The ENTDAA does not have a way to assign DA that are with a PID. It will assign DAs that were in it's RRs in the order that they win arbitration. Assign only available addresses in to it's RRs before ENTDAA. Cleanup the attach api to no longer require a addr argument and remove the helper function `i3c_determine_default_addr`. This now looks at if it has a static address or if it already has a dynamic address (such as from DEFTGTS) and will register the address if either exist with precidence of dynamic addr over static addr. This also fixes up the look up for if a device already has a dynamic addr to find which pos of the RRs is it is in. Signed-off-by: Ryan McClelland <ryanmcclelland@meta.com>
3344 lines
103 KiB
C
3344 lines
103 KiB
C
/*
|
|
* Copyright (c) 2022 Meta Platforms, Inc. and its affiliates.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <errno.h>
|
|
|
|
#include <zephyr/drivers/i3c.h>
|
|
#include <zephyr/init.h>
|
|
#include <zephyr/kernel.h>
|
|
#include <zephyr/logging/log.h>
|
|
#include <zephyr/sys/byteorder.h>
|
|
#include <zephyr/sys/sys_io.h>
|
|
#include <zephyr/sys/util.h>
|
|
|
|
#define DEV_ID 0x0
|
|
#define DEV_ID_I3C_MASTER 0x5034
|
|
|
|
#define CONF_STATUS0 0x4
|
|
#define CONF_STATUS0_CMDR_DEPTH(x) (4 << (((x) & GENMASK(31, 29)) >> 29))
|
|
#define CONF_STATUS0_ECC_CHK BIT(28)
|
|
#define CONF_STATUS0_INTEG_CHK BIT(27)
|
|
#define CONF_STATUS0_CSR_DAP_CHK BIT(26)
|
|
#define CONF_STATUS0_TRANS_TOUT_CHK BIT(25)
|
|
#define CONF_STATUS0_PROT_FAULTS_CHK BIT(24)
|
|
#define CONF_STATUS0_GPO_NUM(x) (((x) & GENMASK(23, 16)) >> 16)
|
|
#define CONF_STATUS0_GPI_NUM(x) (((x) & GENMASK(15, 8)) >> 8)
|
|
#define CONF_STATUS0_IBIR_DEPTH(x) (4 << (((x) & GENMASK(7, 6)) >> 7))
|
|
/* CONF_STATUS0_SUPPORTS_DDR moved to CONF_STATUS1 in rev >= 1p7 */
|
|
#define CONF_STATUS0_SUPPORTS_DDR BIT(5)
|
|
#define CONF_STATUS0_SEC_MASTER BIT(4)
|
|
/* And it was replaced with a Dev Role mask */
|
|
#define CONF_STATUS0_DEV_ROLE(x) ((x) & GENMASK(5, 4) >> 4)
|
|
#define CONF_STATUS0_DEV_ROLE_MAIN_MASTER 0
|
|
#define CONF_STATUS0_DEV_ROLE_SEC_MASTER 1
|
|
#define CONF_STATUS0_DEV_ROLE_SLAVE 2
|
|
#define CONF_STATUS0_DEVS_NUM(x) ((x) & GENMASK(3, 0))
|
|
|
|
#define CONF_STATUS1 0x8
|
|
#define CONF_STATUS1_IBI_HW_RES(x) ((((x) & GENMASK(31, 28)) >> 28) + 1)
|
|
#define CONF_STATUS1_CMD_DEPTH(x) (4 << (((x) & GENMASK(27, 26)) >> 26))
|
|
#define CONF_STATUS1_SLV_DDR_RX_DEPTH(x) (8 << (((x) & GENMASK(25, 21)) >> 21))
|
|
#define CONF_STATUS1_SLV_DDR_TX_DEPTH(x) (8 << (((x) & GENMASK(20, 16)) >> 16))
|
|
#define CONF_STATUS1_SUPPORTS_DDR BIT(14)
|
|
#define CONF_STATUS1_ALT_MODE BIT(13)
|
|
#define CONF_STATUS1_IBI_DEPTH(x) (2 << (((x) & GENMASK(12, 10)) >> 10))
|
|
#define CONF_STATUS1_RX_DEPTH(x) (8 << (((x) & GENMASK(9, 5)) >> 5))
|
|
#define CONF_STATUS1_TX_DEPTH(x) (8 << ((x) & GENMASK(4, 0)))
|
|
|
|
#define REV_ID 0xc
|
|
#define REV_ID_VID(id) (((id) & GENMASK(31, 20)) >> 20)
|
|
#define REV_ID_PID(id) (((id) & GENMASK(19, 8)) >> 8)
|
|
#define REV_ID_REV(id) ((id) & GENMASK(7, 0))
|
|
#define REV_ID_VERSION(m, n) ((m << 5) | (n))
|
|
#define REV_ID_REV_MAJOR(id) (((id) & GENMASK(7, 5)) >> 5)
|
|
#define REV_ID_REV_MINOR(id) ((id) & GENMASK(4, 0))
|
|
|
|
#define CTRL 0x10
|
|
#define CTRL_DEV_EN BIT(31)
|
|
#define CTRL_HALT_EN BIT(30)
|
|
#define CTRL_MCS BIT(29)
|
|
#define CTRL_MCS_EN BIT(28)
|
|
#define CTRL_I3C_11_SUPP BIT(26)
|
|
#define CTRL_THD_DELAY(x) (((x) << 24) & GENMASK(25, 24))
|
|
#define CTRL_TC_EN BIT(9)
|
|
#define CTRL_HJ_DISEC BIT(8)
|
|
#define CTRL_MST_ACK BIT(7)
|
|
#define CTRL_HJ_ACK BIT(6)
|
|
#define CTRL_HJ_INIT BIT(5)
|
|
#define CTRL_MST_INIT BIT(4)
|
|
#define CTRL_AHDR_OPT BIT(3)
|
|
#define CTRL_PURE_BUS_MODE 0
|
|
#define CTRL_MIXED_FAST_BUS_MODE 2
|
|
#define CTRL_MIXED_SLOW_BUS_MODE 3
|
|
#define CTRL_BUS_MODE_MASK GENMASK(1, 0)
|
|
#define THD_DELAY_MAX 3
|
|
|
|
#define PRESCL_CTRL0 0x14
|
|
#define PRESCL_CTRL0_I2C(x) ((x) << 16)
|
|
#define PRESCL_CTRL0_I3C(x) (x)
|
|
#define PRESCL_CTRL0_I3C_MAX GENMASK(9, 0)
|
|
#define PRESCL_CTRL0_I2C_MAX GENMASK(15, 0)
|
|
|
|
#define PRESCL_CTRL1 0x18
|
|
#define PRESCL_CTRL1_PP_LOW_MASK GENMASK(15, 8)
|
|
#define PRESCL_CTRL1_PP_LOW(x) ((x) << 8)
|
|
#define PRESCL_CTRL1_OD_LOW_MASK GENMASK(7, 0)
|
|
#define PRESCL_CTRL1_OD_LOW(x) (x)
|
|
|
|
#define SLV_STATUS4 0x1C
|
|
#define SLV_STATUS4_BUSCON_FILL_LVL GENMASK(16, 8)
|
|
#define SLV_STATUS5_BUSCON_DATA GENMASK(7, 0)
|
|
|
|
#define MST_IER 0x20
|
|
#define MST_IDR 0x24
|
|
#define MST_IMR 0x28
|
|
#define MST_ICR 0x2c
|
|
#define MST_ISR 0x30
|
|
#define MST_INT_HALTED BIT(18)
|
|
#define MST_INT_MR_DONE BIT(17)
|
|
#define MST_INT_IMM_COMP BIT(16)
|
|
#define MST_INT_TX_THR BIT(15)
|
|
#define MST_INT_TX_OVF BIT(14)
|
|
#define MST_INT_C_REF_ROV BIT(13)
|
|
#define MST_INT_IBID_THR BIT(12)
|
|
#define MST_INT_IBID_UNF BIT(11)
|
|
#define MST_INT_IBIR_THR BIT(10)
|
|
#define MST_INT_IBIR_UNF BIT(9)
|
|
#define MST_INT_IBIR_OVF BIT(8)
|
|
#define MST_INT_RX_THR BIT(7)
|
|
#define MST_INT_RX_UNF BIT(6)
|
|
#define MST_INT_CMDD_EMP BIT(5)
|
|
#define MST_INT_CMDD_THR BIT(4)
|
|
#define MST_INT_CMDD_OVF BIT(3)
|
|
#define MST_INT_CMDR_THR BIT(2)
|
|
#define MST_INT_CMDR_UNF BIT(1)
|
|
#define MST_INT_CMDR_OVF BIT(0)
|
|
#define MST_INT_MASK GENMASK(18, 0)
|
|
|
|
#define MST_STATUS0 0x34
|
|
#define MST_STATUS0_IDLE BIT(18)
|
|
#define MST_STATUS0_HALTED BIT(17)
|
|
#define MST_STATUS0_MASTER_MODE BIT(16)
|
|
#define MST_STATUS0_TX_FULL BIT(13)
|
|
#define MST_STATUS0_IBID_FULL BIT(12)
|
|
#define MST_STATUS0_IBIR_FULL BIT(11)
|
|
#define MST_STATUS0_RX_FULL BIT(10)
|
|
#define MST_STATUS0_CMDD_FULL BIT(9)
|
|
#define MST_STATUS0_CMDR_FULL BIT(8)
|
|
#define MST_STATUS0_TX_EMP BIT(5)
|
|
#define MST_STATUS0_IBID_EMP BIT(4)
|
|
#define MST_STATUS0_IBIR_EMP BIT(3)
|
|
#define MST_STATUS0_RX_EMP BIT(2)
|
|
#define MST_STATUS0_CMDD_EMP BIT(1)
|
|
#define MST_STATUS0_CMDR_EMP BIT(0)
|
|
|
|
#define CMDR 0x38
|
|
#define CMDR_NO_ERROR 0
|
|
#define CMDR_DDR_PREAMBLE_ERROR 1
|
|
#define CMDR_DDR_PARITY_ERROR 2
|
|
#define CMDR_DDR_RX_FIFO_OVF 3
|
|
#define CMDR_DDR_TX_FIFO_UNF 4
|
|
#define CMDR_M0_ERROR 5
|
|
#define CMDR_M1_ERROR 6
|
|
#define CMDR_M2_ERROR 7
|
|
#define CMDR_MST_ABORT 8
|
|
#define CMDR_NACK_RESP 9
|
|
#define CMDR_INVALID_DA 10
|
|
#define CMDR_DDR_DROPPED 11
|
|
#define CMDR_ERROR(x) (((x) & GENMASK(27, 24)) >> 24)
|
|
#define CMDR_XFER_BYTES(x) (((x) & GENMASK(19, 8)) >> 8)
|
|
#define CMDR_CMDID_HJACK_DISEC 0xfe
|
|
#define CMDR_CMDID_HJACK_ENTDAA 0xff
|
|
#define CMDR_CMDID(x) ((x) & GENMASK(7, 0))
|
|
|
|
#define IBIR 0x3c
|
|
#define IBIR_ACKED BIT(12)
|
|
#define IBIR_SLVID(x) (((x) & GENMASK(11, 8)) >> 8)
|
|
#define IBIR_SLVID_INV 0xF
|
|
#define IBIR_ERROR BIT(7)
|
|
#define IBIR_XFER_BYTES(x) (((x) & GENMASK(6, 2)) >> 2)
|
|
#define IBIR_TYPE_IBI 0
|
|
#define IBIR_TYPE_HJ 1
|
|
#define IBIR_TYPE_MR 2
|
|
#define IBIR_TYPE(x) ((x) & GENMASK(1, 0))
|
|
|
|
#define SLV_IER 0x40
|
|
#define SLV_IDR 0x44
|
|
#define SLV_IMR 0x48
|
|
#define SLV_ICR 0x4c
|
|
#define SLV_ISR 0x50
|
|
#define SLV_INT_CHIP_RST BIT(31)
|
|
#define SLV_INT_PERIPH_RST BIT(30)
|
|
#define SLV_INT_FLUSH_DONE BIT(29)
|
|
#define SLV_INT_RST_DAA BIT(28)
|
|
#define SLV_INT_BUSCON_UP BIT(26)
|
|
#define SLV_INT_MRL_UP BIT(25)
|
|
#define SLV_INT_MWL_UP BIT(24)
|
|
#define SLV_INT_IBI_THR BIT(23)
|
|
#define SLV_INT_IBI_DONE BIT(22)
|
|
#define SLV_INT_DEFSLVS BIT(21)
|
|
#define SLV_INT_TM BIT(20)
|
|
#define SLV_INT_ERROR BIT(19)
|
|
#define SLV_INT_EVENT_UP BIT(18)
|
|
#define SLV_INT_HJ_DONE BIT(17)
|
|
#define SLV_INT_MR_DONE BIT(16)
|
|
#define SLV_INT_DA_UPD BIT(15)
|
|
#define SLV_INT_SDR_FAIL BIT(14)
|
|
#define SLV_INT_DDR_FAIL BIT(13)
|
|
#define SLV_INT_M_RD_ABORT BIT(12)
|
|
#define SLV_INT_DDR_RX_THR BIT(11)
|
|
#define SLV_INT_DDR_TX_THR BIT(10)
|
|
#define SLV_INT_SDR_RX_THR BIT(9)
|
|
#define SLV_INT_SDR_TX_THR BIT(8)
|
|
#define SLV_INT_DDR_RX_UNF BIT(7)
|
|
#define SLV_INT_DDR_TX_OVF BIT(6)
|
|
#define SLV_INT_SDR_RX_UNF BIT(5)
|
|
#define SLV_INT_SDR_TX_OVF BIT(4)
|
|
#define SLV_INT_DDR_RD_COMP BIT(3)
|
|
#define SLV_INT_DDR_WR_COMP BIT(2)
|
|
#define SLV_INT_SDR_RD_COMP BIT(1)
|
|
#define SLV_INT_SDR_WR_COMP BIT(0)
|
|
|
|
#define SLV_STATUS0 0x54
|
|
#define SLV_STATUS0_IBI_XFRD_BYTEs(s) (((s) & GENMASK(31, 24)) >> 24)
|
|
#define SLV_STATUS0_REG_ADDR(s) (((s) & GENMASK(23, 16)) >> 16)
|
|
#define SLV_STATUS0_XFRD_BYTES(s) ((s) & GENMASK(15, 0))
|
|
|
|
#define SLV_STATUS1 0x58
|
|
#define SLV_STATUS1_SCL_IN_RST BIT(31)
|
|
#define SLV_STATUS1_HJ_IN_USE BIT(30)
|
|
#define SLV_STATUS1_NACK_NXT_PW BIT(29)
|
|
#define SLV_STATUS1_NACK_NXT_PR BIT(28)
|
|
#define SLV_STATUS1_MR_PEND BIT(27)
|
|
#define SLV_STATUS1_HJ_PEND BIT(26)
|
|
#define SLV_STATUS1_IBI_PEND BIT(25)
|
|
#define SLV_STATUS1_IBI_DIS BIT(24)
|
|
#define SLV_STATUS1_BUS_VAR BIT(23)
|
|
#define SLV_STATUS1_TCAM0_DIS BIT(22)
|
|
#define SLV_STATUS1_AS(s) (((s) & GENMASK(21, 20)) >> 20)
|
|
#define SLV_STATUS1_VEN_TM BIT(19)
|
|
#define SLV_STATUS1_HJ_DIS BIT(18)
|
|
#define SLV_STATUS1_MR_DIS BIT(17)
|
|
#define SLV_STATUS1_PROT_ERR BIT(16)
|
|
#define SLV_STATUS1_DA(s) (((s) & GENMASK(15, 9)) >> 9)
|
|
#define SLV_STATUS1_HAS_DA BIT(8)
|
|
#define SLV_STATUS1_DDR_RX_FULL BIT(7)
|
|
#define SLV_STATUS1_DDR_TX_FULL BIT(6)
|
|
#define SLV_STATUS1_DDR_RX_EMPTY BIT(5)
|
|
#define SLV_STATUS1_DDR_TX_EMPTY BIT(4)
|
|
#define SLV_STATUS1_SDR_RX_FULL BIT(3)
|
|
#define SLV_STATUS1_SDR_TX_FULL BIT(2)
|
|
#define SLV_STATUS1_SDR_RX_EMPTY BIT(1)
|
|
#define SLV_STATUS1_SDR_TX_EMPTY BIT(0)
|
|
|
|
#define SLV_IBI_CTRL 0x5c
|
|
#define SLV_IBI_TCAM_EVNT(x) ((x) << 27)
|
|
#define SLV_IBI_PL(x) ((x) << 16)
|
|
#define SLV_IBI_TCAM0 BIT(9)
|
|
#define SLV_IBI_REQ BIT(8)
|
|
#define SLV_IBI_AUTO_CLR_IBI 1
|
|
#define SLV_IBI_AUTO_CLR_PR 2
|
|
#define SLV_IBI_AUTO_CLR_IBI_OR_PR 3
|
|
#define SLV_IBI_CLEAR_TRIGGER(x) ((x) << 4)
|
|
|
|
#define CMD0_FIFO 0x60
|
|
#define CMD0_FIFO_IS_DDR BIT(31)
|
|
#define CMD0_FIFO_IS_CCC BIT(30)
|
|
#define CMD0_FIFO_BCH BIT(29)
|
|
#define XMIT_BURST_STATIC_SUBADDR 0
|
|
#define XMIT_SINGLE_INC_SUBADDR 1
|
|
#define XMIT_SINGLE_STATIC_SUBADDR 2
|
|
#define XMIT_BURST_WITHOUT_SUBADDR 3
|
|
#define CMD0_FIFO_PRIV_XMIT_MODE(m) ((m) << 27)
|
|
#define CMD0_FIFO_SBCA BIT(26)
|
|
#define CMD0_FIFO_RSBC BIT(25)
|
|
#define CMD0_FIFO_IS_10B BIT(24)
|
|
#define CMD0_FIFO_PL_LEN(l) ((l) << 12)
|
|
#define CMD0_FIFO_IS_DB BIT(11)
|
|
#define CMD0_FIFO_PL_LEN_MAX 4095
|
|
#define CMD0_FIFO_DEV_ADDR(a) ((a) << 1)
|
|
#define CMD0_FIFO_RNW BIT(0)
|
|
|
|
#define CMD1_FIFO 0x64
|
|
#define CMD1_FIFO_CMDID(id) ((id) << 24)
|
|
#define CMD1_FIFO_DB(db) (((db) & GENMASK(15, 8)) << 8)
|
|
#define CMD1_FIFO_CSRADDR(a) (a)
|
|
#define CMD1_FIFO_CCC(id) (id)
|
|
|
|
#define TX_FIFO 0x68
|
|
|
|
#define TX_FIFO_STATUS 0x6C
|
|
|
|
#define IMD_CMD0 0x70
|
|
#define IMD_CMD0_PL_LEN(l) ((l) << 12)
|
|
#define IMD_CMD0_DEV_ADDR(a) ((a) << 1)
|
|
#define IMD_CMD0_RNW BIT(0)
|
|
|
|
#define IMD_CMD1 0x74
|
|
#define IMD_CMD1_CCC(id) (id)
|
|
|
|
#define IMD_DATA 0x78
|
|
#define RX_FIFO 0x80
|
|
#define IBI_DATA_FIFO 0x84
|
|
#define SLV_DDR_TX_FIFO 0x88
|
|
#define SLV_DDR_RX_FIFO 0x8c
|
|
#define DDR_PREAMBLE_MASK GENMASK(19, 18)
|
|
#define DDR_PREAMBLE_CMD_CRC 0x1 << 18
|
|
#define DDR_PREAMBLE_DATA_ABORT 0x2 << 18
|
|
#define DDR_PREAMBLE_DATA_ABORT_ALT 0x3 << 18
|
|
#define DDR_DATA(x) (((x) & GENMASK(17, 2)) >> 2)
|
|
#define DDR_EVEN_PARITY BIT(0)
|
|
#define DDR_ODD_PARITY BIT(1)
|
|
#define DDR_CRC_AND_HEADER_SIZE 0x4
|
|
#define DDR_CONVERT_BUF_LEN(x) (4 * (x))
|
|
|
|
#define HDR_CMD_RD BIT(15)
|
|
#define HDR_CMD_CODE(c) (((c) & GENMASK(6, 0)) << 8)
|
|
#define DDR_CRC_TOKEN (0xC << 14)
|
|
#define DDR_CRC_TOKEN_MASK GENMASK(17, 14)
|
|
#define DDR_CRC(t) (((t) & (GENMASK(13, 9))) >> 9)
|
|
#define DDR_CRC_WR_SETUP BIT(8)
|
|
|
|
#define CMD_IBI_THR_CTRL 0x90
|
|
#define IBIR_THR(t) ((t) << 24)
|
|
#define CMDR_THR(t) ((t) << 16)
|
|
#define CMDR_THR_MASK (GENMASK(20, 16))
|
|
#define IBI_THR(t) ((t) << 8)
|
|
#define CMD_THR(t) (t)
|
|
|
|
#define TX_RX_THR_CTRL 0x94
|
|
#define RX_THR(t) ((t) << 16)
|
|
#define RX_THR_MASK (GENMASK(31, 16))
|
|
#define TX_THR(t) (t)
|
|
#define TX_THR_MASK (GENMASK(15, 0))
|
|
|
|
#define SLV_DDR_TX_RX_THR_CTRL 0x98
|
|
#define SLV_DDR_RX_THR(t) ((t) << 16)
|
|
#define SLV_DDR_TX_THR(t) (t)
|
|
|
|
#define FLUSH_CTRL 0x9c
|
|
#define FLUSH_IBI_RESP BIT(24)
|
|
#define FLUSH_CMD_RESP BIT(23)
|
|
#define FLUSH_SLV_DDR_RX_FIFO BIT(22)
|
|
#define FLUSH_SLV_DDR_TX_FIFO BIT(21)
|
|
#define FLUSH_IMM_FIFO BIT(20)
|
|
#define FLUSH_IBI_FIFO BIT(19)
|
|
#define FLUSH_RX_FIFO BIT(18)
|
|
#define FLUSH_TX_FIFO BIT(17)
|
|
#define FLUSH_CMD_FIFO BIT(16)
|
|
|
|
#define SLV_CTRL 0xA0
|
|
|
|
#define SLV_PROT_ERR_TYPE 0xA4
|
|
#define SLV_ERR6_IBI BIT(9)
|
|
#define SLV_ERR6_PR BIT(8)
|
|
#define SLV_ERR_GETCCC BIT(7)
|
|
#define SLV_ERR5 BIT(6)
|
|
#define SLV_ERR4 BIT(5)
|
|
#define SLV_ERR3 BIT(4)
|
|
#define SLV_ERR2_PW BIT(3)
|
|
#define SLV_ERR2_SETCCC BIT(2)
|
|
#define SLV_ERR1 BIT(1)
|
|
#define SLV_ERR0 BIT(0)
|
|
|
|
#define SLV_STATUS2 0xA8
|
|
|
|
#define SLV_STATUS3 0xAC
|
