1009-GPS_Derived_RF_Generator/RFout1MHzV1_03/RFout1MHzV1_03.ino

250 lines
7.9 KiB
C++

#include <NMEAGPS.h>
#include <SoftwareSerial.h>
SoftwareSerial gpsPort(2, 3); // RX, TX
#define LEDIndicator1 5 //LED indicator for GPS Lock on pin A3
#define FIXOut 4 //Pin Out at IDC. Indicator for GPS Lock on pin 4
#define LDO_Enable A3 //GPS Voltage regulator Enable on pin A0
boolean GPSOK;
const char softwareversion[] = "1.03" ; //Version of this program, sent to serialport at startup
NMEAGPS gps; // This parses the GPS characters
gps_fix fix; // This holds on to the latest values
//-------------------------- SETUP -----------------------
void setup()
{
Serial.begin(9600);
while (!Serial)
;
Serial.println("");
Serial.print(F("Zachtek GPS referenced RF, Software version: "));
Serial.println(softwareversion);
pinMode(LDO_Enable, OUTPUT); // Set Voltage Regulator Enable pin as output.
digitalWrite(LDO_Enable, HIGH); //Turn on 3.1V Power supply for the Ublox GPS module
Serial.println (F("Turning on Voltage Regulator for GPS module"));
pinMode(LEDIndicator1, OUTPUT); // Set GPS Lock LED pin as output.
pinMode(FIXOut, OUTPUT); // Set GPS Lock line as output.
digitalWrite(LEDIndicator1, LOW); //Turn off Lock LED
digitalWrite(FIXOut, LOW); //Go low on Lock line
delay(500);//Wait for GPSmodule to complete it's power on.
gpsPort.begin(9600);
GPSOK=true;
//Program GPS to output RF
if (setGPS_OutputFreq1MHz()) {
Serial.println ("GPS Initialized to output RF at 1MHz");
Serial.println ("Initialization is complete.");
Serial.println ("");
GPSOK=true;
}
else
{
Serial.println ("Error! Could not program GPS!");
GPSOK=false;
}
}
//--------------------------
//-------------------------- Main loop -----------------------
void loop()
{
while (gps.available( gpsPort )) {
fix = gps.read();
if (fix.valid.location && fix.valid.date && fix.valid.time)
{
Serial.print( F("Fix - Location: ") );
digitalWrite(LEDIndicator1, HIGH); // turn the LED on
digitalWrite(FIXOut, HIGH); // Set Lock Line high
Serial.print( fix.latitude(), 6 );
Serial.print( ',' );
Serial.print( fix.longitude(), 6 );
Serial.println();
}
else
{
if (GPSOK) { //If the GPS is connected but not locked then short blink
digitalWrite(LEDIndicator1, HIGH); // turn the LED on
digitalWrite(FIXOut, LOW); // Set Lock Line low
delay(100);
digitalWrite(LEDIndicator1, LOW); // turn the LED off
Serial.println(F("Waiting for GPS location fix"));
}
}
}
}
//--------------------------
bool setGPS_OutputFreq100kHz()
{
int gps_set_sucess=0;
uint8_t setOutputFreq[] = {
0xB5, 0x62, 0x06, 0x31, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x32, 0x00, 0x00, 0x00, 0x01, 0x00,
0x00, 0x00, 0xA0, 0x86, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00,
0x00, 0x00, 0xEF, 0x00, 0x00, 0x00, 0x20, 0x1B };
sendUBX(setOutputFreq, sizeof(setOutputFreq)/sizeof(uint8_t));
gps_set_sucess=getUBX_ACK(setOutputFreq);
//Serial.println("Set output Freq Done");
return gps_set_sucess;
}
bool setGPS_OutputFreq1MHz()
{
int gps_set_sucess=0;
uint8_t setOutputFreq[] = {
0xB5, 0x62, 0x06, 0x31, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x32, 0x00, 0x00, 0x00, 0x01, 0x00,
0x00, 0x00, 0x40, 0x42, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00,
0x00, 0x00, 0xEF, 0x00, 0x00, 0x00, 0x8A, 0x8B };
sendUBX(setOutputFreq, sizeof(setOutputFreq)/sizeof(uint8_t));
gps_set_sucess=getUBX_ACK(setOutputFreq);
//Serial.println("Set output Freq Done");
return gps_set_sucess;
}
bool setGPS_OutputFreq2MHz()
{
int gps_set_sucess=0;
uint8_t setOutputFreq[] = {
0xB5, 0x62, 0x06, 0x31, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x32, 0x00, 0x00, 0x00, 0x01, 0x00,
0x00, 0x00, 0x80, 0x84, 0x1E, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00,
0x00, 0x00, 0xEF, 0x00, 0x00, 0x00, 0x1B, 0x7F };
sendUBX(setOutputFreq, sizeof(setOutputFreq)/sizeof(uint8_t));
