be inlined,
* even ignoring -fno-inline. So for code coverage, do not
* force inlining of these functions to keep their bodies around
* so their number of executions can be counted.
*
* Note that "inline" is kept here for kobject_hash.c and
* priv_stacks_hash.c. These are built without compiler flags
* used for coverage. ALWAYS_INLINE cannot be empty as compiler
* would complain about unused functions. Attaching unused
* attribute would result in their text sections balloon more than
* 10 times in size, as those functions are kept in text section.
* So just keep "inline" here.
*/
#define ALWAYS_INLINE inline
#else
#define ALWAYS_INLINE inline __attribute__((always_inline))
#endif
#endif
#define Z_STRINGIFY(x) #x
#define STRINGIFY(s) Z_STRINGIFY(s)
/* concatenate the values of the arguments into one */
#define _DO_CONCAT(x, y) x ## y
#define _CONCAT(x, y) _DO_CONCAT(x, y)
/* Additionally used as a sentinel by gen_syscalls.py to identify what
* functions are system calls
*
* Note POSIX unit tests don't still generate the system call stubs, so
* until https://github.com/zephyrproject-rtos/zephyr/issues/5006 is
* fixed via possibly #4174, we introduce this hack -- which will
* disallow us to test system calls in POSIX unit testing (currently
* not used).
*/
#ifndef ZTEST_UNITTEST
#define __syscall static inline
#define __syscall_always_inline static inline __attribute__((always_inline))
#else
#define __syscall
#define __syscall_always_inline
#endif /* ZTEST_UNITTEST */
/* Definitions for struct declaration tags. These are sentinel values used by
* parse_syscalls.py to gather a list of names of struct declarations that
* have these tags applied for them.
*/
/* Indicates this is a driver subsystem */
#define __subsystem
/* Indicates this is a network socket object */
#define __net_socket
#ifndef BUILD_ASSERT
/* Compile-time assertion that makes the build to fail.
* Common implementation swallows the message.
*/
#define BUILD_ASSERT(EXPR, MSG...) \
enum _CONCAT(__build_assert_enum, __COUNTER__) { \
_CONCAT(__build_assert, __COUNTER__) = 1 / !!(EXPR) \
}
#endif
/*
* This is meant to be used in conjunction with __in_section() and similar
* where scattered structure instances are concatenated together by the linker
* and walked by the code at run time just like a contiguous array of such
* structures.
*
* Assemblers and linkers may insert alignment padding by default whose
* size is larger than the natural alignment for those structures when
* gathering various section segments together, messing up the array walk.
* To prevent this, we need to provide an explicit alignment not to rely
* on the default that might just work by luck.
*
* Alignment statements in linker scripts are not sufficient as
* the assembler may add padding by itself to each segment when switching
* between sections within the same file even if it merges many such segments
* into a single section in the end.
*/
#define Z_DECL_ALIGN(type) __aligned(__alignof(type)) type
/* Check if a pointer is aligned for against a specific byte boundary */
#define IS_PTR_ALIGNED_BYTES(ptr, bytes) ((((uintptr_t)ptr) % bytes) == 0)
/* Check if a pointer is aligned enough for a particular data type. */
#define IS_PTR_ALIGNED(ptr, type) IS_PTR_ALIGNED_BYTES(ptr, __alignof(type))
/**
* @brief Iterable Sections APIs
* @defgroup iterable_section_apis Iterable Sections APIs
* @{
*/
/**
* @brief Defines a new element for an iterable section for a generic type.
*
* @details
* Convenience helper combining __in_section() and Z_DECL_ALIGN().
* The section name will be '.[SECNAME].static.[SECTION_POSTFIX]'
*
* In the linker script, create output sections for these using
* ITERABLE_SECTION_ROM() or ITERABLE_SECTION_RAM().
*
* @note In order to store the element in ROM, a const specifier has to
* be added to the declaration: const TYPE_SECTION_ITERABLE(...);
*
* @param[in] type data type of variable
* @param[in] varname name of variable to place in section
* @param[in] secname type name of iterable section.