|
#define SLV_STATUS3_BC_FSM(s) (((s) & GENMASK(26, 16)) >> 16)
|
|
#define SLV_STATUS3_MWL(s) ((s) & GENMASK(15, 0))
|
|
|
|
#define TTO_PRESCL_CTRL0 0xb0
|
|
#define TTO_PRESCL_CTRL0_PRESCL_I2C(x) ((x) << 16)
|
|
#define TTO_PRESCL_CTRL0_PRESCL_I3C(x) (x)
|
|
|
|
#define TTO_PRESCL_CTRL1 0xb4
|
|
#define TTO_PRESCL_CTRL1_DIVB(x) ((x) << 16)
|
|
#define TTO_PRESCL_CTRL1_DIVA(x) (x)
|
|
#define TTO_PRESCL_CTRL1_PP_LOW(x) ((x) << 8)
|
|
#define TTO_PRESCL_CTRL1_OD_LOW(x) (x)
|
|
|
|
#define DEVS_CTRL 0xb8
|
|
#define DEVS_CTRL_DEV_CLR_SHIFT 16
|
|
#define DEVS_CTRL_DEV_CLR_ALL GENMASK(31, 16)
|
|
#define DEVS_CTRL_DEV_CLR(dev) BIT(16 + (dev))
|
|
#define DEVS_CTRL_DEV_ACTIVE(dev) BIT(dev)
|
|
#define DEVS_CTRL_DEVS_ACTIVE_MASK GENMASK(15, 0)
|
|
#define MAX_DEVS 16
|
|
|
|
#define DEV_ID_RR0(d) (0xc0 + ((d) * 0x10))
|
|
#define DEV_ID_RR0_LVR_EXT_ADDR BIT(11)
|
|
#define DEV_ID_RR0_HDR_CAP BIT(10)
|
|
#define DEV_ID_RR0_IS_I3C BIT(9)
|
|
#define DEV_ID_RR0_DEV_ADDR_MASK (GENMASK(7, 1) | GENMASK(15, 13))
|
|
#define DEV_ID_RR0_SET_DEV_ADDR(a) (((a << 1) & GENMASK(7, 1)) | (((a) & GENMASK(9, 7)) << 13))
|
|
#define DEV_ID_RR0_GET_DEV_ADDR(x) ((((x) >> 1) & GENMASK(6, 0)) | (((x) >> 6) & GENMASK(9, 7)))
|
|
|
|
#define DEV_ID_RR1(d) (0xc4 + ((d) * 0x10))
|
|
#define DEV_ID_RR1_PID_MSB(pid) (pid)
|
|
|
|
#define DEV_ID_RR2(d) (0xc8 + ((d) * 0x10))
|
|
#define DEV_ID_RR2_PID_LSB(pid) ((pid) << 16)
|
|
#define DEV_ID_RR2_BCR(bcr) ((bcr) << 8)
|
|
#define DEV_ID_RR2_DCR(dcr) (dcr)
|
|
#define DEV_ID_RR2_LVR(lvr) (lvr)
|
|
|
|
#define SIR_MAP(x) (0x180 + ((x) * 4))
|
|
#define SIR_MAP_DEV_REG(d) SIR_MAP((d) / 2)
|
|
#define SIR_MAP_DEV_SHIFT(d, fs) ((fs) + (((d) % 2) ? 16 : 0))
|
|
#define SIR_MAP_DEV_CONF_MASK(d) (GENMASK(15, 0) << (((d) % 2) ? 16 : 0))
|
|
#define SIR_MAP_DEV_CONF(d, c) ((c) << (((d) % 2) ? 16 : 0))
|
|
#define DEV_ROLE_SLAVE 0
|
|
#define DEV_ROLE_MASTER 1
|
|
#define SIR_MAP_DEV_ROLE(role) ((role) << 14)
|
|
#define SIR_MAP_DEV_SLOW BIT(13)
|
|
#define SIR_MAP_DEV_PL(l) ((l) << 8)
|
|
#define SIR_MAP_PL_MAX GENMASK(4, 0)
|
|
#define SIR_MAP_DEV_DA(a) ((a) << 1)
|
|
#define SIR_MAP_DEV_ACK BIT(0)
|
|
|
|
#define GRPADDR_LIST 0x198
|
|
|
|
#define GRPADDR_CS 0x19C
|
|
|
|
#define GPIR_WORD(x) (0x200 + ((x) * 4))
|
|
#define GPI_REG(val, id) (((val) >> (((id) % 4) * 8)) & GENMASK(7, 0))
|
|
|
|
#define GPOR_WORD(x) (0x220 + ((x) * 4))
|
|
#define GPO_REG(val, id) (((val) >> (((id) % 4) * 8)) & GENMASK(7, 0))
|
|
|
|
#define ASF_INT_STATUS 0x300
|
|
#define ASF_INT_RAW_STATUS 0x304
|
|
#define ASF_INT_MASK 0x308
|
|
#define ASF_INT_TEST 0x30c
|
|
#define ASF_INT_FATAL_SELECT 0x310
|
|
#define ASF_INTEGRITY_ERR BIT(6)
|
|
#define ASF_PROTOCOL_ERR BIT(5)
|
|
#define ASF_TRANS_TIMEOUT_ERR BIT(4)
|
|
#define ASF_CSR_ERR BIT(3)
|
|
#define ASF_DAP_ERR BIT(2)
|
|
#define ASF_SRAM_UNCORR_ERR BIT(1)
|
|
#define ASF_SRAM_CORR_ERR BIT(0)
|
|
|
|
#define ASF_SRAM_CORR_FAULT_STATUS 0x320
|
|
#define ASF_SRAM_UNCORR_FAULT_STATUS 0x324
|
|
#define ASF_SRAM_CORR_FAULT_INSTANCE(x) ((x) >> 24)
|
|
#define ASF_SRAM_CORR_FAULT_ADDR(x) ((x) & GENMASK(23, 0))
|
|
|
|
#define ASF_SRAM_FAULT_STATS 0x328
|
|
#define ASF_SRAM_FAULT_UNCORR_STATS(x) ((x) >> 16)
|
|
#define ASF_SRAM_FAULT_CORR_STATS(x) ((x) & GENMASK(15, 0))
|
|
|
|
#define ASF_TRANS_TOUT_CTRL 0x330
|
|
#define ASF_TRANS_TOUT_EN BIT(31)
|
|
#define ASF_TRANS_TOUT_VAL(x) (x)
|
|
|
|
#define ASF_TRANS_TOUT_FAULT_MASK 0x334
|
|
#define ASF_TRANS_TOUT_FAULT_STATUS 0x338
|
|
#define ASF_TRANS_TOUT_FAULT_APB BIT(3)
|
|
#define ASF_TRANS_TOUT_FAULT_SCL_LOW BIT(2)
|
|
#define ASF_TRANS_TOUT_FAULT_SCL_HIGH BIT(1)
|
|
#define ASF_TRANS_TOUT_FAULT_FSCL_HIGH BIT(0)
|
|
|
|
#define ASF_PROTO_FAULT_MASK 0x340
|
|
#define ASF_PROTO_FAULT_STATUS 0x344
|
|
#define ASF_PROTO_FAULT_SLVSDR_RD_ABORT BIT(31)
|
|
#define ASF_PROTO_FAULT_SLVDDR_FAIL BIT(30)
|
|
#define ASF_PROTO_FAULT_S(x) BIT(16 + (x))
|
|
#define ASF_PROTO_FAULT_MSTSDR_RD_ABORT BIT(15)
|
|
#define ASF_PROTO_FAULT_MSTDDR_FAIL BIT(14)
|
|
#define ASF_PROTO_FAULT_M(x) BIT(x)
|
|
|
|
/*******************************************************************************
|
|
* Local Constants Definition
|
|
******************************************************************************/
|
|
|
|
/* TODO: this needs to be configurable in the dts...somehow */
|
|
#define I3C_CONTROLLER_ADDR 0x08
|
|
|
|
/* Maximum i3c devices that the IP can be built with */
|
|
#define I3C_MAX_DEVS 11
|
|
#define I3C_MAX_MSGS 10
|
|
#define I3C_SIR_DEFAULT_DA 0x7F
|
|
#define I3C_MAX_IDLE_CANCEL_WAIT_RETRIES 50
|
|
#define I3C_PRESCL_REG_SCALE (4)
|
|
#define I2C_PRESCL_REG_SCALE (5)
|
|
#define I3C_WAIT_FOR_IDLE_STATE_US 100
|
|
#define I3C_IDLE_TIMEOUT_CYC \
|
|
(I3C_WAIT_FOR_IDLE_STATE_US * (sys_clock_hw_cycles_per_sec() / USEC_PER_SEC))
|
|
|
|
/* Target T_LOW period in open-drain mode. */
|
|
#define I3C_BUS_TLOW_OD_MIN_NS 200
|
|
|
|
/*
|
|
* MIPI I3C v1.1.1 Spec defines SDA Signal Data Hold in Push Pull max as the
|
|
* minimum of the clock rise and fall time plus 3ns
|
|
*/
|
|
#define I3C_HD_PP_DEFAULT_NS 10
|
|
|
|
/* Interrupt thresholds. */
|
|
/* command response fifo threshold */
|
|
#define I3C_CMDR_THR 1
|
|
/* command tx fifo threshold - unused */
|
|
#define I3C_CMDD_THR 1
|
|
/* in-band-interrupt data fifo threshold - unused */
|
|
#define I3C_IBID_THR 1
|
|
/* in-band-interrupt response queue threshold */
|
|
#define I3C_IBIR_THR 1
|
|
/* tx data threshold - unused */
|
|
#define I3C_TX_THR 1
|
|
|
|
#define LOG_MODULE_NAME I3C_CADENCE
|
|
LOG_MODULE_REGISTER(I3C_CADENCE, CONFIG_I3C_CADENCE_LOG_LEVEL);
|
|
|
|
/*******************************************************************************
|
|
* Local Types Definition
|
|
******************************************************************************/
|
|
|
|
/** Describes peripheral HW configuration determined from CONFx registers. */
|
|
struct cdns_i3c_hw_config {
|
|
/* Revision ID */
|
|
uint32_t rev_id;
|
|
/* The maxiumum command queue depth. */
|
|
uint32_t cmd_mem_depth;
|
|
/* The maxiumum command response queue depth. */
|
|
uint32_t cmdr_mem_depth;
|
|
/* The maximum RX FIFO depth. */
|
|
uint32_t rx_mem_depth;
|
|
/* The maximum TX FIFO depth. */
|
|
uint32_t tx_mem_depth;
|
|
/* The maximum DDR RX FIFO depth. */
|
|
uint32_t ddr_rx_mem_depth;
|
|
/* The maximum DDR TX FIFO depth. */
|
|
uint32_t ddr_tx_mem_depth;
|
|
/* The maximum IBIR FIFO depth. */
|
|
uint32_t ibir_mem_depth;
|
|
/* The maximum IBI FIFO depth. */
|
|
uint32_t ibi_mem_depth;
|
|
};
|
|
|
|
/* Cadence I3C/I2C Device Private Data */
|
|
struct cdns_i3c_i2c_dev_data {
|
|
/* Device id within the retaining registers. This is set after bus initialization by the
|
|
* controller.
|
|
*/
|
|
uint8_t id;
|
|
};
|
|
|
|
/* Single command/transfer */
|
|
struct cdns_i3c_cmd {
|
|
uint32_t cmd0;
|
|
uint32_t cmd1;
|
|
uint32_t ddr_header;
|
|
uint32_t ddr_crc;
|
|
uint32_t len;
|
|
uint32_t *num_xfer;
|
|
void *buf;
|
|
uint32_t error;
|
|
enum i3c_data_rate hdr;
|
|
};
|
|
|
|
/* Transfer data */
|
|
struct cdns_i3c_xfer {
|
|
struct k_sem complete;
|
|
int ret;
|
|
int num_cmds;
|
|
struct cdns_i3c_cmd cmds[I3C_MAX_MSGS];
|
|
};
|
|
|
|
#ifdef CONFIG_I3C_USE_IBI
|
|
/* IBI transferred data */
|
|
struct cdns_i3c_ibi_buf {
|
|
uint8_t ibi_data[CONFIG_I3C_IBI_MAX_PAYLOAD_SIZE];
|
|
uint8_t ibi_data_cnt;
|
|
};
|
|
#endif
|
|
|
|
/* Driver config */
|
|
struct cdns_i3c_config {
|
|
struct i3c_driver_config common;
|
|
/** base address of the controller */
|
|
uintptr_t base;
|
|
/** input frequency to the I3C Cadence */
|
|
uint32_t input_frequency;
|
|
/** Interrupt configuration function. */
|
|
void (*irq_config_func)(const struct device *dev);
|
|
/** IBID Threshold value */
|
|
uint8_t ibid_thr;
|
|
};
|
|
|
|
/* Driver instance data */
|
|
struct cdns_i3c_data {
|
|
struct i3c_driver_data common;
|
|
struct cdns_i3c_hw_config hw_cfg;
|
|
#ifdef CONFIG_I3C_USE_IBI
|
|
struct cdns_i3c_ibi_buf ibi_buf;
|
|
#endif
|
|
struct k_mutex bus_lock;
|
|
struct cdns_i3c_i2c_dev_data cdns_i3c_i2c_priv_data[I3C_MAX_DEVS];
|
|
struct cdns_i3c_xfer xfer;
|
|
struct i3c_target_config *target_config;
|
|
struct k_sem ibi_hj_complete;
|
|
uint32_t free_rr_slots;
|
|
uint16_t fifo_bytes_read;
|
|
uint8_t max_devs;
|
|
};
|
|
|
|
/*******************************************************************************
|
|
* Global Variables Declaration
|
|
******************************************************************************/
|
|
|
|
/*******************************************************************************
|
|
* Local Functions Declaration
|
|
******************************************************************************/
|
|
|
|
/*******************************************************************************
|
|
* Private Functions Code
|
|
******************************************************************************/
|
|
|
|
static uint8_t i3c_cdns_crc5(uint8_t crc5, uint16_t word)
|
|
{
|
|
uint8_t crc0;
|
|
int i;
|
|
|
|
/*
|
|
* crc0 = next_data_bit ^ crc[4]
|
|
* 1 2 3 4
|
|
* crc[4:0] = { crc[3:2], crc[1]^crc0, crc[0], crc0 }
|
|
*/
|
|
for (i = 15; i >= 0; --i) {
|
|
crc0 = ((word >> i) ^ (crc5 >> 4)) & 0x1;
|
|
crc5 = ((crc5 << 1) & 0x1a) | (((crc5 >> 1) ^ crc0) << 2) | crc0;
|
|
}
|
|
|
|
return crc5 & 0x1f;
|
|
}
|
|
|
|
static uint8_t cdns_i3c_ddr_parity(uint16_t payload)
|
|
{
|
|
uint16_t pb;
|
|
uint8_t parity;
|
|
|
|
/* Calculate odd parity. */
|
|
pb = (payload >> 15) ^ (payload >> 13) ^ (payload >> 11) ^ (payload >> 9) ^ (payload >> 7) ^
|
|
(payload >> 5) ^ (payload >> 3) ^ (payload >> 1);
|
|
parity = (pb & 1) << 1;
|
|
/* Calculate even and 1 parity */
|
|
pb = (payload >> 14) ^ (payload >> 12) ^ (payload >> 10) ^ (payload >> 8) ^ (payload >> 6) ^
|
|
(payload >> 4) ^ (payload >> 2) ^ payload ^ 1;
|
|
parity |= (pb & 1);
|
|
|
|
return parity;
|
|
}
|
|
|
|
/* This prepares the ddr word from the payload add adding on parity, This
|
|
* does not write the preamble
|
|
*/
|
|
static uint32_t prepare_ddr_word(uint16_t payload)
|
|
{
|
|
return (uint32_t)payload << 2 | cdns_i3c_ddr_parity(payload);
|
|
}
|
|
|
|
/* This ensures that PA0 contains 1'b1 which allows for easier Bus Turnaround */
|
|
static uint16_t prepare_ddr_cmd_parity_adjustment_bit(uint16_t word)
|
|
{
|
|
uint16_t pb;
|
|
|
|
pb = (word >> 14) ^ (word >> 12) ^ (word >> 10) ^ (word >> 8) ^ (word >> 6) ^ (word >> 4) ^
|
|
(word >> 2);
|
|
|
|
if (pb & 1) {
|
|
word |= BIT(0);
|
|
}
|
|
|
|
return word;
|
|
}
|
|
|
|
/* Computes and sets parity */
|
|
/* Returns [7:1] 7-bit addr, [0] even/xor parity */
|
|
static uint8_t cdns_i3c_even_parity_byte(uint8_t byte)
|
|
{
|
|
uint8_t parity = 0;
|
|
uint8_t b = byte;
|
|
|
|
while (b) {
|
|
parity = !parity;
|
|
b = b & (b - 1);
|
|
}
|
|
b = (byte << 1) | !parity;
|
|
|
|
return b;
|
|
}
|
|
|
|
/* Check if command response fifo is empty */
|
|
static inline bool cdns_i3c_cmd_rsp_fifo_empty(const struct cdns_i3c_config *config)
|
|
{
|
|
uint32_t mst_st = sys_read32(config->base + MST_STATUS0);
|
|
|
|
return ((mst_st & MST_STATUS0_CMDR_EMP) ? true : false);
|
|
}
|
|
|
|
/* Check if command fifo is empty */
|
|
static inline bool cdns_i3c_cmd_fifo_empty(const struct cdns_i3c_config *config)
|
|
{
|
|
uint32_t mst_st = sys_read32(config->base + MST_STATUS0);
|
|
|
|
return ((mst_st & MST_STATUS0_CMDD_EMP) ? true : false);
|
|
}
|
|
|
|
/* Check if command fifo is full */
|
|
static inline bool cdns_i3c_cmd_fifo_full(const struct cdns_i3c_config *config)
|
|
{
|
|
uint32_t mst_st = sys_read32(config->base + MST_STATUS0);
|
|
|
|
return ((mst_st & MST_STATUS0_CMDD_FULL) ? true : false);
|
|
}
|
|
|
|
/* Check if ibi response fifo is empty */
|
|
static inline bool cdns_i3c_ibi_rsp_fifo_empty(const struct cdns_i3c_config *config)
|
|
{
|
|
uint32_t mst_st = sys_read32(config->base + MST_STATUS0);
|
|
|
|
return ((mst_st & MST_STATUS0_IBIR_EMP) ? true : false);
|
|
}
|
|
|
|
/* Check if tx fifo is full */
|
|
static inline bool cdns_i3c_tx_fifo_full(const struct cdns_i3c_config *config)
|
|
{
|
|
uint32_t mst_st = sys_read32(config->base + MST_STATUS0);
|
|
|
|
return ((mst_st & MST_STATUS0_TX_FULL) ? true : false);
|
|
}
|
|
|
|
/* Check if rx fifo is full */
|
|
static inline bool cdns_i3c_rx_fifo_full(const struct cdns_i3c_config *config)
|
|
{
|
|
uint32_t mst_st = sys_read32(config->base + MST_STATUS0);
|
|
|
|
return ((mst_st & MST_STATUS0_RX_FULL) ? true : false);
|
|
}
|
|
|
|
/* Check if rx fifo is empty */
|
|
static inline bool cdns_i3c_rx_fifo_empty(const struct cdns_i3c_config *config)
|
|
{
|
|
uint32_t mst_st = sys_read32(config->base + MST_STATUS0);
|
|
|
|
return ((mst_st & MST_STATUS0_RX_EMP) ? true : false);
|
|
}
|
|
|
|
/* Check if ibi fifo is empty */
|
|
static inline bool cdns_i3c_ibi_fifo_empty(const struct cdns_i3c_config *config)
|
|
{
|
|
uint32_t mst_st = sys_read32(config->base + MST_STATUS0);
|
|
|
|
return ((mst_st & MST_STATUS0_IBID_EMP) ? true : false);
|
|
}
|
|
|
|
/* Interrupt handling */
|
|
static inline void cdns_i3c_interrupts_disable(const struct cdns_i3c_config *config)
|
|
{
|
|
sys_write32(MST_INT_MASK, config->base + MST_IDR);
|
|
}
|
|
|
|
