Namespaced the generated headers with `zephyr` to prevent potential conflict with other headers. Introduce a temporary Kconfig `LEGACY_GENERATED_INCLUDE_PATH` that is enabled by default. This allows the developers to continue the use of the old include paths for the time being until it is deprecated and eventually removed. The Kconfig will generate a build-time warning message, similar to the `CONFIG_TIMER_RANDOM_GENERATOR`. Updated the includes path of in-tree sources accordingly. Most of the changes here are scripted, check the PR for more info. Signed-off-by: Yong Cong Sin <ycsin@meta.com>
340 lines
7.3 KiB
C
340 lines
7.3 KiB
C
/*
|
|
* Copyright (c) 2018 Intel Corporation
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <zephyr/kernel.h>
|
|
#include <zephyr/spinlock.h>
|
|
#include <ksched.h>
|
|
#include <timeout_q.h>
|
|
#include <zephyr/internal/syscall_handler.h>
|
|
#include <zephyr/drivers/timer/system_timer.h>
|
|
#include <zephyr/sys_clock.h>
|
|
|
|
static uint64_t curr_tick;
|
|
|
|
static sys_dlist_t timeout_list = SYS_DLIST_STATIC_INIT(&timeout_list);
|
|
|
|
static struct k_spinlock timeout_lock;
|
|
|
|
#define MAX_WAIT (IS_ENABLED(CONFIG_SYSTEM_CLOCK_SLOPPY_IDLE) \
|
|
? K_TICKS_FOREVER : INT_MAX)
|
|
|
|
/* Ticks left to process in the currently-executing sys_clock_announce() */
|
|
static int announce_remaining;
|
|
|
|
#if defined(CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME)
|
|
int z_clock_hw_cycles_per_sec = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC;
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline int z_vrfy_sys_clock_hw_cycles_per_sec_runtime_get(void)
|
|
{
|
|
return z_impl_sys_clock_hw_cycles_per_sec_runtime_get();
|
|
}
|
|
#include <zephyr/syscalls/sys_clock_hw_cycles_per_sec_runtime_get_mrsh.c>
|
|
#endif /* CONFIG_USERSPACE */
|
|
#endif /* CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME */
|
|
|
|
static struct _timeout *first(void)
|
|
{
|
|
sys_dnode_t *t = sys_dlist_peek_head(&timeout_list);
|
|
|
|
return (t == NULL) ? NULL : CONTAINER_OF(t, struct _timeout, node);
|
|
}
|
|
|
|
static struct _timeout *next(struct _timeout *t)
|
|
{
|
|
sys_dnode_t *n = sys_dlist_peek_next(&timeout_list, &t->node);
|
|
|
|
return (n == NULL) ? NULL : CONTAINER_OF(n, struct _timeout, node);
|
|
}
|
|
|
|
static void remove_timeout(struct _timeout *t)
|
|
{
|
|
if (next(t) != NULL) {
|
|
next(t)->dticks += t->dticks;
|
|
}
|
|
|
|
sys_dlist_remove(&t->node);
|
|
}
|
|
|
|
static int32_t elapsed(void)
|
|
{
|
|
/* While sys_clock_announce() is executing, new relative timeouts will be
|
|
* scheduled relatively to the currently firing timeout's original tick
|
|
* value (=curr_tick) rather than relative to the current
|
|
* sys_clock_elapsed().
|
|
*
|
|
* This means that timeouts being scheduled from within timeout callbacks
|
|
* will be scheduled at well-defined offsets from the currently firing
|
|
* timeout.
|
|
*
|
|
* As a side effect, the same will happen if an ISR with higher priority
|
|
* preempts a timeout callback and schedules a timeout.
|
|
*
|
|
* The distinction is implemented by looking at announce_remaining which
|
|
* will be non-zero while sys_clock_announce() is executing and zero
|
|
* otherwise.