* @param[in] section_postfix postfix to use in section name
*/
#define TYPE_SECTION_ITERABLE(type, varname, secname, section_postfix) \
Z_DECL_ALIGN(type) varname \
__in_section(_##secname, static, section_postfix) __used __noasan
/**
* @brief iterable section start symbol for a generic type
*
* will return '_[OUT_TYPE]_list_start'.
*
* @param[in] secname type name of iterable section. For 'struct foobar' this
* would be TYPE_SECTION_START(foobar)
*
*/
#define TYPE_SECTION_START(secname) _CONCAT(_##secname, _list_start)
/**
* @brief iterable section end symbol for a generic type
*
* will return '_<SECNAME>_list_end'.
*
* @param[in] secname type name of iterable section. For 'struct foobar' this
* would be TYPE_SECTION_START(foobar)
*/
#define TYPE_SECTION_END(secname) _CONCAT(_##secname, _list_end)
/**
* @brief iterable section extern for start symbol for a generic type
*
* Helper macro to give extern for start of iterable section. The macro
* typically will be called TYPE_SECTION_START_EXTERN(struct foobar, foobar).
* This allows the macro to hand different types as well as cases where the
* type and section name may differ.
*
* @param[in] type data type of section
* @param[in] secname name of output section
*/
#define TYPE_SECTION_START_EXTERN(type, secname) \
extern type TYPE_SECTION_START(secname)[]
/**
* @brief iterable section extern for end symbol for a generic type
*
* Helper macro to give extern for end of iterable section. The macro
* typically will be called TYPE_SECTION_END_EXTERN(struct foobar, foobar).
* This allows the macro to hand different types as well as cases where the
* type and section name may differ.
*
* @param[in] type data type of section
* @param[in] secname name of output section
*/
#define TYPE_SECTION_END_EXTERN(type, secname) \
extern type TYPE_SECTION_END(secname)[]
/**
* @brief Iterate over a specified iterable section for a generic type
*
* @details
* Iterator for structure instances gathered by TYPE_SECTION_ITERABLE().
* The linker must provide a _<SECNAME>_list_start symbol and a
* _<SECNAME>_list_end symbol to mark the start and the end of the
* list of struct objects to iterate over. This is normally done using
* ITERABLE_SECTION_ROM() or ITERABLE_SECTION_RAM() in the linker script.
*/
#define TYPE_SECTION_FOREACH(type, secname, iterator) \
TYPE_SECTION_START_EXTERN(type, secname); \
TYPE_SECTION_END_EXTERN(type, secname); \
for (type * iterator = TYPE_SECTION_START(secname); ({ \
__ASSERT(iterator <= TYPE_SECTION_END(secname),\
"unexpected list end location"); \
iterator < TYPE_SECTION_END(secname); \
}); \
iterator++)
/**
* @brief Get element from section for a generic type.
*
* @note There is no protection against reading beyond the section.
*
* @param[in] type type of element
* @param[in] secname name of output section
* @param[in] i Index.
* @param[out] dst Pointer to location where pointer to element is written.
*/
#define TYPE_SECTION_GET(type, secname, i, dst) do { \
TYPE_SECTION_START_EXTERN(type, secname); \
*(dst) = &TYPE_SECTION_START(secname)[i]; \
} while (0)
/**
* @brief Count elements in a section for a generic type.
*
* @param[in] type type of element
* @param[in] secname name of output section
* @param[out] dst Pointer to location where result is written.
*/
#define TYPE_SECTION_COUNT(type, secname, dst) do { \
TYPE_SECTION_START_EXTERN(type, secname); \
TYPE_SECTION_END_EXTERN(type, secname); \
*(dst) = ((uintptr_t)TYPE_SECTION_END(secname) - \
(uintptr_t)TYPE_SECTION_START(secname)) / sizeof(type); \
} while (0)
/**
* @brief iterable section start symbol for a struct type
*
* @param[in] struct_type data type of section
*/
#define STRUCT_SECTION_START(struct_type) \
TYPE_SECTION_START(struct_type)
/**
* @brief iterable section extern for start symbol for a struct
*
* Helper macro to give extern for start of iterable section.