static inline void cdns_i3c_interrupts_clear(const struct cdns_i3c_config *config)
|
|
{
|
|
sys_write32(MST_INT_MASK, config->base + MST_ICR);
|
|
}
|
|
|
|
/* FIFO mgmt */
|
|
static void cdns_i3c_write_tx_fifo(const struct cdns_i3c_config *config, const void *buf,
|
|
uint32_t len)
|
|
{
|
|
const uint32_t *ptr = buf;
|
|
uint32_t remain, val;
|
|
|
|
for (remain = len; remain >= 4; remain -= 4) {
|
|
val = *ptr++;
|
|
sys_write32(val, config->base + TX_FIFO);
|
|
}
|
|
|
|
if (remain > 0) {
|
|
val = 0;
|
|
memcpy(&val, ptr, remain);
|
|
sys_write32(val, config->base + TX_FIFO);
|
|
}
|
|
}
|
|
|
|
static void cdns_i3c_write_ddr_tx_fifo(const struct cdns_i3c_config *config, const void *buf,
|
|
uint32_t len)
|
|
{
|
|
const uint32_t *ptr = buf;
|
|
uint32_t remain, val;
|
|
|
|
for (remain = len; remain >= 4; remain -= 4) {
|
|
val = *ptr++;
|
|
sys_write32(val, config->base + SLV_DDR_TX_FIFO);
|
|
}
|
|
|
|
if (remain > 0) {
|
|
val = 0;
|
|
memcpy(&val, ptr, remain);
|
|
sys_write32(val, config->base + SLV_DDR_TX_FIFO);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_I3C_USE_IBI
|
|
static void cdns_i3c_write_ibi_fifo(const struct cdns_i3c_config *config, const void *buf,
|
|
uint32_t len)
|
|
{
|
|
const uint32_t *ptr = buf;
|
|
uint32_t remain, val;
|
|
|
|
for (remain = len; remain >= 4; remain -= 4) {
|
|
val = *ptr++;
|
|
sys_write32(val, config->base + IBI_DATA_FIFO);
|
|
}
|
|
|
|
if (remain > 0) {
|
|
val = 0;
|
|
memcpy(&val, ptr, remain);
|
|
sys_write32(val, config->base + IBI_DATA_FIFO);
|
|
}
|
|
}
|
|
#endif /* CONFIG_I3C_USE_IBI */
|
|
|
|
static void cdns_i3c_target_read_rx_fifo(const struct device *dev)
|
|
{
|
|
const struct cdns_i3c_config *config = dev->config;
|
|
struct cdns_i3c_data *data = dev->data;
|
|
const struct i3c_target_callbacks *target_cb = data->target_config->callbacks;
|
|
|
|
/* Version 1p7 uses the full 32b FIFO width */
|
|
if (REV_ID_REV(data->hw_cfg.rev_id) >= REV_ID_VERSION(1, 7)) {
|
|
uint16_t xferred_bytes =
|
|
SLV_STATUS0_XFRD_BYTES(sys_read32(config->base + SLV_STATUS0));
|
|
|
|
for (int i = data->fifo_bytes_read; i < xferred_bytes; i += 4) {
|
|
uint32_t rx_data = sys_read32(config->base + RX_FIFO);
|
|
/* Call write received cb for each remaining byte */
|
|
for (int j = 0; j < MIN(4, xferred_bytes - i); j++) {
|
|
target_cb->write_received_cb(data->target_config,
|
|
(rx_data >> (8 * j)));
|
|
}
|
|
}
|
|
/*
|
|
* store the xfer bytes as the thr interrupt may trigger again as xferred_bytes will
|
|
* count up to the "total" bytes received
|
|
*/
|
|
data->fifo_bytes_read = xferred_bytes;
|
|
} else {
|
|
/*
|
|
* Target writes only write to the first byte of the 32 bit
|
|
* width fifo for older version
|
|
*/
|
|
uint8_t rx_data = (uint8_t)sys_read32(config->base + RX_FIFO);
|
|
|
|
target_cb->write_received_cb(data->target_config, rx_data);
|
|
}
|
|
}
|
|
|
|
static int cdns_i3c_read_rx_fifo(const struct cdns_i3c_config *config, void *buf, uint32_t len)
|
|
{
|
|
uint32_t *ptr = buf;
|
|
uint32_t remain, val;
|
|
|
|
for (remain = len; remain >= 4; remain -= 4) {
|
|
if (cdns_i3c_rx_fifo_empty(config)) {
|
|
return -EIO;
|
|
}
|
|
val = sys_le32_to_cpu(sys_read32(config->base + RX_FIFO));
|
|
*ptr++ = val;
|
|
}
|
|
|
|
if (remain > 0) {
|
|
if (cdns_i3c_rx_fifo_empty(config)) {
|
|
return -EIO;
|
|
}
|
|
val = sys_le32_to_cpu(sys_read32(config->base + RX_FIFO));
|
|
memcpy(ptr, &val, remain);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cdns_i3c_read_rx_fifo_ddr_xfer(const struct cdns_i3c_config *config, void *buf,
|
|
uint32_t len, uint32_t ddr_header)
|
|
{
|
|
uint16_t *ptr = buf;
|
|
uint32_t val;
|
|
uint32_t preamble;
|
|
uint8_t crc5 = 0x1F;
|
|
|
|
/*
|
|
* TODO: This function does not support threshold interrupts, it is expected that the
|
|
* whole packet to be within the FIFO and not split across multiple calls to this function.
|
|
*/
|
|
crc5 = i3c_cdns_crc5(crc5, (uint16_t)DDR_DATA(ddr_header));
|
|
|
|
for (int i = 0; i < len; i++) {
|
|
if (cdns_i3c_rx_fifo_empty(config)) {
|
|
return -EIO;
|
|
}
|
|
val = sys_read32(config->base + RX_FIFO);
|
|
preamble = (val & DDR_PREAMBLE_MASK);
|
|
|
|
if (preamble == DDR_PREAMBLE_DATA_ABORT ||
|
|
preamble == DDR_PREAMBLE_DATA_ABORT_ALT) {
|
|
*ptr++ = sys_cpu_to_be16((uint16_t)DDR_DATA(val));
|
|
crc5 = i3c_cdns_crc5(crc5, (uint16_t)DDR_DATA(val));
|
|
} else if ((preamble == DDR_PREAMBLE_CMD_CRC) &&
|
|
((val & DDR_CRC_TOKEN_MASK) == DDR_CRC_TOKEN)) {
|
|
uint8_t crc = (uint8_t)DDR_CRC(val);
|
|
|
|
if (crc5 != crc) {
|
|
LOG_ERR("DDR RX crc error");
|
|
return -EIO;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int cdns_i3c_wait_for_idle(const struct device *dev)
|
|
{
|
|
const struct cdns_i3c_config *config = dev->config;
|
|
uint32_t start_time = k_cycle_get_32();
|
|
|
|
/**
|
|
* Spin waiting for device to go idle. It is unlikely that this will
|
|
* actually take any time unless if the last transaction came immediately
|
|
* after an error condition.
|
|
*/
|
|
while (!(sys_read32(config->base + MST_STATUS0) & MST_STATUS0_IDLE)) {
|
|
if (k_cycle_get_32() - start_time > I3C_IDLE_TIMEOUT_CYC) {
|
|
return -EAGAIN;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cdns_i3c_set_prescalers(const struct device *dev)
|
|
{
|
|
struct cdns_i3c_data *data = dev->data;
|
|
const struct cdns_i3c_config *config = dev->config;
|
|
struct i3c_config_controller *ctrl_config = &data->common.ctrl_config;
|
|
|
|
/* These formulas are from section 6.2.1 of the Cadence I3C Master User Guide. */
|
|
uint32_t prescl_i3c = DIV_ROUND_UP(config->input_frequency,
|
|
(ctrl_config->scl.i3c * I3C_PRESCL_REG_SCALE)) -
|
|
1;
|
|
uint32_t prescl_i2c = DIV_ROUND_UP(config->input_frequency,
|
|
(ctrl_config->scl.i2c * I2C_PRESCL_REG_SCALE)) -
|
|
1;
|
|
|
|
/* update with actual value */
|
|
ctrl_config->scl.i3c = config->input_frequency / ((prescl_i3c + 1) * I3C_PRESCL_REG_SCALE);
|
|
ctrl_config->scl.i2c = config->input_frequency / ((prescl_i2c + 1) * I2C_PRESCL_REG_SCALE);
|
|
|
|
LOG_DBG("%s: I3C speed = %u, PRESCL_CTRL0.i3c = 0x%x", dev->name, ctrl_config->scl.i3c,
|
|
prescl_i3c);
|
|
LOG_DBG("%s: I2C speed = %u, PRESCL_CTRL0.i2c = 0x%x", dev->name, ctrl_config->scl.i2c,
|
|
prescl_i2c);
|
|
|
|
/* Calculate the OD_LOW value assuming a desired T_low period of 210ns. */
|
|
uint32_t pres_step = 1000000000 / (ctrl_config->scl.i3c * 4);
|
|
int32_t od_low = DIV_ROUND_UP(I3C_BUS_TLOW_OD_MIN_NS, pres_step) - 2;
|
|
|
|
if (od_low < 0) {
|
|
od_low = 0;
|
|
}
|
|
LOG_DBG("%s: PRESCL_CTRL1.od_low = 0x%x", dev->name, od_low);
|
|
|
|
/* disable in order to update timing */
|
|
uint32_t ctrl = sys_read32(config->base + CTRL);
|
|
|
|
if (ctrl & CTRL_DEV_EN) {
|
|
sys_write32(~CTRL_DEV_EN & ctrl, config->base + CTRL);
|
|
}
|
|
|
|
sys_write32(PRESCL_CTRL0_I3C(prescl_i3c) | PRESCL_CTRL0_I2C(prescl_i2c),
|
|
config->base + PRESCL_CTRL0);
|
|
|
|
/* Sets the open drain low time relative to the push-pull. */
|
|
sys_write32(PRESCL_CTRL1_OD_LOW(od_low & PRESCL_CTRL1_OD_LOW_MASK),
|
|
config->base + PRESCL_CTRL1);
|
|
|
|
/* reenable */
|
|
if (ctrl & CTRL_DEV_EN) {
|
|
sys_write32(CTRL_DEV_EN | ctrl, config->base + CTRL);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Compute RR0 Value from addr
|
|
*
|
|
* @param addr Address of the target
|
|
*
|
|
* @return RR0 value
|
|
*/
|
|
static uint32_t prepare_rr0_dev_address(uint16_t addr)
|
|
{
|
|
/* RR0[7:1] = addr[6:0] | parity^[0] */
|
|
uint32_t ret = cdns_i3c_even_parity_byte(addr);
|
|
|
|
if (addr & GENMASK(9, 7)) {
|
|
/* RR0[15:13] = addr[9:7] */
|
|
ret |= (addr & GENMASK(9, 7)) << 6;
|
|
/* RR0[11] = 10b lvr addr */
|
|
ret |= DEV_ID_RR0_LVR_EXT_ADDR;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* @brief Program Retaining Registers with device lists
|
|
*
|
|
* This will program the retaining register with the controller itself
|
|
*
|
|
* @param dev Pointer to controller device driver instance.
|
|
*/
|
|
static void cdns_i3c_program_controller_retaining_reg(const struct device *dev)
|
|
{
|
|
const struct cdns_i3c_config *config = dev->config;
|
|
struct cdns_i3c_data *data = dev->data;
|
|
/* Set controller retaining register */
|
|
uint8_t controller_da = I3C_CONTROLLER_ADDR;
|
|
|
|
if (!i3c_addr_slots_is_free(&data->common.attached_dev.addr_slots, controller_da)) {
|
|
controller_da =
|
|
i3c_addr_slots_next_free_find(&data->common.attached_dev.addr_slots, 0);
|
|
LOG_DBG("%s: 0x%02x DA selected for controller", dev->name, controller_da);
|
|
}
|
|
sys_write32(prepare_rr0_dev_address(controller_da), config->base + DEV_ID_RR0(0));
|
|
/* Mark the address as I3C device */
|
|
i3c_addr_slots_mark_i3c(&data->common.attached_dev.addr_slots, controller_da);
|
|
}
|
|
|
|
#ifdef CONFIG_I3C_USE_IBI
|
|
static int cdns_i3c_controller_ibi_enable(const struct device *dev, struct i3c_device_desc *target)
|
|
{
|
|
uint32_t sir_map;
|
|
uint32_t sir_cfg;
|
|
const struct cdns_i3c_config *config = dev->config;
|
|
struct cdns_i3c_i2c_dev_data *cdns_i3c_device_data = target->controller_priv;
|
|
struct i3c_ccc_events i3c_events;
|
|
int ret = 0;
|
|
|
|
if (!i3c_device_is_ibi_capable(target)) {
|
|
ret = -EINVAL;
|
|
return ret;
|
|
}
|
|
|
|
/* TODO: check for duplicate in SIR */
|
|
|
|
sir_cfg = SIR_MAP_DEV_ROLE(I3C_BCR_DEVICE_ROLE(target->bcr)) |
|
|
SIR_MAP_DEV_DA(target->dynamic_addr) |
|
|
SIR_MAP_DEV_PL(target->data_length.max_ibi);
|
|
if (target->ibi_cb != NULL) {
|
|
sir_cfg |= SIR_MAP_DEV_ACK;
|
|
}
|
|
if (target->bcr & I3C_BCR_MAX_DATA_SPEED_LIMIT) {
|
|
sir_cfg |= SIR_MAP_DEV_SLOW;
|
|
}
|
|
|
|
LOG_DBG("%s: IBI enabling for 0x%02x (BCR 0x%02x)", dev->name, target->dynamic_addr,
|
|
target->bcr);
|
|
|
|
/* Tell target to enable IBI */
|
|
i3c_events.events = I3C_CCC_EVT_INTR;
|
|
ret = i3c_ccc_do_events_set(target, true, &i3c_events);
|
|
if (ret != 0) {
|
|
LOG_ERR("%s: Error sending IBI ENEC for 0x%02x (%d)", dev->name,
|
|
target->dynamic_addr, ret);
|
|
return ret;
|
|
}
|
|
|
|
sir_map = sys_read32(config->base + SIR_MAP_DEV_REG(cdns_i3c_device_data->id - 1));
|
|
sir_map &= ~SIR_MAP_DEV_CONF_MASK(cdns_i3c_device_data->id - 1);
|
|
sir_map |= SIR_MAP_DEV_CONF(cdns_i3c_device_data->id - 1, sir_cfg);
|
|
|
|
sys_write32(sir_map, config->base + SIR_MAP_DEV_REG(cdns_i3c_device_data->id - 1));
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int cdns_i3c_controller_ibi_disable(const struct device *dev, struct i3c_device_desc *target)
|
|
{
|
|
uint32_t sir_map;
|
|
const struct cdns_i3c_config *config = dev->config;
|
|
struct cdns_i3c_i2c_dev_data *cdns_i3c_device_data = target->controller_priv;
|
|
struct i3c_ccc_events i3c_events;
|
|
int ret = 0;
|
|
|
|
if (!i3c_device_is_ibi_capable(target)) {
|
|
ret = -EINVAL;
|
|
return ret;
|
|
}
|
|
|
|
/* Tell target to disable IBI */
|
|
i3c_events.events = I3C_CCC_EVT_INTR;
|
|
ret = i3c_ccc_do_events_set(target, false, &i3c_events);
|
|
if (ret != 0) {
|
|
LOG_ERR("%s: Error sending IBI DISEC for 0x%02x (%d)", dev->name,
|
|
target->dynamic_addr, ret);
|
|
return ret;
|
|
}
|
|
|
|
sir_map = sys_read32(config->base + SIR_MAP_DEV_REG(cdns_i3c_device_data->id - 1));
|
|
sir_map &= ~SIR_MAP_DEV_CONF_MASK(cdns_i3c_device_data->id - 1);
|
|
sir_map |=
|
|
SIR_MAP_DEV_CONF(cdns_i3c_device_data->id - 1, SIR_MAP_DEV_DA(I3C_BROADCAST_ADDR));
|
|
sys_write32(sir_map, config->base + SIR_MAP_DEV_REG(cdns_i3c_device_data->id - 1));
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int cdns_i3c_target_ibi_raise_hj(const struct device *dev)
|
|
{
|
|
const struct cdns_i3c_config *config = dev->config;
|
|
struct cdns_i3c_data *data = dev->data;
|
|
struct i3c_config_controller *ctrl_config = &data->common.ctrl_config;
|
|
|
|
/* HJ requests should not be done by primary controllers */
|
|
if (!ctrl_config->is_secondary) {
|
|
LOG_ERR("%s: controller is primary, HJ not available", dev->name);
|
|
return -ENOTSUP;
|
|
}
|
|
/* Check if target already has a DA assigned to it */
|
|
if (sys_read32(config->base + SLV_STATUS1) & SLV_STATUS1_HAS_DA) {
|
|
LOG_ERR("%s: HJ not available, DA already assigned", dev->name);
|
|
return -EACCES;
|
|
}
|
|
/* Check if HJ requests DISEC CCC with DISHJ field set has been received */
|
|
if (sys_read32(config->base + SLV_STATUS1) & SLV_STATUS1_HJ_DIS) {
|
|
LOG_ERR("%s: HJ requests are currently disabled by DISEC", dev->name);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
sys_write32(CTRL_HJ_INIT | sys_read32(config->base + CTRL), config->base + CTRL);
|
|
k_sem_reset(&data->ibi_hj_complete);
|
|
if (k_sem_take(&data->ibi_hj_complete, K_MSEC(500)) != 0) {
|
|
LOG_ERR("%s: timeout waiting for DAA after HJ", dev->name);
|
|
return -ETIMEDOUT;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int cdns_i3c_target_ibi_raise_intr(const struct device *dev, struct i3c_ibi *request)
|
|
{
|
|
const struct cdns_i3c_config *config = dev->config;
|
|
const struct cdns_i3c_data *data = dev->data;
|
|
uint32_t ibi_ctrl_val;
|
|
|
|
LOG_DBG("%s: issuing IBI TIR", dev->name);
|
|
|
|
/*
|
|
* Ensure data will fit within FIFO
|
|
*
|
|
* TODO: This limitation prevents burst transfers greater than the
|
|
* FIFO sizes and should be replaced with an implementation that
|
|
* utilizes the IBI data threshold interrupts.