|
|
*/
|
|
return announce_remaining == 0 ? sys_clock_elapsed() : 0U;
|
|
}
|
|
|
|
static int32_t next_timeout(void)
|
|
{
|
|
struct _timeout *to = first();
|
|
int32_t ticks_elapsed = elapsed();
|
|
int32_t ret;
|
|
|
|
if ((to == NULL) ||
|
|
((int64_t)(to->dticks - ticks_elapsed) > (int64_t)INT_MAX)) {
|
|
ret = MAX_WAIT;
|
|
} else {
|
|
ret = MAX(0, to->dticks - ticks_elapsed);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void z_add_timeout(struct _timeout *to, _timeout_func_t fn,
|
|
k_timeout_t timeout)
|
|
{
|
|
if (K_TIMEOUT_EQ(timeout, K_FOREVER)) {
|
|
return;
|
|
}
|
|
|
|
#ifdef CONFIG_KERNEL_COHERENCE
|
|
__ASSERT_NO_MSG(arch_mem_coherent(to));
|
|
#endif /* CONFIG_KERNEL_COHERENCE */
|
|
|
|
__ASSERT(!sys_dnode_is_linked(&to->node), "");
|
|
to->fn = fn;
|
|
|
|
K_SPINLOCK(&timeout_lock) {
|
|
struct _timeout *t;
|
|
|
|
if (IS_ENABLED(CONFIG_TIMEOUT_64BIT) &&
|
|
(Z_TICK_ABS(timeout.ticks) >= 0)) {
|
|
k_ticks_t ticks = Z_TICK_ABS(timeout.ticks) - curr_tick;
|
|
|
|
to->dticks = MAX(1, ticks);
|
|
} else {
|
|
to->dticks = timeout.ticks + 1 + elapsed();
|
|
}
|
|
|
|
for (t = first(); t != NULL; t = next(t)) {
|
|
if (t->dticks > to->dticks) {
|
|
t->dticks -= to->dticks;
|
|
sys_dlist_insert(&t->node, &to->node);
|
|
break;
|
|
}
|
|
to->dticks -= t->dticks;
|
|
}
|
|
|
|
if (t == NULL) {
|
|
sys_dlist_append(&timeout_list, &to->node);
|
|
}
|
|
|
|
if (to == first() && announce_remaining == 0) {
|
|
sys_clock_set_timeout(next_timeout(), false);
|
|
}
|
|
}
|
|
}
|
|
|
|
int z_abort_timeout(struct _timeout *to)
|
|
{
|
|
int ret = -EINVAL;
|
|
|
|
K_SPINLOCK(&timeout_lock) {
|
|
if (sys_dnode_is_linked(&to->node)) {
|
|
remove_timeout(to);
|
|
ret = 0;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* must be locked */
|
|
static k_ticks_t timeout_rem(const struct _timeout *timeout)
|
|
{
|
|
k_ticks_t ticks = 0;
|
|
|
|
for (struct _timeout *t = first(); t != NULL; t = next(t)) {
|
|
ticks += t->dticks;
|
|
if (timeout == t) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ticks;
|
|
}
|
|
|
|
k_ticks_t z_timeout_remaining(const struct _timeout *timeout)
|
|
{
|
|
k_ticks_t ticks = 0;
|
|
|
|
K_SPINLOCK(&timeout_lock) {
|
|
if (!z_is_inactive_timeout(timeout)) {
|
|
ticks = timeout_rem(timeout) - elapsed();
|
|
}
|
|
}
|
|
|
|
return ticks;
|
|
}
|
|
|
|
k_ticks_t z_timeout_expires(const struct _timeout *timeout)
|
|
{
|
|
k_ticks_t ticks = 0;
|
|
|
|
K_SPINLOCK(&timeout_lock) {
|
|
ticks = curr_tick;
|
|
if (!z_is_inactive_timeout(timeout)) {
|
|
ticks += timeout_rem(timeout);
|
|
}
|
|
}
|
|
|
|
return ticks;
|
|
}
|
|
|
|
int32_t z_get_next_timeout_expiry(void)
|
|
{
|
|
int32_t ret = (int32_t) K_TICKS_FOREVER;
|
|
|
|
K_SPINLOCK(&timeout_lock) {
|
|
ret = next_timeout();
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void sys_clock_announce(int32_t ticks)
|
|
{
|
|
k_spinlock_key_t key = k_spin_lock(&timeout_lock);
|
|
|
|
/* We release the lock around the callbacks below, so on SMP