*
* @param[in] struct_type data type of section
*/
#define STRUCT_SECTION_START_EXTERN(struct_type) \
TYPE_SECTION_START_EXTERN(struct struct_type, struct_type)
/**
* @brief iterable section end symbol for a struct type
*
* @param[in] struct_type data type of section
*/
#define STRUCT_SECTION_END(struct_type) \
TYPE_SECTION_END(struct_type)
/**
* @brief iterable section extern for end symbol for a struct
*
* Helper macro to give extern for end of iterable section.
*
* @param[in] struct_type data type of section
*/
#define STRUCT_SECTION_END_EXTERN(struct_type) \
TYPE_SECTION_END_EXTERN(struct struct_type, struct_type)
/**
* @brief Defines a new element of alternate data type for an iterable section.
*
* @details
* Special variant of STRUCT_SECTION_ITERABLE(), for placing alternate
* data types within the iterable section of a specific data type. The
* data type sizes and semantics must be equivalent!
*/
#define STRUCT_SECTION_ITERABLE_ALTERNATE(secname, struct_type, varname) \
TYPE_SECTION_ITERABLE(struct struct_type, varname, secname, varname)
/**
* @brief Defines a new element for an iterable section.
*
* @details
* Convenience helper combining __in_section() and Z_DECL_ALIGN().
* The section name is the struct type prepended with an underscore.
* The subsection is "static" and the subsubsection is the variable name.
*
* In the linker script, create output sections for these using
* ITERABLE_SECTION_ROM() or ITERABLE_SECTION_RAM().
*
* @note In order to store the element in ROM, a const specifier has to
* be added to the declaration: const STRUCT_SECTION_ITERABLE(...);
*/
#define STRUCT_SECTION_ITERABLE(struct_type, varname) \
STRUCT_SECTION_ITERABLE_ALTERNATE(struct_type, struct_type, varname)
/**
* @brief Iterate over a specified iterable section (alternate).
*
* @details
* Iterator for structure instances gathered by STRUCT_SECTION_ITERABLE().
* The linker must provide a _<SECNAME>_list_start symbol and a
* _<SECNAME>_list_end symbol to mark the start and the end of the
* list of struct objects to iterate over. This is normally done using
* ITERABLE_SECTION_ROM() or ITERABLE_SECTION_RAM() in the linker script.
*/
#define STRUCT_SECTION_FOREACH_ALTERNATE(secname, struct_type, iterator) \
TYPE_SECTION_FOREACH(struct struct_type, secname, iterator)
/**
* @brief Iterate over a specified iterable section.
*
* @details
* Iterator for structure instances gathered by STRUCT_SECTION_ITERABLE().
* The linker must provide a _<struct_type>_list_start symbol and a
* _<struct_type>_list_end symbol to mark the start and the end of the
* list of struct objects to iterate over. This is normally done using
* ITERABLE_SECTION_ROM() or ITERABLE_SECTION_RAM() in the linker script.
*/
#define STRUCT_SECTION_FOREACH(struct_type, iterator) \
STRUCT_SECTION_FOREACH_ALTERNATE(struct_type, struct_type, iterator)
/**
* @brief Get element from section.
*
* @note There is no protection against reading beyond the section.
*
* @param[in] struct_type Struct type.
* @param[in] i Index.
* @param[out] dst Pointer to location where pointer to element is written.
*/
#define STRUCT_SECTION_GET(struct_type, i, dst) \
TYPE_SECTION_GET(struct struct_type, struct_type, i, dst)
/**
* @brief Count elements in a section.
*
* @param[in] struct_type Struct type
* @param[out] dst Pointer to location where result is written.
*/
#define STRUCT_SECTION_COUNT(struct_type, dst) \
TYPE_SECTION_COUNT(struct struct_type, struct_type, dst);
/**
* @}
*/ /* end of struct_section_apis */
/** @brief Tag a symbol (e.g. function) to be kept in the binary even though it is not used.
*
* It prevents symbol from being removed by the linker garbage collector. It
* is achieved by adding a pointer to that symbol to the kept memory section.
*
* @param symbol Symbol to keep.
*/
#define LINKER_KEEP(symbol) \
static const void * const symbol##_ptr __used \
__attribute__((__section__(".symbol_to_keep"))) = (void *)&symbol
#endif /* ZEPHYR_INCLUDE_TOOLCHAIN_COMMON_H_ */