|
|
*/
|
|
if (request->payload_len > data->hw_cfg.ibi_mem_depth) {
|
|
LOG_ERR("%s: payload too large for IBI TIR", dev->name);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
cdns_i3c_write_ibi_fifo(config, request->payload, request->payload_len);
|
|
|
|
/* Write Payload Length and Start Condition */
|
|
ibi_ctrl_val = sys_read32(config->base + SLV_IBI_CTRL);
|
|
ibi_ctrl_val |= SLV_IBI_PL(request->payload_len);
|
|
ibi_ctrl_val |= SLV_IBI_REQ;
|
|
sys_write32(ibi_ctrl_val, config->base + SLV_IBI_CTRL);
|
|
return 0;
|
|
}
|
|
|
|
static int cdns_i3c_target_ibi_raise(const struct device *dev, struct i3c_ibi *request)
|
|
{
|
|
struct cdns_i3c_data *data = dev->data;
|
|
|
|
if (request == NULL) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (request->ibi_type) {
|
|
case I3C_IBI_TARGET_INTR:
|
|
/* Check IP Revision since older versions of CDNS IP do not support IBI interrupt*/
|
|
if (REV_ID_REV(data->hw_cfg.rev_id) >= REV_ID_VERSION(1, 7)) {
|
|
return cdns_i3c_target_ibi_raise_intr(dev, request);
|
|
} else {
|
|
return -ENOTSUP;
|
|
}
|
|
case I3C_IBI_CONTROLLER_ROLE_REQUEST:
|
|
/* TODO: Cadence I3C can support CR, but not implemented yet */
|
|
return -ENOTSUP;
|
|
case I3C_IBI_HOTJOIN:
|
|
return cdns_i3c_target_ibi_raise_hj(dev);
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void cdns_i3c_cancel_transfer(const struct device *dev)
|
|
{
|
|
struct cdns_i3c_data *data = dev->data;
|
|
const struct cdns_i3c_config *config = dev->config;
|
|
uint32_t val;
|
|
uint32_t retry_count;
|
|
|
|
/* Disable further interrupts */
|
|
sys_write32(MST_INT_CMDD_EMP, config->base + MST_IDR);
|
|
|
|
/* Ignore if no pending transfer */
|
|
if (data->xfer.num_cmds == 0) {
|
|
return;
|
|
}
|
|
|
|
data->xfer.num_cmds = 0;
|
|
|
|
/* Clear main enable bit to disable further transactions */
|
|
sys_write32(~CTRL_DEV_EN & sys_read32(config->base + CTRL), config->base + CTRL);
|
|
|
|
/**
|
|
* Spin waiting for device to go idle. It is unlikely that this will
|
|
* actually take any time since we only get here if a transaction didn't
|
|
* complete in a long time.
|
|
*/
|
|
retry_count = I3C_MAX_IDLE_CANCEL_WAIT_RETRIES;
|
|
while (retry_count--) {
|
|
val = sys_read32(config->base + MST_STATUS0);
|
|
if (val & MST_STATUS0_IDLE) {
|
|
break;
|
|
}
|
|
k_msleep(10);
|
|
}
|
|
if (retry_count == 0) {
|
|
data->xfer.ret = -ETIMEDOUT;
|
|
}
|
|
|
|
/**
|
|
* Flush all queues.
|
|
*/
|
|
sys_write32(FLUSH_RX_FIFO | FLUSH_TX_FIFO | FLUSH_CMD_FIFO | FLUSH_CMD_RESP,
|
|
config->base + FLUSH_CTRL);
|
|
|
|
/* Re-enable device */
|
|
sys_write32(CTRL_DEV_EN | sys_read32(config->base + CTRL), config->base + CTRL);
|
|
}
|
|
|
|
/**
|
|
* @brief Start a I3C/I2C Transfer
|
|
*
|
|
* This is to be called from a I3C/I2C transfer function. This will write
|
|
* all data to tx and cmd fifos
|
|
*
|
|
* @param dev Pointer to controller device driver instance.
|
|
*/
|
|
static void cdns_i3c_start_transfer(const struct device *dev)
|
|
{
|
|
struct cdns_i3c_data *data = dev->data;
|
|
const struct cdns_i3c_config *config = dev->config;
|
|
struct cdns_i3c_xfer *xfer = &data->xfer;
|
|
|
|
/* Ensure no pending command response queue threshold interrupt */
|
|
sys_write32(MST_INT_CMDD_EMP, config->base + MST_ICR);
|
|
|
|
/* Make sure RX FIFO is empty. */
|
|
while (!cdns_i3c_rx_fifo_empty(config)) {
|
|
(void)sys_read32(config->base + RX_FIFO);
|
|
}
|
|
/* Make sure CMDR FIFO is empty too */
|
|
while (!cdns_i3c_cmd_rsp_fifo_empty(config)) {
|
|
(void)sys_read32(config->base + CMDR);
|
|
}
|
|
|
|
/* Write all tx data to fifo */
|
|
for (unsigned int i = 0; i < xfer->num_cmds; i++) {
|
|
if (xfer->cmds[i].hdr == I3C_DATA_RATE_SDR) {
|
|
if (!(xfer->cmds[i].cmd0 & CMD0_FIFO_RNW)) {
|
|
cdns_i3c_write_tx_fifo(config, xfer->cmds[i].buf,
|
|
xfer->cmds[i].len);
|
|
}
|
|
} else if (xfer->cmds[i].hdr == I3C_DATA_RATE_HDR_DDR) {
|
|
/* DDR Xfer requires sending header block*/
|
|
cdns_i3c_write_tx_fifo(config, &xfer->cmds[i].ddr_header,
|
|
DDR_CRC_AND_HEADER_SIZE);
|
|
/* If not read operation need to send data + crc of data*/
|
|
if (!(DDR_DATA(xfer->cmds[i].ddr_header) & HDR_CMD_RD)) {
|
|
uint8_t *buf = (uint8_t *)xfer->cmds[i].buf;
|
|
uint32_t ddr_message = 0;
|
|
uint16_t ddr_data_payload = sys_get_be16(&buf[0]);
|
|
/* HDR-DDR Data Words */
|
|
ddr_message = (DDR_PREAMBLE_DATA_ABORT |
|
|
prepare_ddr_word(ddr_data_payload));
|
|
cdns_i3c_write_tx_fifo(config, &ddr_message,
|
|
DDR_CRC_AND_HEADER_SIZE);
|
|
for (int j = 2; j < ((xfer->cmds[i].len - 2) * 2); j += 2) {
|
|
ddr_data_payload = sys_get_be16(&buf[j]);
|
|
ddr_message = (DDR_PREAMBLE_DATA_ABORT_ALT |
|
|
prepare_ddr_word(ddr_data_payload));
|
|
cdns_i3c_write_tx_fifo(config, &ddr_message,
|
|
DDR_CRC_AND_HEADER_SIZE);
|
|
}
|
|
/* HDR-DDR CRC Word */
|
|
cdns_i3c_write_tx_fifo(config, &xfer->cmds[i].ddr_crc,
|
|
DDR_CRC_AND_HEADER_SIZE);
|
|
}
|
|
} else {
|
|
xfer->ret = -ENOTSUP;
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Write all data to cmd fifos */
|
|
for (unsigned int i = 0; i < xfer->num_cmds; i++) {
|
|
/* The command ID is just the msg index. */
|
|
xfer->cmds[i].cmd1 |= CMD1_FIFO_CMDID(i);
|
|
sys_write32(xfer->cmds[i].cmd1, config->base + CMD1_FIFO);
|
|
sys_write32(xfer->cmds[i].cmd0, config->base + CMD0_FIFO);
|
|
|
|
if (xfer->cmds[i].hdr == I3C_DATA_RATE_HDR_DDR) {
|
|
sys_write32(0x00, config->base + CMD1_FIFO);
|
|
if ((DDR_DATA(xfer->cmds[i].ddr_header) & HDR_CMD_RD)) {
|
|
sys_write32(CMD0_FIFO_IS_DDR | CMD0_FIFO_PL_LEN(1),
|
|
config->base + CMD0_FIFO);
|
|
} else {
|
|
sys_write32(CMD0_FIFO_IS_DDR | CMD0_FIFO_PL_LEN(xfer->cmds[i].len),
|
|
config->base + CMD0_FIFO);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* kickoff transfer */
|
|
sys_write32(CTRL_MCS | sys_read32(config->base + CTRL), config->base + CTRL);
|
|
sys_write32(MST_INT_CMDD_EMP, config->base + MST_IER);
|
|
}
|
|
|
|
/**
|
|
* @brief Send Common Command Code (CCC).
|
|
*
|
|
* @see i3c_do_ccc
|
|
*
|
|
* @param dev Pointer to controller device driver instance.
|
|
* @param payload Pointer to CCC payload.
|
|
*
|
|
* @return @see i3c_do_ccc
|
|
*/
|
|
static int cdns_i3c_do_ccc(const struct device *dev, struct i3c_ccc_payload *payload)
|
|
{
|
|
const struct cdns_i3c_config *config = dev->config;
|
|
struct cdns_i3c_data *data = dev->data;
|
|
struct cdns_i3c_cmd *cmd;
|
|
int ret = 0;
|
|
uint8_t num_cmds = 0;
|
|
|
|
/* make sure we are currently the active controller */
|
|
if (!(sys_read32(config->base + MST_STATUS0) & MST_STATUS0_MASTER_MODE)) {
|
|
return -EACCES;
|
|
}
|
|
|
|
if (payload == NULL) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Ensure data will fit within FIFOs.
|
|
*
|
|
* TODO: This limitation prevents burst transfers greater than the
|
|
* FIFO sizes and should be replaced with an implementation that
|
|
* utilizes the RX/TX data threshold interrupts.
|
|
*/
|
|
uint32_t num_msgs =
|
|
1 + ((payload->ccc.data_len > 0) ? payload->targets.num_targets
|
|
: MAX(payload->targets.num_targets - 1, 0));
|
|
if (num_msgs > data->hw_cfg.cmd_mem_depth || num_msgs > data->hw_cfg.cmdr_mem_depth) {
|
|
LOG_ERR("%s: Too many messages", dev->name);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
uint32_t rxsize = 0;
|
|
/* defining byte is stored in a separate register for direct CCCs */
|
|
uint32_t txsize =
|
|
i3c_ccc_is_payload_broadcast(payload) ? ROUND_UP(payload->ccc.data_len, 4) : 0;
|
|
|
|
for (int i = 0; i < payload->targets.num_targets; i++) {
|
|
if (payload->targets.payloads[i].rnw) {
|
|
rxsize += ROUND_UP(payload->targets.payloads[i].data_len, 4);
|
|
} else {
|
|
txsize += ROUND_UP(payload->targets.payloads[i].data_len, 4);
|
|
}
|
|
}
|
|
if ((rxsize > data->hw_cfg.rx_mem_depth) || (txsize > data->hw_cfg.tx_mem_depth)) {
|
|
LOG_ERR("%s: Total RX and/or TX transfer larger than FIFO", dev->name);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
LOG_DBG("%s: CCC[0x%02x]", dev->name, payload->ccc.id);
|
|
|
|
k_mutex_lock(&data->bus_lock, K_FOREVER);
|
|
|
|
/* wait for idle */
|
|
ret = cdns_i3c_wait_for_idle(dev);
|
|
if (ret != 0) {
|
|
goto error;
|
|
}
|
|
|
|
/* if this is a direct CCC */
|
|
if (!i3c_ccc_is_payload_broadcast(payload)) {
|
|
/* if the CCC has no data bytes, then the target payload must be in
|
|
* the same command buffer
|
|
*/
|
|
for (int i = 0; i < payload->targets.num_targets; i++) {
|
|
cmd = &data->xfer.cmds[i];
|
|
num_cmds++;
|
|
cmd->cmd1 = CMD1_FIFO_CCC(payload->ccc.id);
|
|
cmd->cmd0 = CMD0_FIFO_IS_CCC;
|
|
/* if there is a defining byte */
|
|
if (payload->ccc.data_len == 1) {
|
|
/* Only revision 1p7 supports defining byte for direct CCCs */
|
|
if (REV_ID_REV(data->hw_cfg.rev_id) >= REV_ID_VERSION(1, 7)) {
|
|
cmd->cmd0 |= CMD0_FIFO_IS_DB;
|
|
cmd->cmd1 |= CMD1_FIFO_DB(payload->ccc.data[0]);
|
|
} else {
|
|
LOG_ERR("%s: Defining Byte with Direct CCC not supported "
|
|
"with rev %lup%lu",
|
|
dev->name, REV_ID_REV_MAJOR(data->hw_cfg.rev_id),
|
|
REV_ID_REV_MINOR(data->hw_cfg.rev_id));
|
|
ret = -ENOTSUP;
|
|
goto error;
|
|
}
|
|
} else if (payload->ccc.data_len > 1) {
|
|
LOG_ERR("%s: Defining Byte length greater than 1", dev->name);
|
|
ret = -EINVAL;
|
|
goto error;
|
|
}
|
|
/* for a short CCC, i.e. where a direct ccc has multiple targets,
|
|
* BCH must be 0 for subsequent targets and RSBC must be 1, otherwise
|
|
* if there is just one target, RSBC must be 0 on the first target
|
|
*/
|
|
if (i == 0) {
|
|
cmd->cmd0 |= CMD0_FIFO_BCH;
|
|
}
|
|
if (i < (payload->targets.num_targets - 1)) {
|
|
cmd->cmd0 |= CMD0_FIFO_RSBC;
|
|
}
|
|
cmd->buf = payload->targets.payloads[i].data;
|
|
cmd->len = payload->targets.payloads[i].data_len;
|
|
cmd->cmd0 |= CMD0_FIFO_DEV_ADDR(payload->targets.payloads[i].addr) |
|
|
CMD0_FIFO_PL_LEN(payload->targets.payloads[i].data_len);
|
|
if (payload->targets.payloads[i].rnw) {
|
|
cmd->cmd0 |= CMD0_FIFO_RNW;
|
|
}
|
|
cmd->hdr = I3C_DATA_RATE_SDR;
|
|
/*
|
|
* write the address of num_xfer which is to be updated upon message
|
|
* completion
|
|
*/
|
|
cmd->num_xfer = &(payload->targets.payloads[i].num_xfer);
|
|
}
|
|
} else {
|
|
cmd = &data->xfer.cmds[0];
|
|
num_cmds++;
|
|
cmd->cmd1 = CMD1_FIFO_CCC(payload->ccc.id);
|
|
cmd->cmd0 = CMD0_FIFO_IS_CCC | CMD0_FIFO_BCH;
|
|
cmd->hdr = I3C_DATA_RATE_SDR;
|
|
|
|
if (payload->ccc.data_len > 0) {
|
|
/* Write additional data for CCC if needed */
|
|
cmd->buf = payload->ccc.data;
|
|
cmd->len = payload->ccc.data_len;
|
|
cmd->cmd0 |= CMD0_FIFO_PL_LEN(payload->ccc.data_len);
|
|
/* write the address of num_xfer which is to be updated upon message
|
|
* completion
|
|
*/
|
|
cmd->num_xfer = &(payload->ccc.num_xfer);
|
|
} else {
|
|
/* no data to transfer */
|
|
cmd->len = 0;
|
|
cmd->num_xfer = NULL;
|
|
}
|
|
}
|
|
|
|
data->xfer.ret = -ETIMEDOUT;
|
|
data->xfer.num_cmds = num_cmds;
|
|
|
|
cdns_i3c_start_transfer(dev);
|
|
if (k_sem_take(&data->xfer.complete, K_MSEC(1000)) != 0) {
|
|
cdns_i3c_cancel_transfer(dev);
|
|
}
|
|
|
|
if (data->xfer.ret < 0) {
|
|
LOG_ERR("%s: CCC[0x%02x] error (%d)", dev->name, payload->ccc.id, data->xfer.ret);
|
|
}
|
|
|
|
ret = data->xfer.ret;
|
|
error:
|
|
k_mutex_unlock(&data->bus_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* @brief Perform Dynamic Address Assignment.
|
|
*
|
|
* @see i3c_do_daa
|
|
*
|
|
* @param dev Pointer to controller device driver instance.
|
|
*
|
|
* @return @see i3c_do_daa
|
|
*/
|
|
static int cdns_i3c_do_daa(const struct device *dev)
|
|
{
|
|
struct cdns_i3c_data *data = dev->data;
|
|
const struct cdns_i3c_config *config = dev->config;
|
|
struct i3c_config_controller *ctrl_config = &data->common.ctrl_config;
|
|
uint8_t last_addr = 0;
|
|
|
|
/* DAA should not be done by secondary controllers */
|
|
if (ctrl_config->is_secondary) {
|
|
return -EACCES;
|
|
}
|
|
|
|
/* read dev active reg */
|
|
uint32_t olddevs = sys_read32(config->base + DEVS_CTRL) & DEVS_CTRL_DEVS_ACTIVE_MASK;
|
|
/* ignore the controller register */
|
|
olddevs |= BIT(0);
|
|
|
|
/* Assign dynamic addressses to available RRs */
|
|
/* Loop through each clear bit */
|
|
for (uint8_t i = find_lsb_set(~olddevs); i <= data->max_devs; i++) {
|
|
uint8_t rr_idx = i - 1;
|
|
|
|
if (~olddevs & BIT(rr_idx)) {
|
|
/* Read RRx registers */
|
|
last_addr = i3c_addr_slots_next_free_find(
|
|
&data->common.attached_dev.addr_slots, last_addr + 1);
|
|
/* Write RRx registers */
|
|
sys_write32(prepare_rr0_dev_address(last_addr) | DEV_ID_RR0_IS_I3C,
|
|
config->base + DEV_ID_RR0(rr_idx));
|
|
sys_write32(0, config->base + DEV_ID_RR1(rr_idx));
|
|
sys_write32(0, config->base + DEV_ID_RR2(rr_idx));
|
|
}
|
|
}
|
|
|
|
/* the Cadence I3C IP will assign an address for it from the RR */
|
|
struct i3c_ccc_payload entdaa_ccc;
|
|
|
|
memset(&entdaa_ccc, 0, sizeof(entdaa_ccc));
|
|
entdaa_ccc.ccc.id = I3C_CCC_ENTDAA;
|
|
|
|
int status = cdns_i3c_do_ccc(dev, &entdaa_ccc);
|
|
|
|
if (status != 0) {
|
|
return status;
|
|
}
|
|
|
|
/* read again dev active reg */
|
|
uint32_t newdevs = sys_read32(config->base + DEVS_CTRL) & DEVS_CTRL_DEVS_ACTIVE_MASK;
|
|
/* look for new bits that were set */
|
|
newdevs &= ~olddevs;
|
|
|
|
if (newdevs) {
|
|
/* loop through each set bit for new devices */
|
|
for (uint8_t i = find_lsb_set(newdevs); i <= find_msb_set(newdevs); i++) {
|
|
uint8_t rr_idx = i - 1;
|
|
|
|
if (newdevs & BIT(rr_idx)) {
|
|
/* Read RRx registers */
|
|
uint32_t dev_id_rr0 = sys_read32(config->base + DEV_ID_RR0(rr_idx));
|
|
uint32_t dev_id_rr1 = sys_read32(config->base + DEV_ID_RR1(rr_idx));
|
|
uint32_t dev_id_rr2 = sys_read32(config->base + DEV_ID_RR2(rr_idx));
|
|
|
|
uint64_t pid = ((uint64_t)dev_id_rr1 << 16) + (dev_id_rr2 >> 16);
|
|
uint8_t dyn_addr = (dev_id_rr0 & 0xFE) >> 1;
|
|
uint8_t bcr = dev_id_rr2 >> 8;
|
|
uint8_t dcr = dev_id_rr2 & 0xFF;
|
|
|
|
const struct i3c_device_id i3c_id = I3C_DEVICE_ID(pid);
|
|
struct i3c_device_desc *target = i3c_device_find(dev, &i3c_id);
|
|
|
|
if (target == NULL) {
|
|
LOG_INF("%s: PID 0x%012llx is not in registered device "
|
|
"list, given DA 0x%02x",
|
|
dev->name, pid, dyn_addr);
|
|
i3c_addr_slots_mark_i3c(
|
|
&data->common.attached_dev.addr_slots, dyn_addr);
|
|
} else {
|
|
target->dynamic_addr = dyn_addr;
|
|
target->bcr = bcr;
|
|
target->dcr = dcr;
|
|
|
|
LOG_DBG("%s: PID 0x%012llx assigned dynamic address 0x%02x",
|
|
dev->name, pid, dyn_addr);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
LOG_DBG("%s: ENTDAA: No devices found", dev->name);
|
|
}
|
|
|
|
/* mark slot as not free, may already be set if already attached */
|
|
data->free_rr_slots &= ~newdevs;
|
|
|
|
/* Unmask Hot-Join request interrupts. HJ will send DISEC HJ from the CTRL value */
|
|
struct i3c_ccc_events i3c_events;
|
|
|
|
i3c_events.events = I3C_CCC_EVT_HJ;
|
|
status = i3c_ccc_do_events_all_set(dev, true, &i3c_events);
|
|
if (status != 0) {
|
|
LOG_DBG("%s: Broadcast ENEC was NACK", dev->name);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* @brief Configure I2C hardware.