|
|
* systems someone might be already running the loop. Don't
|
|
* race (which will cause paralllel execution of "sequential"
|
|
* timeouts and confuse apps), just increment the tick count
|
|
* and return.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_SMP) && (announce_remaining != 0)) {
|
|
announce_remaining += ticks;
|
|
k_spin_unlock(&timeout_lock, key);
|
|
return;
|
|
}
|
|
|
|
announce_remaining = ticks;
|
|
|
|
struct _timeout *t;
|
|
|
|
for (t = first();
|
|
(t != NULL) && (t->dticks <= announce_remaining);
|
|
t = first()) {
|
|
int dt = t->dticks;
|
|
|
|
curr_tick += dt;
|
|
t->dticks = 0;
|
|
remove_timeout(t);
|
|
|
|
k_spin_unlock(&timeout_lock, key);
|
|
t->fn(t);
|
|
key = k_spin_lock(&timeout_lock);
|
|
announce_remaining -= dt;
|
|
}
|
|
|
|
if (t != NULL) {
|
|
t->dticks -= announce_remaining;
|
|
}
|
|
|
|
curr_tick += announce_remaining;
|
|
announce_remaining = 0;
|
|
|
|
sys_clock_set_timeout(next_timeout(), false);
|
|
|
|
k_spin_unlock(&timeout_lock, key);
|
|
|
|
#ifdef CONFIG_TIMESLICING
|
|
z_time_slice();
|
|
#endif /* CONFIG_TIMESLICING */
|
|
}
|
|
|
|
int64_t sys_clock_tick_get(void)
|
|
{
|
|
uint64_t t = 0U;
|
|
|
|
K_SPINLOCK(&timeout_lock) {
|
|
t = curr_tick + elapsed();
|
|
}
|
|
return t;
|
|
}
|
|
|
|
uint32_t sys_clock_tick_get_32(void)
|
|
{
|
|
#ifdef CONFIG_TICKLESS_KERNEL
|
|
return (uint32_t)sys_clock_tick_get();
|
|
#else
|
|
return (uint32_t)curr_tick;
|
|
#endif /* CONFIG_TICKLESS_KERNEL */
|
|
}
|
|
|
|
int64_t z_impl_k_uptime_ticks(void)
|
|
{
|
|
return sys_clock_tick_get();
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
static inline int64_t z_vrfy_k_uptime_ticks(void)
|
|
{
|
|
return z_impl_k_uptime_ticks();
|
|
}
|
|
#include <zephyr/syscalls/k_uptime_ticks_mrsh.c>
|
|
#endif /* CONFIG_USERSPACE */
|
|
|
|
k_timepoint_t sys_timepoint_calc(k_timeout_t timeout)
|
|
{
|
|
k_timepoint_t timepoint;
|
|
|
|
if (K_TIMEOUT_EQ(timeout, K_FOREVER)) {
|
|
timepoint.tick = UINT64_MAX;
|
|
} else if (K_TIMEOUT_EQ(timeout, K_NO_WAIT)) {
|
|
timepoint.tick = 0;
|
|
} else {
|
|
k_ticks_t dt = timeout.ticks;
|
|
|
|
if (IS_ENABLED(CONFIG_TIMEOUT_64BIT) && Z_TICK_ABS(dt) >= 0) {
|
|
timepoint.tick = Z_TICK_ABS(dt);
|
|
} else {
|
|
timepoint.tick = sys_clock_tick_get() + MAX(1, dt);
|
|
}
|
|
}
|
|
|
|
return timepoint;
|
|
}
|
|
|
|
k_timeout_t sys_timepoint_timeout(k_timepoint_t timepoint)
|
|
{
|
|
uint64_t now, remaining;
|
|
|
|
if (timepoint.tick == UINT64_MAX) {
|
|
return K_FOREVER;
|
|
}
|
|
if (timepoint.tick == 0) {
|
|
return K_NO_WAIT;
|
|
}
|
|
|
|
now = sys_clock_tick_get();
|
|
remaining = (timepoint.tick > now) ? (timepoint.tick - now) : 0;
|
|
return K_TICKS(remaining);
|
|
}
|
|
|
|
#ifdef CONFIG_ZTEST
|
|
void z_impl_sys_clock_tick_set(uint64_t tick)
|
|
{
|
|
curr_tick = tick;
|
|
}
|
|
|
|
void z_vrfy_sys_clock_tick_set(uint64_t tick)
|
|
{
|
|
z_impl_sys_clock_tick_set(tick);
|
|
}
|
|
#endif /* CONFIG_ZTEST */
|