gps_set_sucess=getUBX_ACK(setOutputFreq);
//Serial.println("Set output Freq Done");
return gps_set_sucess;
}
bool setGPS_OutputFreq4MHz()
{
int gps_set_sucess=0;
uint8_t setOutputFreq[] = {
0xB5, 0x62, 0x06, 0x31, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x32, 0x00, 0x00, 0x00, 0x01, 0x00,
0x00, 0x00, 0x00, 0x09, 0x3D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00,
0x00, 0x00, 0xEF, 0x00, 0x00, 0x00, 0x3F, 0x8C };
sendUBX(setOutputFreq, sizeof(setOutputFreq)/sizeof(uint8_t));
gps_set_sucess=getUBX_ACK(setOutputFreq);
//Serial.println("Set output Freq Done");
return gps_set_sucess;
}
//8MHz is the highest low-jitter frequency possible
bool setGPS_OutputFreq8MHz()
{
int gps_set_sucess=0;
uint8_t setOutputFreq[] = {
0xB5, 0x62, 0x06, 0x31, 0x20, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00,
0x00, 0x00, 0x00, 0x12, 0x7A, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00,
0x00, 0x00, 0x6F, 0x00, 0x00, 0x00, 0xD4, 0x28 };
sendUBX(setOutputFreq, sizeof(setOutputFreq)/sizeof(uint8_t));
gps_set_sucess=getUBX_ACK(setOutputFreq);
//Serial.println("Set output Freq Done");
return gps_set_sucess;
}
//10 MHz is very jittery. Numbers that can be done with an integer division from 48MHz will produce
//the lowest jitter so 16 ,12 ,8 ,6 ,4 ,2 and 1 MHz is low jitter but 10MHz is not
//If 10MHz low jitter is needed then one option is to output 2MHz and then filter out the 5th overtone arriving at 10MHz in that way.
bool setGPS_OutputFreq10MHz()
{
int gps_set_sucess=0;
uint8_t setOutputFreq[] = {
0xB5, 0x62, 0x06, 0x31, 0x20, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00,
0x00, 0x00, 0x80, 0x96, 0x98, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00,
0x00, 0x00, 0x6F, 0x00, 0x00, 0x00, 0xF6, 0x10 };
sendUBX(setOutputFreq, sizeof(setOutputFreq)/sizeof(uint8_t));
gps_set_sucess=getUBX_ACK(setOutputFreq);
//Serial.println("Set output Freq Done");
return gps_set_sucess;
}
//16MHz is above the specs for lUblox Neo-6, only included for experiments.
//This will not produce as clean Square wave.
bool setGPS_OutputFreq16MHz()
{
int gps_set_sucess=0;
uint8_t setOutputFreq[] = {
0xB5, 0x62, 0x06, 0x31, 0x20, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00,
0x00, 0x00, 0x00, 0x24, 0xF4, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00,
0x00, 0x00, 0x6F, 0x00, 0x00, 0x00, 0x60, 0x12 };
sendUBX(setOutputFreq, sizeof(setOutputFreq)/sizeof(uint8_t));
gps_set_sucess=getUBX_ACK(setOutputFreq);
//Serial.println("Set output Freq Done");
return gps_set_sucess;
}
void sendUBX(uint8_t *MSG, uint8_t len) {
gpsPort.flush();
gpsPort.write(0xFF);
_delay_ms(500);
for(int i=0; i<len; i++) {
gpsPort.write(MSG[i]);
}
}
boolean getUBX_ACK(uint8_t *MSG) {
uint8_t b;
uint8_t ackByteID = 0;
uint8_t ackPacket[10];
unsigned long startTime = millis();
// Construct the expected ACK packet
ackPacket[0] = 0xB5; // header
ackPacket[1] = 0x62; // header
ackPacket[2] = 0x05; // class
ackPacket[3] = 0x01; // id
ackPacket[4] = 0x02; // length
ackPacket[5] = 0x00;
ackPacket[6] = MSG[2]; // ACK class
ackPacket[7] = MSG[3]; // ACK id
ackPacket[8] = 0; // CK_A
ackPacket[9] = 0; // CK_B
// Calculate the checksums
for (uint8_t ubxi=2; ubxi<8; ubxi++) {
ackPacket[8] = ackPacket[8] + ackPacket[ubxi];
ackPacket[9] = ackPacket[9] + ackPacket[8];
}
while (1) { // Test for success
if (ackByteID > 9) {
// All packets in order!
return true;
}
// Timeout if no valid response in 3 seconds
if (millis() - startTime > 3000) {
return false;
}
// Make sure data is available to read
if (gpsPort.available()) {
b = gpsPort.read();
// Check that bytes arrive in sequence as per expected ACK packet
if (b == ackPacket[ackByteID]) {
ackByteID++;
}
else {
ackByteID = 0; // Reset and look again, invalid order
}//else
}//If
}//While
}//getUBX_ACK