|
|
*
|
|
* @param dev Pointer to controller device driver instance.
|
|
* @param config Value of the configuration parameters.
|
|
*
|
|
* @retval 0 If successful.
|
|
* @retval -EINVAL If invalid configure parameters.
|
|
* @retval -EIO General Input/Output errors.
|
|
* @retval -ENOSYS If not implemented.
|
|
*/
|
|
static int cdns_i3c_i2c_api_configure(const struct device *dev, uint32_t config)
|
|
{
|
|
struct cdns_i3c_data *data = dev->data;
|
|
struct i3c_config_controller *ctrl_config = &data->common.ctrl_config;
|
|
|
|
switch (I2C_SPEED_GET(config)) {
|
|
case I2C_SPEED_STANDARD:
|
|
ctrl_config->scl.i2c = 100000;
|
|
break;
|
|
case I2C_SPEED_FAST:
|
|
ctrl_config->scl.i2c = 400000;
|
|
break;
|
|
case I2C_SPEED_FAST_PLUS:
|
|
ctrl_config->scl.i2c = 1000000;
|
|
break;
|
|
case I2C_SPEED_HIGH:
|
|
ctrl_config->scl.i2c = 3400000;
|
|
break;
|
|
case I2C_SPEED_ULTRA:
|
|
ctrl_config->scl.i2c = 5000000;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
k_mutex_lock(&data->bus_lock, K_FOREVER);
|
|
cdns_i3c_set_prescalers(dev);
|
|
k_mutex_unlock(&data->bus_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* @brief Configure I3C hardware.
|
|
*
|
|
* @param dev Pointer to controller device driver instance.
|
|
* @param type Type of configuration parameters being passed
|
|
* in @p config.
|
|
* @param config Pointer to the configuration parameters.
|
|
*
|
|
* @retval 0 If successful.
|
|
* @retval -EINVAL If invalid configure parameters.
|
|
* @retval -EIO General Input/Output errors.
|
|
* @retval -ENOSYS If not implemented.
|
|
*/
|
|
static int cdns_i3c_configure(const struct device *dev, enum i3c_config_type type, void *config)
|
|
{
|
|
struct cdns_i3c_data *data = dev->data;
|
|
struct i3c_config_controller *ctrl_cfg = config;
|
|
|
|
if ((ctrl_cfg->scl.i2c == 0U) || (ctrl_cfg->scl.i3c == 0U)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
data->common.ctrl_config.scl.i3c = ctrl_cfg->scl.i3c;
|
|
data->common.ctrl_config.scl.i2c = ctrl_cfg->scl.i2c;
|
|
|
|
k_mutex_lock(&data->bus_lock, K_FOREVER);
|
|
cdns_i3c_set_prescalers(dev);
|
|
k_mutex_unlock(&data->bus_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* @brief Complete a I3C/I2C Transfer
|
|
*
|
|
* This is to be called from an ISR when the Command Response FIFO
|
|
* is Empty. This will check each Command Response reading the RX
|
|
* FIFO if message was a RnW and if any message had an error.
|
|
*
|
|
* @param dev Pointer to controller device driver instance.
|
|
*/
|
|
static void cdns_i3c_complete_transfer(const struct device *dev)
|
|
{
|
|
struct cdns_i3c_data *data = dev->data;
|
|
const struct cdns_i3c_config *config = dev->config;
|
|
uint32_t cmdr;
|
|
uint32_t id = 0;
|
|
uint32_t xfer = 0;
|
|
int ret = 0;
|
|
struct cdns_i3c_cmd *cmd;
|
|
bool was_full;
|
|
|
|
/* Used only to determine in the case of a controller abort */
|
|
was_full = cdns_i3c_rx_fifo_full(config);
|
|
|
|
/* Disable further interrupts */
|
|
sys_write32(MST_INT_CMDD_EMP, config->base + MST_IDR);
|
|
|
|
/* Ignore if no pending transfer */
|
|
if (data->xfer.num_cmds == 0) {
|
|
return;
|
|
}
|
|
|
|
/* Process all results in fifo */
|
|
for (uint32_t status0 = sys_read32(config->base + MST_STATUS0);
|
|
!(status0 & MST_STATUS0_CMDR_EMP); status0 = sys_read32(config->base + MST_STATUS0)) {
|
|
cmdr = sys_read32(config->base + CMDR);
|
|
id = CMDR_CMDID(cmdr);
|
|
|
|
if (id == CMDR_CMDID_HJACK_DISEC || id == CMDR_CMDID_HJACK_ENTDAA ||
|
|
id >= data->xfer.num_cmds) {
|
|
continue;
|
|
}
|
|
|
|
cmd = &data->xfer.cmds[id];
|
|
|
|
xfer = MIN(CMDR_XFER_BYTES(cmdr), cmd->len);
|
|
if (cmd->num_xfer != NULL) {
|
|
*cmd->num_xfer = xfer;
|
|
}
|
|
/* Read any rx data into buffer */
|
|
if (cmd->cmd0 & CMD0_FIFO_RNW) {
|
|
ret = cdns_i3c_read_rx_fifo(config, cmd->buf, xfer);
|
|
}
|
|
|
|
if ((cmd->hdr == I3C_DATA_RATE_HDR_DDR) &&
|
|
(DDR_DATA(cmd->ddr_header) & HDR_CMD_RD)) {
|
|
ret = cdns_i3c_read_rx_fifo_ddr_xfer(config, cmd->buf, xfer,
|
|
cmd->ddr_header);
|
|
}
|
|
|
|
/* Record error */
|
|
cmd->error = CMDR_ERROR(cmdr);
|
|
}
|
|
|
|
for (int i = 0; i < data->xfer.num_cmds; i++) {
|
|
switch (data->xfer.cmds[i].error) {
|
|
case CMDR_NO_ERROR:
|
|
break;
|
|
|
|
case CMDR_MST_ABORT:
|
|
/*
|
|
* A controller abort is forced if the RX FIFO fills up
|
|
* There is also the case where the fifo can be full as
|
|
* the len of the packet is the same length of the fifo
|
|
* Check that the requested len is greater than the total
|
|
* transferred to confirm that is not case. Otherwise the
|
|
* abort was caused by the buffer length being meet and
|
|
* the target did not give an End of Data (EoD) in the T
|
|
* bit. Do not treat that condition as an error because
|
|
* some targets will just auto-increment the read address
|
|
* way beyond the buffer not giving an EoD.
|
|
*/
|
|
if ((was_full) && (data->xfer.cmds[i].len > *data->xfer.cmds[i].num_xfer)) {
|
|
ret = -ENOSPC;
|
|
} else {
|
|
LOG_DBG("%s: Controller Abort due to buffer length excedded with "
|
|
"no EoD from target",
|
|
dev->name);
|
|
}
|
|
break;
|
|
|
|
case CMDR_M0_ERROR: {
|
|
uint8_t ccc = data->xfer.cmds[i].cmd1 & 0xFF;
|
|
/*
|
|
* The M0 is an illegally formatted CCC. i.e. the Controller
|
|
* receives 1 byte instead of 2 with the GETMWL CCC. This can
|
|
* be problematic for CCCs that can have variable length such
|
|
* as GETMXDS and GETCAPS. Verify the number of bytes received matches
|
|
* what's expected from the specification and ignore the error. The IP will
|
|
* still retramsit the same CCC and theres nothing that can be done to
|
|
* prevent this. It it still up to the application to read `num_xfer` to
|
|
* determine the number of bytes returned.
|
|
*/
|
|
if (ccc == I3C_CCC_GETMXDS) {
|
|
/*
|
|
* Whether GETMXDS format 1 and format 2 can't be known ahead of
|
|
* time which will be returned.
|
|
*/
|
|
if ((*data->xfer.cmds[i].num_xfer !=
|
|
sizeof(((union i3c_ccc_getmxds *)0)->fmt1)) &&
|
|
(*data->xfer.cmds[i].num_xfer !=
|
|
sizeof(((union i3c_ccc_getmxds *)0)->fmt2))) {
|
|
ret = -EIO;
|
|
}
|
|
} else if (ccc == I3C_CCC_GETCAPS) {
|
|
/* GETCAPS can only return 1-4 bytes */
|
|
if (*data->xfer.cmds[i].num_xfer > sizeof(union i3c_ccc_getcaps)) {
|
|
ret = -EIO;
|
|
}
|
|
} else {
|
|
ret = -EIO;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case CMDR_DDR_PREAMBLE_ERROR:
|
|
case CMDR_DDR_PARITY_ERROR:
|
|
case CMDR_M1_ERROR:
|
|
case CMDR_M2_ERROR:
|
|
case CMDR_NACK_RESP:
|
|
case CMDR_DDR_DROPPED:
|
|
ret = -EIO;
|
|
break;
|
|
|
|
case CMDR_DDR_RX_FIFO_OVF:
|
|
case CMDR_DDR_TX_FIFO_UNF:
|
|
ret = -ENOSPC;
|
|
break;
|
|
|
|
case CMDR_INVALID_DA:
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
data->xfer.ret = ret;
|
|
|
|
/* Indicate no transfer is pending */
|
|
data->xfer.num_cmds = 0;
|
|
|
|
k_sem_give(&data->xfer.complete);
|
|
}
|
|
|
|
/**
|
|
* @brief Transfer messages in I2C mode.
|
|
*
|
|
* @param dev Pointer to device driver instance.
|
|
* @param target Pointer to target device descriptor.
|
|
* @param msgs Pointer to I2C messages.
|
|
* @param num_msgs Number of messages to transfers.
|
|
*
|
|
* @retval 0 If successful.
|
|
* @retval -EIO General input / output error.
|
|
* @retval -EINVAL Address not registered
|
|
*/
|
|
static int cdns_i3c_i2c_transfer(const struct device *dev, struct i3c_i2c_device_desc *i2c_dev,
|
|
struct i2c_msg *msgs, uint8_t num_msgs)
|
|
{
|
|
const struct cdns_i3c_config *config = dev->config;
|
|
struct cdns_i3c_data *data = dev->data;
|
|
uint32_t txsize = 0;
|
|
uint32_t rxsize = 0;
|
|
int ret;
|
|
|
|
/* make sure we are currently the active controller */
|
|
if (!(sys_read32(config->base + MST_STATUS0) & MST_STATUS0_MASTER_MODE)) {
|
|
return -EACCES;
|
|
}
|
|
|
|
if (num_msgs == 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (num_msgs > data->hw_cfg.cmd_mem_depth || num_msgs > data->hw_cfg.cmdr_mem_depth) {
|
|
LOG_ERR("%s: Too many messages", dev->name);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* Ensure data will fit within FIFOs
|
|
*/
|
|
for (unsigned int i = 0; i < num_msgs; i++) {
|
|
if ((msgs[i].flags & I2C_MSG_RW_MASK) == I2C_MSG_READ) {
|
|
rxsize += ROUND_UP(msgs[i].len, 4);
|
|
} else {
|
|
txsize += ROUND_UP(msgs[i].len, 4);
|
|
}
|
|
}
|
|
if ((rxsize > data->hw_cfg.rx_mem_depth) || (txsize > data->hw_cfg.tx_mem_depth)) {
|
|
LOG_ERR("%s: Total RX and/or TX transfer larger than FIFO", dev->name);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
k_mutex_lock(&data->bus_lock, K_FOREVER);
|
|
|
|
/* wait for idle */
|
|
ret = cdns_i3c_wait_for_idle(dev);
|
|
if (ret != 0) {
|
|
goto error;
|
|
}
|
|
|
|
for (unsigned int i = 0; i < num_msgs; i++) {
|
|
struct cdns_i3c_cmd *cmd = &data->xfer.cmds[i];
|
|
|
|
cmd->len = msgs[i].len;
|
|
cmd->buf = msgs[i].buf;
|
|
/* not an i3c transfer, but must be set to sdr */
|
|
cmd->hdr = I3C_DATA_RATE_SDR;
|
|
|
|
cmd->cmd0 = CMD0_FIFO_PRIV_XMIT_MODE(XMIT_BURST_WITHOUT_SUBADDR);
|
|
cmd->cmd0 |= CMD0_FIFO_DEV_ADDR(i2c_dev->addr);
|
|
cmd->cmd0 |= CMD0_FIFO_PL_LEN(msgs[i].len);
|
|
|
|
/* Send repeated start on all transfers except the last or those marked STOP. */
|
|
if ((i < (num_msgs - 1)) && ((msgs[i].flags & I2C_MSG_STOP) == 0)) {
|
|
cmd->cmd0 |= CMD0_FIFO_RSBC;
|
|
}
|
|
|
|
if (msgs[i].flags & I2C_MSG_ADDR_10_BITS) {
|
|
cmd->cmd0 |= CMD0_FIFO_IS_10B;
|
|
}
|
|
|
|
if ((msgs[i].flags & I2C_MSG_RW_MASK) == I2C_MSG_READ) {
|
|
cmd->cmd0 |= CMD0_FIFO_RNW;
|
|
}
|
|
|
|
/* i2c transfers are a don't care for num_xfer */
|
|
cmd->num_xfer = NULL;
|
|
}
|
|
|
|
data->xfer.ret = -ETIMEDOUT;
|
|
data->xfer.num_cmds = num_msgs;
|
|
|
|
cdns_i3c_start_transfer(dev);
|
|
if (k_sem_take(&data->xfer.complete, K_MSEC(1000)) != 0) {
|
|
cdns_i3c_cancel_transfer(dev);
|
|
}
|
|
|
|
ret = data->xfer.ret;
|
|
error:
|
|
k_mutex_unlock(&data->bus_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int cdns_i3c_master_get_rr_slot(const struct device *dev, uint8_t dyn_addr)
|
|
{
|
|
struct cdns_i3c_data *data = dev->data;
|
|
const struct cdns_i3c_config *config = dev->config;
|
|
uint8_t rr_idx, i;
|
|
uint32_t rr, activedevs;
|
|
|
|
/* If it does not have a dynamic address, then assign it a free one */
|
|
if (dyn_addr == 0) {
|
|
if (!data->free_rr_slots) {
|
|
return -ENOSPC;
|
|
}
|
|
|
|
return find_lsb_set(data->free_rr_slots) - 1;
|
|
}
|
|
|
|
/* Device already has a Dynamic Address, so assume it is already in the RRs */
|
|
activedevs = sys_read32(config->base + DEVS_CTRL) & DEVS_CTRL_DEVS_ACTIVE_MASK;
|
|
/* skip itself */
|
|
activedevs &= ~BIT(0);
|
|
|
|
/* loop through each set bit for new devices */
|
|
for (i = find_lsb_set(activedevs); i <= find_msb_set(activedevs); i++) {
|
|
rr_idx = i - 1;
|
|
if (activedevs & BIT(rr_idx)) {
|
|
rr = sys_read32(config->base + DEV_ID_RR0(rr_idx));
|
|
if ((rr & DEV_ID_RR0_IS_I3C) && DEV_ID_RR0_GET_DEV_ADDR(rr) == dyn_addr) {
|
|
return rr_idx;
|
|
}
|
|
}
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int cdns_i3c_attach_device(const struct device *dev, struct i3c_device_desc *desc)
|
|
{
|
|
/*
|
|
* Mark Devices as active, devices that will be found and marked active during DAA,
|
|
* it will be given the exact DA programmed in it's RR, otherwise they get set as active
|
|
* here. If dynamic address is set, then it assumed that it was already initialized by the
|
|
* primary controller. When assigned through ENTDAA, the dynamic address, bcr, dcr, and pid
|
|
* are all set in the RR along with setting the device as active. If it has a static addr,
|
|
* then it is assumed that it will be programmed with SETDASA and will need to be marked
|
|
* as active before sending out SETDASA.
|
|
*/
|
|
if ((desc->static_addr != 0) || (desc->dynamic_addr != 0)) {
|
|
const struct cdns_i3c_config *config = dev->config;
|
|
struct cdns_i3c_data *data = dev->data;
|
|
|
|
int slot = cdns_i3c_master_get_rr_slot(dev, desc->dynamic_addr ? desc->dynamic_addr
|
|
: desc->static_addr);
|
|
|
|
if (slot < 0) {
|
|
LOG_ERR("%s: no space for i3c device: %s", dev->name, desc->dev->name);
|
|
return slot;
|
|
}
|
|
|
|
k_mutex_lock(&data->bus_lock, K_FOREVER);
|
|
|
|
sys_write32(sys_read32(config->base + DEVS_CTRL) | DEVS_CTRL_DEV_ACTIVE(slot),
|
|
config->base + DEVS_CTRL);
|
|
|
|
data->cdns_i3c_i2c_priv_data[slot].id = slot;
|
|
desc->controller_priv = &(data->cdns_i3c_i2c_priv_data[slot]);
|
|
data->free_rr_slots &= ~BIT(slot);
|
|
|
|
uint32_t dev_id_rr0 =
|
|
DEV_ID_RR0_IS_I3C |
|
|
prepare_rr0_dev_address(desc->dynamic_addr ? desc->dynamic_addr
|
|
: desc->static_addr);
|
|
uint32_t dev_id_rr1 = DEV_ID_RR1_PID_MSB((desc->pid & 0xFFFFFFFF0000) >> 16);
|
|
uint32_t dev_id_rr2 = DEV_ID_RR2_PID_LSB(desc->pid & 0xFFFF);
|
|
|
|
sys_write32(dev_id_rr0, config->base + DEV_ID_RR0(slot));
|
|
sys_write32(dev_id_rr1, config->base + DEV_ID_RR1(slot));
|
|
sys_write32(dev_id_rr2, config->base + DEV_ID_RR2(slot));
|
|
|
|
k_mutex_unlock(&data->bus_lock);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cdns_i3c_reattach_device(const struct device *dev, struct i3c_device_desc *desc,
|
|
uint8_t old_dyn_addr)
|
|
{
|
|
const struct cdns_i3c_config *config = dev->config;
|
|
struct cdns_i3c_data *data = dev->data;
|
|
struct cdns_i3c_i2c_dev_data *cdns_i3c_device_data = desc->controller_priv;
|
|
|
|
if (cdns_i3c_device_data == NULL) {
|
|
LOG_ERR("%s: %s: device not attached", dev->name, desc->dev->name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
k_mutex_lock(&data->bus_lock, K_FOREVER);
|
|
|
|
uint32_t dev_id_rr0 = DEV_ID_RR0_IS_I3C | prepare_rr0_dev_address(desc->dynamic_addr);
|
|
uint32_t dev_id_rr1 = DEV_ID_RR1_PID_MSB((desc->pid & 0xFFFFFFFF0000) >> 16);
|
|
uint32_t dev_id_rr2 = DEV_ID_RR2_PID_LSB(desc->pid & 0xFFFF) | DEV_ID_RR2_BCR(desc->bcr) |
|
|
DEV_ID_RR2_DCR(desc->dcr);
|
|
|
|
sys_write32(dev_id_rr0, config->base + DEV_ID_RR0(cdns_i3c_device_data->id));
|
|
sys_write32(dev_id_rr1, config->base + DEV_ID_RR1(cdns_i3c_device_data->id));
|
|
sys_write32(dev_id_rr2, config->base + DEV_ID_RR2(cdns_i3c_device_data->id));
|
|
|
|
k_mutex_unlock(&data->bus_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cdns_i3c_detach_device(const struct device *dev, struct i3c_device_desc *desc)
|
|
{
|
|
const struct cdns_i3c_config *config = dev->config;
|
|
struct cdns_i3c_data *data = dev->data;
|
|
struct cdns_i3c_i2c_dev_data *cdns_i3c_device_data = desc->controller_priv;
|
|
|
|
if (cdns_i3c_device_data == NULL) {
|
|
LOG_ERR("%s: %s: device not attached", dev->name, desc->dev->name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
k_mutex_lock(&data->bus_lock, K_FOREVER);
|
|
|
|
sys_write32(sys_read32(config->base + DEVS_CTRL) |
|
|
DEVS_CTRL_DEV_CLR(cdns_i3c_device_data->id),
|
|
config->base + DEVS_CTRL);
|
|
data->free_rr_slots |= BIT(cdns_i3c_device_data->id);
|
|
desc->controller_priv = NULL;
|
|
|
|
k_mutex_unlock(&data->bus_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cdns_i3c_i2c_attach_device(const struct device *dev, struct i3c_i2c_device_desc *desc)
|
|
{
|
|
const struct cdns_i3c_config *config = dev->config;
|
|
struct cdns_i3c_data *data = dev->data;
|
|
|
|
int slot = cdns_i3c_master_get_rr_slot(dev, 0);
|
|
|
|
if (slot < 0) {
|
|
LOG_ERR("%s: no space for i2c device: addr 0x%02x", dev->name, desc->addr);
|
|
return slot;
|
|
}
|
|
|
|
k_mutex_lock(&data->bus_lock, K_FOREVER);
|
|
|
|
uint32_t dev_id_rr0 = prepare_rr0_dev_address(desc->addr);
|
|
uint32_t dev_id_rr2 = DEV_ID_RR2_LVR(desc->lvr);
|
|
|
|
sys_write32(dev_id_rr0, config->base + DEV_ID_RR0(slot));
|
|
sys_write32(0, config->base + DEV_ID_RR1(slot));
|
|
sys_write32(dev_id_rr2, config->base + DEV_ID_RR2(slot));
|
|
|
|
data->cdns_i3c_i2c_priv_data[slot].id = slot;
|
|
desc->controller_priv = &(data->cdns_i3c_i2c_priv_data[slot]);
|
|
data->free_rr_slots &= ~BIT(slot);
|
|
|
|
sys_write32(sys_read32(config->base + DEVS_CTRL) | DEVS_CTRL_DEV_ACTIVE(slot),
|
|
config->base + DEVS_CTRL);
|
|
|
|
k_mutex_unlock(&data->bus_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cdns_i3c_i2c_detach_device(const struct device *dev, struct i3c_i2c_device_desc *desc)
|
|
{
|
|
const struct cdns_i3c_config *config = dev->config;
|
|
struct cdns_i3c_data *data = dev->data;
|
|
struct cdns_i3c_i2c_dev_data *cdns_i2c_device_data = desc->controller_priv;
|
|
|
|
if (cdns_i2c_device_data == NULL) {
|
|
LOG_ERR("%s: device not attached", dev->name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
k_mutex_lock(&data->bus_lock, K_FOREVER);
|
|
|
|
sys_write32(sys_read32(config->base + DEVS_CTRL) |
|
|
DEVS_CTRL_DEV_CLR(cdns_i2c_device_data->id),
|
|
config->base + DEVS_CTRL);
|
|
data->free_rr_slots |= BIT(cdns_i2c_device_data->id);
|
|
desc->controller_priv = NULL;
|
|
|
|
k_mutex_unlock(&data->bus_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* @brief Transfer messages in I3C mode.
|
|
*
|
|
* @see i3c_transfer
|
|
*
|
|
* @param dev Pointer to device driver instance.
|
|
* @param target Pointer to target device descriptor.
|
|
* @param msgs Pointer to I3C messages.
|
|
* @param num_msgs Number of messages to transfers.
|
|
*
|
|
* @return @see i3c_transfer
|
|
*/
|
|
static int cdns_i3c_transfer(const struct device *dev, struct i3c_device_desc *target,
|
|
struct i3c_msg *msgs, uint8_t num_msgs)
|
|
{
|
|
const struct cdns_i3c_config *config = dev->config;
|
|
struct cdns_i3c_data *data = dev->data;
|
|
int txsize = 0;
|
|
int rxsize = 0;
|
|
int ret;
|
|
|
|
/* make sure we are currently the active controller */
|
|
if (!(sys_read32(config->base + MST_STATUS0) & MST_STATUS0_MASTER_MODE)) {
|
|
return -EACCES;
|
|
}
|
|
|
|
if (num_msgs == 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (num_msgs > data->hw_cfg.cmd_mem_depth || num_msgs > data->hw_cfg.cmdr_mem_depth) {
|
|
LOG_ERR("%s: Too many messages", dev->name);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* Ensure data will fit within FIFOs.
|
|
*
|
|
* TODO: This limitation prevents burst transfers greater than the
|
|
* FIFO sizes and should be replaced with an implementation that
|
|
* utilizes the RX/TX data interrupts.
|
|
*/
|
|
for (int i = 0; i < num_msgs; i++) {
|
|
if ((msgs[i].flags & I3C_MSG_RW_MASK) == I3C_MSG_READ) {
|
|
rxsize += ROUND_UP(msgs[i].len, 4);
|
|
} else {
|
|
txsize += ROUND_UP(msgs[i].len, 4);
|
|
}
|
|
}
|
|
if ((rxsize > data->hw_cfg.rx_mem_depth) || (txsize > data->hw_cfg.tx_mem_depth)) {
|
|
LOG_ERR("%s: Total RX and/or TX transfer larger than FIFO", dev->name);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
k_mutex_lock(&data->bus_lock, K_FOREVER);
|
|
|
|
/* wait for idle */
|
|
ret = cdns_i3c_wait_for_idle(dev);
|
|
if (ret != 0) {
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* Prepare transfer commands. Currently there is only a single transfer
|
|
* in-flight but it would be possible to keep a queue of transfers. If so,
|
|
* this preparation could be completed outside of the bus lock allowing
|
|
* greater parallelism.
|
|
*/
|
|
bool send_broadcast = true;
|
|
|
|
for (int i = 0; i < num_msgs; i++) {
|
|
struct cdns_i3c_cmd *cmd = &data->xfer.cmds[i];
|
|
uint32_t pl = msgs[i].len;
|
|
/* check hdr mode */
|
|
if ((!(msgs[i].flags & I3C_MSG_HDR)) ||
|
|
((msgs[i].flags & I3C_MSG_HDR) && (msgs[i].hdr_mode == 0))) {
|
|
/* HDR message flag is not set or if hdr flag is set but no hdr mode is set
|
|
*/
|
|
cmd->len = pl;
|
|
cmd->buf = msgs[i].buf;
|
|
|
|
cmd->cmd0 = CMD0_FIFO_PRIV_XMIT_MODE(XMIT_BURST_WITHOUT_SUBADDR);
|
|
cmd->cmd0 |= CMD0_FIFO_DEV_ADDR(target->dynamic_addr);
|
|
if ((msgs[i].flags & I3C_MSG_RW_MASK) == I3C_MSG_READ) {
|
|
cmd->cmd0 |= CMD0_FIFO_RNW;
|
|
/*
|
|
* For I3C_XMIT_MODE_NO_ADDR reads in SDN mode,
|
|
* CMD0_FIFO_PL_LEN specifies the abort limit not bytes to read
|
|
*/
|
|
cmd->cmd0 |= CMD0_FIFO_PL_LEN(pl + 1);
|
|
} else {
|
|
cmd->cmd0 |= CMD0_FIFO_PL_LEN(pl);
|
|
}
|
|
|
|
/* Send broadcast header on first transfer or after a STOP. */
|
|
if (!(msgs[i].flags & I3C_MSG_NBCH) && (send_broadcast)) {
|
|
cmd->cmd0 |= CMD0_FIFO_BCH;
|
|
send_broadcast = false;
|
|
}
|
|
|
|
/*
|
|
* Send repeated start on all transfers except the last or those marked
|
|
* STOP.
|
|
*/
|
|
if ((i < (num_msgs - 1)) && ((msgs[i].flags & I3C_MSG_STOP) == 0)) {
|
|
cmd->cmd0 |= CMD0_FIFO_RSBC;
|
|
} else {
|
|
send_broadcast = true;
|
|
}
|
|
|
|
/*
|
|
* write the address of num_xfer which is to be updated upon message
|
|
* completion
|
|
*/
|
|
cmd->num_xfer = &(msgs[i].num_xfer);
|
|
cmd->hdr = I3C_DATA_RATE_SDR;
|
|
} else if ((data->common.ctrl_config.supported_hdr & I3C_MSG_HDR_DDR) &&
|
|
(msgs[i].hdr_mode == I3C_MSG_HDR_DDR) && (msgs[i].flags & I3C_MSG_HDR)) {
|
|
uint16_t ddr_header_payload;
|
|
|
|
/* DDR sends data out in 16b, so len must be a multiple of 2 */
|
|
if (!((pl % 2) == 0)) {
|
|
ret = -EINVAL;
|
|
goto error;
|
|
}
|
|
/* HDR message flag is set and hdr mode is DDR */
|
|
cmd->buf = msgs[i].buf;
|
|
if ((msgs[i].flags & I3C_MSG_RW_MASK) == I3C_MSG_READ) {
|
|
/* HDR-DDR Read */
|
|
ddr_header_payload = HDR_CMD_RD |
|
|
HDR_CMD_CODE(msgs[i].hdr_cmd_code) |
|
|
(target->dynamic_addr << 1);
|
|
/* Parity Adjustment Bit for Reads */
|
|
ddr_header_payload =
|
|
prepare_ddr_cmd_parity_adjustment_bit(ddr_header_payload);
|
|
/* HDR-DDR Command Word */
|
|
cmd->ddr_header =
|
|
DDR_PREAMBLE_CMD_CRC | prepare_ddr_word(ddr_header_payload);
|
|
} else {
|
|
uint8_t crc5 = 0x1F;
|
|
/* HDR-DDR Write */
|
|
ddr_header_payload = HDR_CMD_CODE(msgs[i].hdr_cmd_code) |
|
|
(target->dynamic_addr << 1);
|
|
/* HDR-DDR Command Word */
|
|
cmd->ddr_header =
|
|
DDR_PREAMBLE_CMD_CRC | prepare_ddr_word(ddr_header_payload);
|
|
/* calculate crc5 */
|
|
crc5 = i3c_cdns_crc5(crc5, ddr_header_payload);
|
|
for (int j = 0; j < pl; j += 2) {
|
|
crc5 = i3c_cdns_crc5(
|
|
crc5,
|
|
sys_get_be16((void *)((uintptr_t)cmd->buf + j)));
|
|
}
|
|
cmd->ddr_crc = DDR_PREAMBLE_CMD_CRC | DDR_CRC_TOKEN | (crc5 << 9) |
|
|
DDR_CRC_WR_SETUP;
|
|
}
|
|
/* Length of DDR Transfer is length of payload (in 16b) + header and CRC
|
|
* blocks
|
|
*/
|
|
cmd->len = ((pl / 2) + 2);
|
|
|
|
/* prep command FIFO for ENTHDR0 */
|
|
cmd->cmd0 = CMD0_FIFO_IS_CCC;
|
|
cmd->cmd1 = I3C_CCC_ENTHDR0;
|
|
/* write the address of num_xfer which is to be updated upon message
|
|
* completion
|
|
*/
|
|
cmd->num_xfer = &(msgs[i].num_xfer);
|
|
cmd->hdr = I3C_DATA_RATE_HDR_DDR;
|
|
} else {
|
|
LOG_ERR("%s: Unsupported HDR Mode %d", dev->name, msgs[i].hdr_mode);
|
|
ret = -ENOTSUP;
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
data->xfer.ret = -ETIMEDOUT;
|
|
data->xfer.num_cmds = num_msgs;
|
|
|
|
cdns_i3c_start_transfer(dev);
|
|
if (k_sem_take(&data->xfer.complete, K_MSEC(1000)) != 0) {
|
|
LOG_ERR("%s: transfer timed out", dev->name);
|
|
cdns_i3c_cancel_transfer(dev);
|
|
}
|
|
|
|
ret = data->xfer.ret;
|
|
error:
|
|
k_mutex_unlock(&data->bus_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_I3C_USE_IBI
|
|
static int cdns_i3c_read_ibi_fifo(const struct cdns_i3c_config *config, void *buf, uint32_t len)
|
|
{
|
|
uint32_t *ptr = buf;
|
|
uint32_t remain, val;
|
|
|
|
for (remain = len; remain >= 4; remain -= 4) {
|
|
if (cdns_i3c_ibi_fifo_empty(config)) {
|
|
return -EIO;
|
|
}
|
|
val = sys_le32_to_cpu(sys_read32(config->base + IBI_DATA_FIFO));
|
|
*ptr++ = val;
|
|
}
|
|
|
|
if (remain > 0) {
|
|
if (cdns_i3c_ibi_fifo_empty(config)) {
|
|
return -EIO;
|
|
}
|
|
val = sys_le32_to_cpu(sys_read32(config->base + IBI_DATA_FIFO));
|
|
memcpy(ptr, &val, remain);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cdns_i3c_handle_ibi(const struct device *dev, uint32_t ibir)
|
|
{
|
|
const struct cdns_i3c_config *config = dev->config;
|
|
struct cdns_i3c_data *data = dev->data;
|
|
|
|
/* The slave ID returned here is the device ID in the SIR map NOT the device ID
|
|
* in the RR map.
|
|
*/
|
|
uint8_t slave_id = IBIR_SLVID(ibir);
|
|
|
|
if (slave_id == IBIR_SLVID_INV) {
|
|
/* DA does not match any value among SIR map */
|
|
return;
|
|
}
|
|
|
|
uint32_t dev_id_rr0 = sys_read32(config->base + DEV_ID_RR0(slave_id + 1));
|
|
uint8_t dyn_addr = DEV_ID_RR0_GET_DEV_ADDR(dev_id_rr0);
|
|
struct i3c_device_desc *desc = i3c_dev_list_i3c_addr_find(dev, dyn_addr);
|
|
|
|
/*
|
|
* Check for NAK or error conditions.
|
|
*
|
|
* Note: The logging is for debugging only so will be compiled out in most cases.
|
|
* However, if the log level for this module is DEBUG and log mode is IMMEDIATE or MINIMAL,
|
|
* this option is also set this may cause problems due to being inside an ISR.
|
|
*/
|
|
if (!(IBIR_ACKED & ibir)) {
|
|
LOG_DBG("%s: NAK for slave ID %u", dev->name, (unsigned int)slave_id);
|
|
return;
|
|
}
|
|
if (ibir & IBIR_ERROR) {
|
|
/* Controller issued an Abort */
|
|
LOG_ERR("%s: IBI Data overflow", dev->name);
|
|
}
|
|
|
|
/* Read out any payload bytes */
|
|
uint8_t ibi_len = IBIR_XFER_BYTES(ibir);
|
|
|
|
if (ibi_len > 0) {
|
|
if (ibi_len - data->ibi_buf.ibi_data_cnt > 0) {
|
|
if (cdns_i3c_read_ibi_fifo(
|
|
config, &data->ibi_buf.ibi_data[data->ibi_buf.ibi_data_cnt],
|
|
ibi_len - data->ibi_buf.ibi_data_cnt) < 0) {
|
|
LOG_ERR("%s: Failed to get payload", dev->name);
|
|
}
|
|
}
|
|
data->ibi_buf.ibi_data_cnt = 0;
|
|
}
|
|
|
|
if (i3c_ibi_work_enqueue_target_irq(desc, data->ibi_buf.ibi_data, ibi_len) != 0) {
|
|
LOG_ERR("%s: Error enqueue IBI IRQ work", dev->name);
|
|
}
|
|
}
|
|
|
|
static void cdns_i3c_handle_hj(const struct device *dev, uint32_t ibir)
|
|
{
|
|
if (!(IBIR_ACKED & ibir)) {
|
|
LOG_DBG("%s: NAK for HJ", dev->name);
|
|
return;
|
|
}
|
|
|
|
if (i3c_ibi_work_enqueue_hotjoin(dev) != 0) {
|
|
LOG_ERR("%s: Error enqueue IBI HJ work", dev->name);
|
|
}
|
|
}
|
|
|
|
static void cnds_i3c_master_demux_ibis(const struct device *dev)
|
|
{
|
|
const struct cdns_i3c_config *config = dev->config;
|
|
|
|
for (uint32_t status0 = sys_read32(config->base + MST_STATUS0);
|
|
!(status0 & MST_STATUS0_IBIR_EMP); status0 = sys_read32(config->base + MST_STATUS0)) {
|
|
uint32_t ibir = sys_read32(config->base + IBIR);
|
|
|
|
switch (IBIR_TYPE(ibir)) {
|
|
case IBIR_TYPE_IBI:
|
|
cdns_i3c_handle_ibi(dev, ibir);
|
|
break;
|
|
case IBIR_TYPE_HJ:
|
|
cdns_i3c_handle_hj(dev, ibir);
|
|
break;
|
|
case IBIR_TYPE_MR:
|
|
/* not implemented */
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void cdns_i3c_target_ibi_hj_complete(const struct device *dev)
|
|
{
|
|
struct cdns_i3c_data *data = dev->data;
|
|
|
|
k_sem_give(&data->ibi_hj_complete);
|
|
}
|
|
#endif
|
|
|
|
static void cdns_i3c_target_sdr_tx_thr_int_handler(const struct device *dev,
|
|
const struct i3c_target_callbacks *target_cb)
|
|
{
|
|
int status = 0;
|
|
struct cdns_i3c_data *data = dev->data;
|
|
const struct cdns_i3c_config *config = dev->config;
|
|
|
|
if (target_cb != NULL && target_cb->read_processed_cb) {
|
|
/* with REV_ID 1.7, as a target, the fifos are full word, otherwise only the first
|
|
* byte is used.
|
|
*/
|
|
if (REV_ID_REV(data->hw_cfg.rev_id) >= REV_ID_VERSION(1, 7)) {
|
|
/* while tx fifo is not full and there is still data available */
|
|
while ((!(sys_read32(config->base + SLV_STATUS1) &
|
|
SLV_STATUS1_SDR_TX_FULL)) &&
|
|
(status == 0)) {
|
|
/* call function pointer for read */
|
|
uint32_t tx_data = 0;
|
|
bool data_valid = false;
|
|
|
|
for (int j = 0; j < 4; j++) {
|
|
uint8_t byte;
|
|
/* will return negative if no data left to transmit and 0
|
|
* if data available
|
|
*/
|
|
status = target_cb->read_processed_cb(data->target_config,
|
|
&byte);
|
|
if (status == 0) {
|
|
data_valid = true;
|
|
tx_data |= (byte << (j * 8));
|
|
}
|
|
}
|
|
if (data_valid) {
|
|
cdns_i3c_write_tx_fifo(config, &tx_data, sizeof(uint32_t));
|
|
}
|
|
}
|
|
} else {
|
|
/* while tx fifo is not full and there is still data available */
|
|
while ((!(sys_read32(config->base + SLV_STATUS1) &
|
|
SLV_STATUS1_SDR_TX_FULL)) &&
|
|
(status == 0)) {
|
|
uint8_t byte;
|
|
/* will return negative if no data left to transmit and 0 if
|
|
* data available
|
|
*/
|
|
status = target_cb->read_processed_cb(data->target_config, &byte);
|
|
if (status == 0) {
|
|
cdns_i3c_write_tx_fifo(config, &byte, sizeof(uint8_t));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void cdns_i3c_irq_handler(const struct device *dev)
|
|
{
|
|
const struct cdns_i3c_config *config = dev->config;
|
|
struct cdns_i3c_data *data = dev->data;
|
|
|
|
if (sys_read32(config->base + MST_STATUS0) & MST_STATUS0_MASTER_MODE) {
|
|
uint32_t int_st = sys_read32(config->base + MST_ISR);
|
|
sys_write32(int_st, config->base + MST_ICR);
|
|
|
|
/* Command queue empty */
|
|
if (int_st & MST_INT_HALTED) {
|
|
LOG_WRN("Core Halted, 2 read aborts");
|
|
}
|
|
|
|
/* Command queue empty */
|
|
if (int_st & MST_INT_CMDD_EMP) {
|
|
cdns_i3c_complete_transfer(dev);
|
|
}
|
|
|
|
/* In-band interrupt */
|
|
if (int_st & MST_INT_IBIR_THR) {
|
|
#ifdef CONFIG_I3C_USE_IBI
|
|
cnds_i3c_master_demux_ibis(dev);
|
|
#else
|
|
LOG_ERR("%s: IBI received - Kconfig for using IBIs is not enabled",
|
|
dev->name);
|
|
#endif
|
|
}
|
|
|
|
/* In-band interrupt data threshold */
|
|
if (int_st & MST_INT_IBID_THR) {
|
|
#ifdef CONFIG_I3C_USE_IBI
|
|
/* pop data out of the IBI FIFO */
|
|
while (!cdns_i3c_ibi_fifo_empty(config)) {
|
|
uint32_t *ptr = (uint32_t *)&data->ibi_buf
|
|
.ibi_data[data->ibi_buf.ibi_data_cnt];
|
|
*ptr = sys_le32_to_cpu(sys_read32(config->base + IBI_DATA_FIFO));
|
|
data->ibi_buf.ibi_data_cnt += 4;
|
|
}
|
|
#else
|
|
LOG_ERR("%s: IBI received - Kconfig for using IBIs is not enabled",
|
|
dev->name);
|
|
#endif
|
|
}
|
|
|
|
/* In-band interrupt response overflow */
|
|
if (int_st & MST_INT_IBIR_OVF) {
|
|
LOG_ERR("%s: controller ibir overflow,", dev->name);
|
|
}
|
|
|
|
/* In-band interrupt data */
|
|
if (int_st & MST_INT_TX_OVF) {
|
|
LOG_ERR("%s: controller tx buffer overflow,", dev->name);
|
|
}
|
|
|
|
/* In-band interrupt data */
|
|
if (int_st & MST_INT_RX_UNF) {
|
|
LOG_ERR("%s: controller rx buffer underflow,", dev->name);
|
|
}
|
|
} else {
|
|
uint32_t int_sl = sys_read32(config->base + SLV_ISR);
|
|
const struct i3c_target_callbacks *target_cb =
|
|
data->target_config ? data->target_config->callbacks : NULL;
|
|
/* Clear interrupts */
|
|
sys_write32(int_sl, config->base + SLV_ICR);
|
|
|
|
/* SLV SDR rx fifo threshold */
|
|
if (int_sl & SLV_INT_SDR_RX_THR) {
|
|
/* while rx fifo is not empty */
|
|
while (!(sys_read32(config->base + SLV_STATUS1) &
|
|
SLV_STATUS1_SDR_RX_EMPTY)) {
|
|
if (target_cb != NULL && target_cb->write_received_cb != NULL) {
|
|
cdns_i3c_target_read_rx_fifo(dev);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* SLV SDR tx fifo threshold */
|
|
if (int_sl & SLV_INT_SDR_TX_THR) {
|
|
cdns_i3c_target_sdr_tx_thr_int_handler(dev, target_cb);
|
|
}
|
|
|
|
/* SLV SDR rx complete */
|
|
if (int_sl & SLV_INT_SDR_RD_COMP) {
|
|
/* a read needs to be done on slv_status 0 else a NACK will happen */
|
|
(void)sys_read32(config->base + SLV_STATUS0);
|
|
/* call stop function pointer */
|
|
if (target_cb != NULL && target_cb->stop_cb) {
|
|
target_cb->stop_cb(data->target_config);
|
|
}
|
|
}
|
|
|
|
/* SLV SDR tx complete */
|
|
if (int_sl & SLV_INT_SDR_WR_COMP) {
|
|
/* a read needs to be done on slv_status 0 else a NACK will happen */
|
|
(void)sys_read32(config->base + SLV_STATUS0);
|
|
/* clear bytes read parameter */
|
|
data->fifo_bytes_read = 0;
|
|
/* call stop function pointer */
|
|
if (target_cb != NULL && target_cb->stop_cb) {
|
|
target_cb->stop_cb(data->target_config);
|
|
}
|
|
}
|
|
|
|
/* DA has been updated */
|
|
if (int_sl & SLV_INT_DA_UPD) {
|
|
LOG_INF("%s: DA updated to 0x%02lx", dev->name,
|
|
SLV_STATUS1_DA(sys_read32(config->base + SLV_STATUS1)));
|
|
/* HJ could send a DISEC which would trigger the SLV_INT_EVENT_UP bit,
|
|
* but it's still expected to eventually send a DAA
|
|
*/
|
|
#ifdef CONFIG_I3C_USE_IBI
|
|
cdns_i3c_target_ibi_hj_complete(dev);
|
|
#endif
|
|
}
|
|
|
|
/* HJ complete and DA has been assigned */
|
|
if (int_sl & SLV_INT_HJ_DONE) {
|
|
}
|
|
|
|
/* Controllership has been been given */
|
|
if (int_sl & SLV_INT_MR_DONE) {
|
|
/* TODO: implement support for controllership handoff */
|
|
}
|
|
|
|
/* EISC or DISEC has been received */
|
|
if (int_sl & SLV_INT_EVENT_UP) {
|
|
}
|
|
|
|
/* sdr transfer aborted by controller */
|
|
if (int_sl & SLV_INT_M_RD_ABORT) {
|
|
/* TODO: consider flushing tx buffer? */
|
|
}
|
|
|
|
/* SLV SDR rx fifo underflow */
|
|
if (int_sl & SLV_INT_SDR_RX_UNF) {
|
|
LOG_ERR("%s: slave sdr rx buffer underflow", dev->name);
|
|
}
|
|
|
|
/* SLV SDR tx fifo overflow */
|
|
if (int_sl & SLV_INT_SDR_TX_OVF) {
|
|
LOG_ERR("%s: slave sdr tx buffer overflow,", dev->name);
|
|
}
|
|
|
|
if (int_sl & SLV_INT_DDR_RX_THR) {
|
|
}
|
|
|
|
/* SLV DDR WR COMPLETE */
|
|
if (int_sl & SLV_INT_DDR_WR_COMP) {
|
|
/* initial value of CRC5 for HDR-DDR is 0x1F */
|
|
uint8_t crc5 = 0x1F;
|
|
|
|
while (!(sys_read32(config->base + SLV_STATUS1) &
|
|
SLV_STATUS1_DDR_RX_EMPTY)) {
|
|
uint32_t ddr_rx_data = sys_read32(config->base + SLV_DDR_RX_FIFO);
|
|
uint32_t preamble = (ddr_rx_data & DDR_PREAMBLE_MASK);
|
|
|
|
if (preamble == DDR_PREAMBLE_DATA_ABORT ||
|
|
preamble == DDR_PREAMBLE_DATA_ABORT_ALT) {
|
|
uint16_t ddr_payload = DDR_DATA(ddr_rx_data);
|
|
|
|
if (cdns_i3c_ddr_parity(ddr_payload) !=
|
|
(ddr_rx_data & (DDR_ODD_PARITY | DDR_EVEN_PARITY))) {
|
|
LOG_ERR("%s: Received incorrect DDR Parity",
|
|
dev->name);
|
|
}
|
|
/* calculate a running a crc */
|
|
crc5 = i3c_cdns_crc5(crc5, ddr_payload);
|
|
|
|
if (target_cb != NULL &&
|
|
target_cb->write_received_cb != NULL) {
|
|
/* DDR receives 2B for each payload */
|
|
target_cb->write_received_cb(
|
|
data->target_config,
|
|
(uint8_t)((ddr_payload >> 8) & 0xFF));
|
|
target_cb->write_received_cb(
|
|
data->target_config,
|
|
(uint8_t)(ddr_payload));
|
|
}
|
|
|
|
} else if ((preamble == DDR_PREAMBLE_CMD_CRC) &&
|
|
((ddr_rx_data & DDR_CRC_TOKEN_MASK) == DDR_CRC_TOKEN)) {
|
|
/* should come through here last */
|
|
if (crc5 != DDR_CRC(ddr_rx_data)) {
|
|
LOG_ERR("%s: Received incorrect DDR CRC5",
|
|
dev->name);
|
|
}
|
|
} else if (preamble == DDR_PREAMBLE_CMD_CRC) {
|
|
/* should come through here first */
|
|
uint16_t ddr_header_payload = DDR_DATA(ddr_rx_data);
|
|
|
|
crc5 = i3c_cdns_crc5(crc5, ddr_header_payload);
|
|
}
|
|
}
|
|
|
|
if (target_cb != NULL && target_cb->stop_cb != NULL) {
|
|
target_cb->stop_cb(data->target_config);
|
|
}
|
|
}
|
|
|
|
/* SLV SDR rx complete */
|
|
if (int_sl & SLV_INT_DDR_RD_COMP) {
|
|
/* a read needs to be done on slv_status 0 else a NACK will happen */
|
|
(void)sys_read32(config->base + SLV_STATUS0);
|
|
/* call stop function pointer */
|
|
if (target_cb != NULL && target_cb->stop_cb) {
|
|
target_cb->stop_cb(data->target_config);
|
|
}
|
|
}
|
|
|
|
/*SLV DDR TX THR*/
|
|
if (int_sl & SLV_INT_DDR_TX_THR) {
|
|
int status = 0;
|
|
|
|
if (target_cb != NULL && target_cb->read_processed_cb) {
|
|
|
|
while ((!(sys_read32(config->base + SLV_STATUS1) &
|
|
SLV_STATUS1_DDR_TX_FULL)) &&
|
|
(status == 0)) {
|
|
/* call function pointer for read */
|
|
uint8_t byte;
|
|
/* will return negative if no data left to transmit
|
|
* and 0 if data available
|
|
*/
|
|
status = target_cb->read_processed_cb(data->target_config,
|
|
&byte);
|
|
if (status == 0) {
|
|
cdns_i3c_write_ddr_tx_fifo(config, &byte,
|
|
sizeof(byte));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void cdns_i3c_read_hw_cfg(const struct device *dev)
|
|
{
|
|
const struct cdns_i3c_config *config = dev->config;
|
|
struct cdns_i3c_data *data = dev->data;
|
|
|
|
uint32_t devid = sys_read32(config->base + DEV_ID);
|
|
uint32_t revid = sys_read32(config->base + REV_ID);
|
|
|
|
LOG_DBG("%s: Device info:\r\n"
|
|
" vid: 0x%03lX, pid: 0x%03lX\r\n"
|
|
" revision: major = %lu, minor = %lu\r\n"
|
|
" device ID: 0x%04X",
|
|
dev->name, REV_ID_VID(revid), REV_ID_PID(revid), REV_ID_REV_MAJOR(revid),
|
|
REV_ID_REV_MINOR(revid), devid);
|
|
|
|
/*
|
|
* Depths are specified as number of words (32bit), convert to bytes
|
|
*/
|
|
uint32_t cfg0 = sys_read32(config->base + CONF_STATUS0);
|
|
uint32_t cfg1 = sys_read32(config->base + CONF_STATUS1);
|
|
|
|
data->hw_cfg.rev_id = revid;
|
|
data->hw_cfg.cmdr_mem_depth = CONF_STATUS0_CMDR_DEPTH(cfg0) * 4;
|
|
data->hw_cfg.cmd_mem_depth = CONF_STATUS1_CMD_DEPTH(cfg1) * 4;
|
|
data->hw_cfg.rx_mem_depth = CONF_STATUS1_RX_DEPTH(cfg1) * 4;
|
|
data->hw_cfg.tx_mem_depth = CONF_STATUS1_TX_DEPTH(cfg1) * 4;
|
|
data->hw_cfg.ddr_rx_mem_depth = CONF_STATUS1_SLV_DDR_RX_DEPTH(cfg1) * 4;
|
|
data->hw_cfg.ddr_tx_mem_depth = CONF_STATUS1_SLV_DDR_TX_DEPTH(cfg1) * 4;
|
|
data->hw_cfg.ibir_mem_depth = CONF_STATUS0_IBIR_DEPTH(cfg0) * 4;
|
|
data->hw_cfg.ibi_mem_depth = CONF_STATUS1_IBI_DEPTH(cfg0) * 4;
|
|
|
|
LOG_DBG("%s: FIFO info:\r\n"
|
|
" cmd_mem_depth = %u\r\n"
|
|
" cmdr_mem_depth = %u\r\n"
|
|
" rx_mem_depth = %u\r\n"
|
|
" tx_mem_depth = %u\r\n"
|
|
" ddr_rx_mem_depth = %u\r\n"
|
|
" ddr_tx_mem_depth = %u\r\n"
|
|
" ibi_mem_depth = %u\r\n"
|
|
" ibir_mem_depth = %u",
|
|
dev->name, data->hw_cfg.cmd_mem_depth, data->hw_cfg.cmdr_mem_depth,
|
|
data->hw_cfg.rx_mem_depth, data->hw_cfg.tx_mem_depth, data->hw_cfg.ddr_rx_mem_depth,
|
|
data->hw_cfg.ddr_tx_mem_depth, data->hw_cfg.ibi_mem_depth,
|
|
data->hw_cfg.ibir_mem_depth);
|
|
|
|
/* Regardless of the cmd depth size we are limited by our cmd array length. */
|
|
data->hw_cfg.cmd_mem_depth = MIN(data->hw_cfg.cmd_mem_depth, ARRAY_SIZE(data->xfer.cmds));
|
|
}
|
|
|
|
/**
|
|
* @brief Get configuration of the I3C hardware.
|
|
*
|
|
* This provides a way to get the current configuration of the I3C hardware.
|
|
*
|
|
* This can return cached config or probed hardware parameters, but it has to
|
|
* be up to date with current configuration.
|
|
*
|
|
* @param[in] dev Pointer to controller device driver instance.
|
|
* @param[in] type Type of configuration parameters being passed
|
|
* in @p config.
|
|
* @param[in,out] config Pointer to the configuration parameters.
|
|
*
|
|
* Note that if @p type is @c I3C_CONFIG_CUSTOM, @p config must contain
|
|
* the ID of the parameter to be retrieved.
|
|
*
|
|
* @retval 0 If successful.
|
|
* @retval -EIO General Input/Output errors.
|
|
* @retval -ENOSYS If not implemented.
|
|
*/
|
|
static int cdns_i3c_config_get(const struct device *dev, enum i3c_config_type type, void *config)
|
|
{
|
|
struct cdns_i3c_data *data = dev->data;
|
|
int ret = 0;
|
|
|
|
if (config == NULL) {
|
|
ret = -EINVAL;
|
|
goto out_configure;
|
|
}
|
|
|
|
(void)memcpy(config, &data->common.ctrl_config, sizeof(data->common.ctrl_config));
|
|
|
|
out_configure:
|
|
return ret;
|
|
}
|
|
|
|
static int cdns_i3c_target_tx_ddr_write(const struct device *dev, uint8_t *buf, uint16_t len)
|
|
{
|
|
const struct cdns_i3c_config *config = dev->config;
|
|
struct cdns_i3c_data *data = dev->data;
|
|
uint32_t i, preamble;
|
|
uint32_t data_word;
|
|
uint8_t crc5 = 0x1F;
|
|
|
|
/* check if there is space available in the tx fifo */
|
|
if (sys_read32(config->base + SLV_STATUS1) & SLV_STATUS1_DDR_TX_FULL) {
|
|
return -ENOSPC;
|
|
}
|
|
|
|
/* DDR sends data out in 16b, so len must be a multiple of 2 */
|
|
if (!((len % 2) == 0)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Header shall be known in advanced to calculate crc5 */
|
|
uint8_t slave_da = SLV_STATUS1_DA(sys_read32(config->base + SLV_STATUS1));
|
|
uint16_t ddr_payload_header = HDR_CMD_RD | (slave_da << 1);
|
|
|
|
ddr_payload_header = prepare_ddr_cmd_parity_adjustment_bit(ddr_payload_header);
|
|
crc5 = i3c_cdns_crc5(crc5, ddr_payload_header);
|
|
|
|
/* write as much as you can to the fifo */
|
|
for (i = 0;
|
|
i < len && (!(sys_read32(config->base + SLV_STATUS1) & SLV_STATUS1_DDR_TX_FULL));
|
|
i += 2) {
|
|
/* Use ALT with other than first packets */
|
|
preamble = (i > 0) ? DDR_PREAMBLE_DATA_ABORT_ALT : DDR_PREAMBLE_DATA_ABORT;
|
|
data_word = (preamble | prepare_ddr_word(sys_get_be16(&buf[i])));
|
|
crc5 = i3c_cdns_crc5(crc5, sys_get_be16(&buf[i]));
|
|
sys_write32(data_word, config->base + SLV_DDR_TX_FIFO);
|
|
}
|
|
/* end of data buffer, write crc packet (if we are still not full) */
|
|
if ((i == len) && (!(sys_read32(config->base + SLV_STATUS1) & SLV_STATUS1_DDR_TX_FULL))) {
|
|
sys_write32(DDR_PREAMBLE_CMD_CRC | DDR_CRC_TOKEN | crc5 << 9,
|
|
config->base + SLV_DDR_TX_FIFO);
|
|
}
|
|
|
|
/* setup THR interrupt */
|
|
uint32_t thr_ctrl = sys_read32(config->base + SLV_DDR_TX_RX_THR_CTRL);
|
|
|
|
/*
|
|
* Interrupt at half of the data or FIFO depth to give it enough time to be
|
|
* processed. The ISR will then callback to the function pointer
|
|
* `read_processed_cb` to collect more data to transmit
|
|
*/
|
|
thr_ctrl &= ~TX_THR_MASK;
|
|
thr_ctrl |= TX_THR(MIN((data->hw_cfg.tx_mem_depth / 4) / 2, len / 2));
|
|
|
|
sys_write32(thr_ctrl, config->base + SLV_DDR_TX_RX_THR_CTRL);
|
|
/* return total bytes written */
|
|
return i;
|
|
}
|
|
|
|
/**
|
|
* @brief Writes to the Target's TX FIFO
|
|
*
|
|
* The Cadence I3C will then ACK read requests to it's TX FIFO from a
|
|
* Controller
|
|
*
|
|
* @param dev Pointer to the device structure for an I3C controller
|
|
* driver configured in target mode.
|
|
* @param buf Pointer to the buffer
|
|
* @param len Length of the buffer
|
|
*
|
|
* @retval Total number of bytes written
|
|
* @retval -EACCES Not in Target Mode
|
|
* @retval -ENOSPC No space in Tx FIFO
|
|
*/
|
|
static int cdns_i3c_target_tx_write(const struct device *dev, uint8_t *buf, uint16_t len,
|
|
uint8_t hdr_mode)
|
|
{
|
|
const struct cdns_i3c_config *config = dev->config;
|
|
struct cdns_i3c_data *data = dev->data;
|
|
struct i3c_config_controller *ctrl_config = &data->common.ctrl_config;
|
|
const uint32_t *buf_32 = (uint32_t *)buf;
|
|
uint32_t i = 0;
|
|
uint32_t val = 0;
|
|
uint16_t remain = len;
|
|
|
|
/* check if we are currently a target */
|
|
if (sys_read32(config->base + MST_STATUS0) & MST_STATUS0_MASTER_MODE) {
|
|
return -EACCES;
|
|
}
|
|
|
|
/* check if there is space available in the tx fifo */
|
|
if (sys_read32(config->base + SLV_STATUS1) & SLV_STATUS1_SDR_TX_FULL) {
|
|
return -ENOSPC;
|
|
}
|
|
|
|
k_mutex_lock(&data->bus_lock, K_FOREVER);
|
|
|
|
/* rev 1p7 requires the length be written to the SLV_CTRL reg */
|
|
if (REV_ID_REV(data->hw_cfg.rev_id) >= REV_ID_VERSION(1, 7)) {
|
|
sys_write32(len, config->base + SLV_CTRL);
|
|
}
|
|
if (hdr_mode == I3C_MSG_HDR_DDR) {
|
|
if (ctrl_config->supported_hdr & I3C_MSG_HDR_DDR) {
|
|
i = cdns_i3c_target_tx_ddr_write(dev, buf, len);
|
|
/* TODO: DDR THR interrupt support not implemented yet*/
|
|
} else {
|
|
LOG_ERR("%s: HDR-DDR not supported", dev->name);
|
|
i = -ENOTSUP;
|
|
}
|
|
} else if (hdr_mode == 0) {
|
|
/* write as much as you can to the fifo */
|
|
while (i < len &&
|
|
(!(sys_read32(config->base + SLV_STATUS1) & SLV_STATUS1_SDR_TX_FULL))) {
|
|
/* with rev 1p7, while as a target, the fifos are using the full word,
|
|
* otherwise only the first byte is used
|
|
*/
|
|
if (REV_ID_REV(data->hw_cfg.rev_id) >= REV_ID_VERSION(1, 7)) {
|
|
remain = len - i;
|
|
if (remain >= 4) {
|
|
val = *buf_32++;
|
|
} else if (remain > 0) {
|
|
val = 0;
|
|
memcpy(&val, buf_32, remain);
|
|
}
|
|
sys_write32(val, config->base + TX_FIFO);
|
|
i += 4;
|
|
} else {
|
|
sys_write32((uint32_t)buf[i], config->base + TX_FIFO);
|
|
i++;
|
|
}
|
|
}
|
|
|
|
/* setup THR interrupt */
|
|
uint32_t thr_ctrl = sys_read32(config->base + TX_RX_THR_CTRL);
|
|
|
|
/*
|
|
* Interrupt at half of the data or FIFO depth to give it enough time to be
|
|
* processed. The ISR will then callback to the function pointer
|
|
* `read_processed_cb` to collect more data to transmit
|
|
*/
|
|
thr_ctrl &= ~TX_THR_MASK;
|
|
thr_ctrl |= TX_THR(MIN((data->hw_cfg.tx_mem_depth / 4) / 2, len / 2));
|
|
sys_write32(thr_ctrl, config->base + TX_RX_THR_CTRL);
|
|
} else {
|
|
LOG_ERR("%s: Unsupported HDR Mode %d", dev->name, hdr_mode);
|
|
i = -ENOTSUP;
|
|
}
|
|
|
|
k_mutex_unlock(&data->bus_lock);
|
|
|
|
/* return total bytes written */
|
|
return i;
|
|
}
|
|
|
|
/**
|
|
* @brief Instructs the I3C Target device to register itself to the I3C Controller
|
|
*
|
|
* This routine instructs the I3C Target device to register itself to the I3C
|
|
* Controller via its parent controller's i3c_target_register() API.
|
|
*
|
|
* @param dev Pointer to target device driver instance.
|
|
* @param cfg Config struct with functions and parameters used by the I3C driver
|
|
* to send bus events
|
|
*
|
|
* @return @see i3c_device_find.
|
|
*/
|
|
static int cdns_i3c_target_register(const struct device *dev, struct i3c_target_config *cfg)
|
|
{
|
|
struct cdns_i3c_data *data = dev->data;
|
|
|
|
data->target_config = cfg;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* @brief Unregisters the provided config as Target device
|
|
*
|
|
* This routine disables I3C target mode for the 'dev' I3C bus driver using
|
|
* the provided 'config' struct containing the functions and parameters
|
|
* to send bus events.
|
|
*
|
|
* @param dev Pointer to target device driver instance.
|
|
* @param cfg Config struct with functions and parameters used by the I3C driver
|
|
* to send bus events
|
|
*
|
|
* @return @see i3c_device_find.
|
|
*/
|
|
static int cdns_i3c_target_unregister(const struct device *dev, struct i3c_target_config *cfg)
|
|
{
|
|
/* no way to disable? maybe write DA to 0? */
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* @brief Find a registered I3C target device.
|
|
*
|
|
* This returns the I3C device descriptor of the I3C device
|
|
* matching the incoming @p id.
|
|
*
|
|
* @param dev Pointer to controller device driver instance.
|
|
* @param id Pointer to I3C device ID.
|
|
*
|
|
* @return @see i3c_device_find.
|
|
*/
|
|
static struct i3c_device_desc *cdns_i3c_device_find(const struct device *dev,
|
|
const struct i3c_device_id *id)
|
|
{
|
|
const struct cdns_i3c_config *config = dev->config;
|
|
|
|
return i3c_dev_list_find(&config->common.dev_list, id);
|
|
}
|
|
|
|
/**
|
|
* Find a registered I2C target device.
|
|
*
|
|
* Controller only API.
|
|
*
|
|
* This returns the I2C device descriptor of the I2C device
|
|
* matching the device address @p addr.
|
|
*
|
|
* @param dev Pointer to controller device driver instance.
|
|
* @param id I2C target device address.
|
|
*
|
|
* @return @see i3c_i2c_device_find.
|
|
*/
|
|
static struct i3c_i2c_device_desc *cdns_i3c_i2c_device_find(const struct device *dev, uint16_t addr)
|
|
{
|
|
return i3c_dev_list_i2c_addr_find(dev, addr);
|
|
}
|
|
|
|
/**
|
|
* @brief Transfer messages in I2C mode.
|
|
*
|
|
* @see i2c_transfer
|
|
*
|
|
* @param dev Pointer to device driver instance.
|
|
* @param target Pointer to target device descriptor.
|
|
* @param msgs Pointer to I2C messages.
|
|
* @param num_msgs Number of messages to transfers.
|
|
*
|
|
* @return @see i2c_transfer
|
|
*/
|
|
static int cdns_i3c_i2c_api_transfer(const struct device *dev, struct i2c_msg *msgs,
|
|
uint8_t num_msgs, uint16_t addr)
|
|
{
|
|
struct i3c_i2c_device_desc *i2c_dev = cdns_i3c_i2c_device_find(dev, addr);
|
|
int ret;
|
|
|
|
if (i2c_dev == NULL) {
|
|
ret = -ENODEV;
|
|
} else {
|
|
ret = cdns_i3c_i2c_transfer(dev, i2c_dev, msgs, num_msgs);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Determine I3C bus mode from the i2c devices on the bus
|
|
*
|
|
* Reads the LVR of all I2C devices and returns the I3C bus
|
|
* Mode
|
|
*
|
|
* @param dev_list Pointer to device list
|
|
*
|
|
* @return @see enum i3c_bus_mode.
|
|
*/
|
|
static enum i3c_bus_mode i3c_bus_mode(const struct i3c_dev_list *dev_list)
|
|
{
|
|
enum i3c_bus_mode mode = I3C_BUS_MODE_PURE;
|
|
|
|
for (int i = 0; i < dev_list->num_i2c; i++) {
|
|
switch (I3C_LVR_I2C_DEV_IDX(dev_list->i2c[i].lvr)) {
|
|
case I3C_LVR_I2C_DEV_IDX_0:
|
|
if (mode < I3C_BUS_MODE_MIXED_FAST) {
|
|
mode = I3C_BUS_MODE_MIXED_FAST;
|
|
}
|
|
break;
|
|
case I3C_LVR_I2C_DEV_IDX_1:
|
|
if (mode < I3C_BUS_MODE_MIXED_LIMITED) {
|
|
mode = I3C_BUS_MODE_MIXED_LIMITED;
|
|
}
|
|
break;
|
|
case I3C_LVR_I2C_DEV_IDX_2:
|
|
if (mode < I3C_BUS_MODE_MIXED_SLOW) {
|
|
mode = I3C_BUS_MODE_MIXED_SLOW;
|
|
}
|
|
break;
|
|
default:
|
|
mode = I3C_BUS_MODE_INVALID;
|
|
break;
|
|
}
|
|
}
|
|
return mode;
|
|
}
|
|
|
|
/**
|
|
* Determine THD_DEL value for CTRL register
|
|
*
|
|
* Should be MIN(t_cf, t_cr) + 3ns
|
|
*
|
|
* @param dev Pointer to device driver instance.
|
|
*
|
|
* @return Value to be written to THD_DEL
|
|
*/
|
|
static uint8_t cdns_i3c_sda_data_hold(const struct device *dev)
|
|
{
|
|
const struct cdns_i3c_config *config = dev->config;
|
|
uint32_t input_clock_frequency = config->input_frequency;
|
|
uint8_t thd_delay =
|
|
DIV_ROUND_UP(I3C_HD_PP_DEFAULT_NS, (NSEC_PER_SEC / input_clock_frequency));
|
|
|
|
if (thd_delay > THD_DELAY_MAX) {
|
|
thd_delay = THD_DELAY_MAX;
|
|
}
|
|
|
|
return (THD_DELAY_MAX - thd_delay);
|
|
}
|
|
|
|
/**
|
|
* @brief Initialize the hardware.
|
|
*
|
|
* @param dev Pointer to controller device driver instance.
|
|
*/
|
|
static int cdns_i3c_bus_init(const struct device *dev)
|
|
{
|
|
struct cdns_i3c_data *data = dev->data;
|
|
const struct cdns_i3c_config *config = dev->config;
|
|
struct i3c_config_controller *ctrl_config = &data->common.ctrl_config;
|
|
|
|
cdns_i3c_read_hw_cfg(dev);
|
|
|
|
/* Clear all retaining regs */
|
|
sys_write32(DEVS_CTRL_DEV_CLR_ALL, config->base + DEVS_CTRL);
|
|
|
|
uint32_t conf0 = sys_read32(config->base + CONF_STATUS0);
|
|
uint32_t conf1 = sys_read32(config->base + CONF_STATUS1);
|
|
data->max_devs = CONF_STATUS0_DEVS_NUM(conf0);
|
|
data->free_rr_slots = GENMASK(data->max_devs, 1);
|
|
|
|
/* DDR supported bit moved in 1p7 revision along with dev role added */
|
|
if (REV_ID_REV(data->hw_cfg.rev_id) >= REV_ID_VERSION(1, 7)) {
|
|
ctrl_config->supported_hdr =
|
|
(conf1 & CONF_STATUS1_SUPPORTS_DDR) ? I3C_MSG_HDR_DDR : 0;
|
|
ctrl_config->is_secondary =
|
|
(CONF_STATUS0_DEV_ROLE(conf0) == CONF_STATUS0_DEV_ROLE_SEC_MASTER) ? true
|
|
: false;
|
|
} else {
|
|
ctrl_config->supported_hdr =
|
|
(conf0 & CONF_STATUS0_SUPPORTS_DDR) ? I3C_MSG_HDR_DDR : 0;
|
|
ctrl_config->is_secondary = (conf0 & CONF_STATUS0_SEC_MASTER) ? true : false;
|
|
}
|
|
k_mutex_init(&data->bus_lock);
|
|
k_sem_init(&data->xfer.complete, 0, 1);
|
|
k_sem_init(&data->ibi_hj_complete, 0, 1);
|
|
|
|
cdns_i3c_interrupts_disable(config);
|
|
cdns_i3c_interrupts_clear(config);
|
|
|
|
config->irq_config_func(dev);
|
|
|
|
/* Ensure the bus is disabled. */
|
|
sys_write32(~CTRL_DEV_EN & sys_read32(config->base + CTRL), config->base + CTRL);
|
|
|
|
/* determine prescaler timings for i3c and i2c scl */
|
|
cdns_i3c_set_prescalers(dev);
|
|
|
|
enum i3c_bus_mode mode = i3c_bus_mode(&config->common.dev_list);
|
|
|
|
LOG_DBG("%s: i3c bus mode %d", dev->name, mode);
|
|
int cdns_mode;
|
|
|
|
switch (mode) {
|
|
case I3C_BUS_MODE_PURE:
|
|
cdns_mode = CTRL_PURE_BUS_MODE;
|
|
break;
|
|
case I3C_BUS_MODE_MIXED_FAST:
|
|
cdns_mode = CTRL_MIXED_FAST_BUS_MODE;
|
|
break;
|
|
case I3C_BUS_MODE_MIXED_LIMITED:
|
|
case I3C_BUS_MODE_MIXED_SLOW:
|
|
cdns_mode = CTRL_MIXED_SLOW_BUS_MODE;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* When a Hot-Join request happens, disable all events coming from this device.
|
|
* We will issue ENTDAA afterwards from the threaded IRQ handler.
|
|
* Set HJ ACK later after bus init to prevent targets from indirect DAA enforcement.
|
|
*
|
|
* Set the I3C Bus Mode based on the LVR of the I2C devices
|
|
*/
|
|
uint32_t ctrl = CTRL_HJ_DISEC | CTRL_MCS_EN | (CTRL_BUS_MODE_MASK & cdns_mode);
|
|
/* Disable Controllership requests as it is not supported yet by the driver */
|
|
ctrl &= ~CTRL_MST_ACK;
|
|
|
|
/*
|
|
* Cadence I3C release r104v1p0 and above support configuration of the sda data hold time
|
|
*/
|
|
if (REV_ID_REV(data->hw_cfg.rev_id) >= REV_ID_VERSION(1, 4)) {
|
|
ctrl |= CTRL_THD_DELAY(cdns_i3c_sda_data_hold(dev));
|
|
}
|
|
|
|
/*
|
|
* Cadence I3C release r105v1p0 and above support I3C v1.1 timing change
|
|
* for tCASHr_min = tCAS_min / 2, otherwise tCASr_min = tCAS_min (as
|
|
* per MIPI spec v1.0)
|
|
*/
|
|
if (REV_ID_REV(data->hw_cfg.rev_id) >= REV_ID_VERSION(1, 5)) {
|
|
ctrl |= CTRL_I3C_11_SUPP;
|
|
}
|
|
|
|
/* write ctrl register value */
|
|
sys_write32(ctrl, config->base + CTRL);
|
|
|
|
/* enable Core */
|
|
sys_write32(CTRL_DEV_EN | ctrl, config->base + CTRL);
|
|
|
|
/* Set fifo thresholds. */
|
|
sys_write32(CMD_THR(I3C_CMDD_THR) | IBI_THR(I3C_IBID_THR) | CMDR_THR(I3C_CMDR_THR) |
|
|
IBIR_THR(config->ibid_thr),
|
|
config->base + CMD_IBI_THR_CTRL);
|
|
|
|
/* Set TX/RX interrupt thresholds. */
|
|
if (sys_read32(config->base + MST_STATUS0) & MST_STATUS0_MASTER_MODE) {
|
|
sys_write32(TX_THR(I3C_TX_THR) | RX_THR(data->hw_cfg.rx_mem_depth),
|
|
config->base + TX_RX_THR_CTRL);
|
|
} else {
|
|
sys_write32(TX_THR(1) | RX_THR(1), config->base + TX_RX_THR_CTRL);
|
|
sys_write32(SLV_DDR_TX_THR(0) | SLV_DDR_RX_THR(1),
|
|
config->base + SLV_DDR_TX_RX_THR_CTRL);
|
|
}
|
|
|
|
/* enable target interrupts */
|
|
sys_write32(SLV_INT_DA_UPD | SLV_INT_SDR_RD_COMP | SLV_INT_SDR_WR_COMP |
|
|
SLV_INT_SDR_RX_THR | SLV_INT_SDR_TX_THR | SLV_INT_SDR_RX_UNF |
|
|
SLV_INT_SDR_TX_OVF | SLV_INT_HJ_DONE | SLV_INT_DDR_WR_COMP |
|
|
SLV_INT_DDR_RD_COMP | SLV_INT_DDR_RX_THR | SLV_INT_DDR_TX_THR,
|
|
config->base + SLV_IER);
|
|
|
|
/* Enable IBI interrupts. */
|
|
sys_write32(MST_INT_IBIR_THR | MST_INT_RX_UNF | MST_INT_HALTED | MST_INT_TX_OVF |
|
|
MST_INT_IBIR_OVF | MST_INT_IBID_THR,
|
|
config->base + MST_IER);
|
|
|
|
int ret = i3c_addr_slots_init(dev);
|
|
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
/* Program retaining regs. */
|
|
cdns_i3c_program_controller_retaining_reg(dev);
|
|
|
|
/* only primary controllers are responsible for initializing the bus */
|
|
if (!ctrl_config->is_secondary) {
|
|
/* Sleep to wait for bus idle. */
|
|
k_busy_wait(201);
|
|
/* Perform bus initialization */
|
|
ret = i3c_bus_init(dev, &config->common.dev_list);
|
|
#ifdef CONFIG_I3C_USE_IBI
|
|
/* Bus Initialization Complete, allow HJ ACKs */
|
|
sys_write32(CTRL_HJ_ACK | sys_read32(config->base + CTRL), config->base + CTRL);
|
|
#endif
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct i3c_driver_api api = {
|
|
.i2c_api.configure = cdns_i3c_i2c_api_configure,
|
|
.i2c_api.transfer = cdns_i3c_i2c_api_transfer,
|
|
|
|
.configure = cdns_i3c_configure,
|
|
.config_get = cdns_i3c_config_get,
|
|
|
|
.attach_i3c_device = cdns_i3c_attach_device,
|
|
.reattach_i3c_device = cdns_i3c_reattach_device,
|
|
.detach_i3c_device = cdns_i3c_detach_device,
|
|
.attach_i2c_device = cdns_i3c_i2c_attach_device,
|
|
.detach_i2c_device = cdns_i3c_i2c_detach_device,
|
|
|
|
.do_daa = cdns_i3c_do_daa,
|
|
.do_ccc = cdns_i3c_do_ccc,
|
|
|
|
.i3c_device_find = cdns_i3c_device_find,
|
|
|
|
.i3c_xfers = cdns_i3c_transfer,
|
|
|
|
.target_tx_write = cdns_i3c_target_tx_write,
|
|
.target_register = cdns_i3c_target_register,
|
|
.target_unregister = cdns_i3c_target_unregister,
|
|
|
|
#ifdef CONFIG_I3C_USE_IBI
|
|
.ibi_enable = cdns_i3c_controller_ibi_enable,
|
|
.ibi_disable = cdns_i3c_controller_ibi_disable,
|
|
.ibi_raise = cdns_i3c_target_ibi_raise,
|
|
#endif
|
|
};
|
|
|
|
#define CADENCE_I3C_INSTANTIATE(n) \
|
|
static void cdns_i3c_config_func_##n(const struct device *dev); \
|
|
static struct i3c_device_desc cdns_i3c_device_array_##n[] = I3C_DEVICE_ARRAY_DT_INST(n); \
|
|
static struct i3c_i2c_device_desc cdns_i3c_i2c_device_array_##n[] = \
|
|
I3C_I2C_DEVICE_ARRAY_DT_INST(n); \
|
|
static const struct cdns_i3c_config i3c_config_##n = { \
|
|
.base = DT_INST_REG_ADDR(n), \
|
|
.input_frequency = DT_INST_PROP(n, input_clock_frequency), \
|
|
.irq_config_func = cdns_i3c_config_func_##n, \
|
|
.ibid_thr = DT_INST_PROP(n, ibid_thr), \
|
|
.common.dev_list.i3c = cdns_i3c_device_array_##n, \
|
|
.common.dev_list.num_i3c = ARRAY_SIZE(cdns_i3c_device_array_##n), \
|
|
.common.dev_list.i2c = cdns_i3c_i2c_device_array_##n, \
|
|
.common.dev_list.num_i2c = ARRAY_SIZE(cdns_i3c_i2c_device_array_##n), \
|
|
}; \
|
|
static struct cdns_i3c_data i3c_data_##n = { \
|
|
.common.ctrl_config.scl.i3c = DT_INST_PROP_OR(n, i3c_scl_hz, 0), \
|
|
.common.ctrl_config.scl.i2c = DT_INST_PROP_OR(n, i2c_scl_hz, 0), \
|
|
}; \
|
|
DEVICE_DT_INST_DEFINE(n, cdns_i3c_bus_init, NULL, &i3c_data_##n, &i3c_config_##n, \
|
|
POST_KERNEL, CONFIG_I3C_CONTROLLER_INIT_PRIORITY, &api); \
|
|
static void cdns_i3c_config_func_##n(const struct device *dev) \
|
|
{ \
|
|
IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), cdns_i3c_irq_handler, \
|
|
DEVICE_DT_INST_GET(n), 0); \
|
|
irq_enable(DT_INST_IRQN(n)); \
|
|
};
|
|
|
|
#define DT_DRV_COMPAT cdns_i3c
|
|
DT_INST_FOREACH_STATUS_OKAY(CADENCE_I3C_INSTANTIATE)
|