Tested and Runs on Gemma M0 - Ported to CircuitPython

This commit is contained in:
Mikey Sklar 2017-10-29 13:28:08 -06:00
parent b2ce1ae854
commit ca538a8381
5 changed files with 296 additions and 0 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 63 KiB

BIN
LED_Candles/LED_Candles.fzz Normal file

Binary file not shown.

165
LED_Candles/LED_Candles.ino Normal file
View file

@ -0,0 +1,165 @@
#include <Adafruit_NeoPixel.h>
// The onboard red LED's pin
#define REDLED_PIN 1
// The data-in pin of the NeoPixel
#define WICK_PIN 0
// Any unconnected pin, to try to generate a random seed
#define UNCONNECTED_PIN 2
// The LED can be in only one of these states at any given time
#define BRIGHT 0
#define UP 1
#define DOWN 2
#define DIM 3
#define BRIGHT_HOLD 4
#define DIM_HOLD 5
// Percent chance the LED will suddenly fall to minimum brightness
#define INDEX_BOTTOM_PERCENT 10
// Absolute minimum red value (green value is a function of red's value)
#define INDEX_BOTTOM 128
// Minimum red value during "normal" flickering (not a dramatic change)
#define INDEX_MIN 192
// Maximum red value
#define INDEX_MAX 255
// Decreasing brightness will take place over a number of milliseconds in this range
#define DOWN_MIN_MSECS 20
#define DOWN_MAX_MSECS 250
// Increasing brightness will take place over a number of milliseconds in this range
#define UP_MIN_MSECS 20
#define UP_MAX_MSECS 250
// Percent chance the color will hold unchanged after brightening
#define BRIGHT_HOLD_PERCENT 20
// When holding after brightening, hold for a number of milliseconds in this range
#define BRIGHT_HOLD_MIN_MSECS 0
#define BRIGHT_HOLD_MAX_MSECS 100
// Percent chance the color will hold unchanged after dimming
#define DIM_HOLD_PERCENT 5
// When holding after dimming, hold for a number of milliseconds in this range
#define DIM_HOLD_MIN_MSECS 0
#define DIM_HOLD_MAX_MSECS 50
#define MINVAL(A,B) (((A) < (B)) ? (A) : (B))
#define MAXVAL(A,B) (((A) > (B)) ? (A) : (B))
Adafruit_NeoPixel *wick;
byte state;
unsigned long flicker_msecs;
unsigned long flicker_start;
byte index_start;
byte index_end;
void set_color(byte index)
{
index = MAXVAL(MINVAL(index, INDEX_MAX), INDEX_BOTTOM);
if (index >= INDEX_MIN)
wick->setPixelColor(0, index, (index * 3) / 8, 0);
else if (index < INDEX_MIN)
wick->setPixelColor(0, index, (index * 3.25) / 8, 0);
wick->show();
return;
}
void setup()
{
// There is no good source of entropy to seed the random number generator,
// so we'll just read the analog value of an unconnected pin. This won't be
// very random either, but there's really nothing else we can do.
//
// True randomness isn't strictly necessary, we just don't want a whole
// string of these things to do exactly the same thing at the same time if
// they're all powered on simultaneously.
randomSeed(analogRead(UNCONNECTED_PIN));
// Turn off the onboard red LED
pinMode(REDLED_PIN, OUTPUT);
digitalWrite(REDLED_PIN, LOW);
wick = new Adafruit_NeoPixel(1, WICK_PIN, NEO_RGB + NEO_KHZ800);
// wick = new Adafruit_NeoPixel(1, WICK_PIN); // for RGBW, if you see green uncomment this line
wick->begin();
wick->show();
set_color(255);
index_start = 255;
index_end = 255;
state = BRIGHT;
return;
}
void loop()
{
unsigned long current_time;
current_time = millis();
switch (state)
{
case BRIGHT:
flicker_msecs = random(DOWN_MAX_MSECS - DOWN_MIN_MSECS) + DOWN_MIN_MSECS;
flicker_start = current_time;
index_start = index_end;
if ((index_start > INDEX_BOTTOM) &&
(random(100) < INDEX_BOTTOM_PERCENT))
index_end = random(index_start - INDEX_BOTTOM) + INDEX_BOTTOM;
else
index_end = random(index_start - INDEX_MIN) + INDEX_MIN;
state = DOWN;
break;
case DIM:
flicker_msecs = random(UP_MAX_MSECS - UP_MIN_MSECS) + UP_MIN_MSECS;
flicker_start = current_time;
index_start = index_end;
index_end = random(INDEX_MAX - index_start) + INDEX_MIN;
state = UP;
break;
case BRIGHT_HOLD:
case DIM_HOLD:
if (current_time >= (flicker_start + flicker_msecs))
state = (state == BRIGHT_HOLD) ? BRIGHT : DIM;
break;
case UP:
case DOWN:
if (current_time < (flicker_start + flicker_msecs))
set_color(index_start + ((index_end - index_start) * (((current_time - flicker_start) * 1.0) / flicker_msecs)));
else
{
set_color(index_end);
if (state == DOWN)
{
if (random(100) < DIM_HOLD_PERCENT)
{
flicker_start = current_time;
flicker_msecs = random(DIM_HOLD_MAX_MSECS - DIM_HOLD_MIN_MSECS) + DIM_HOLD_MIN_MSECS;
state = DIM_HOLD;
}
else
state = DIM;
}
else
{
if (random(100) < BRIGHT_HOLD_PERCENT)
{
flicker_start = current_time;
flicker_msecs = random(BRIGHT_HOLD_MAX_MSECS - BRIGHT_HOLD_MIN_MSECS) + BRIGHT_HOLD_MIN_MSECS;
state = BRIGHT_HOLD;
}
else
state = BRIGHT;
}
}
break;
}
return;
}

127
LED_Candles/LED_Candles.py Normal file
View file

@ -0,0 +1,127 @@
import board
import neopixel
import time
from analogio import AnalogIn
try:
import urandom as random
except ImportError:
import random
wick_pin = board.D0 # The data-in pin of the NeoPixel
unconnected_pin = board.A0 # Any unconnected pin, to try to generate a random seed
# The LED can be in only one of these states at any given time
bright = 0
up = 1
down = 2
dim = 3
bright_hold = 4
dim_hold = 5
index_bottom_percent = 10 # Percent chance the LED will suddenly fall to minimum brightness
index_bottom = 128 # Absolute minimum red value (green value is a function of red's value)
index_min = 192 # Minimum red value during "normal" flickering (not a dramatic change)
index_max = 255 # Maximum red value
# Decreasing brightness will take place over a number of milliseconds in this range
down_min_msecs = 20
down_max_msecs = 250
# Increasing brightness will take place over a number of milliseconds in this range
up_min_msecs = 20
up_max_msecs = 250
# Percent chance the color will hold unchanged after brightening
bright_hold_percent = 20
# When holding after brightening, hold for a number of milliseconds in this range
bright_hold_min_msecs = 0
bright_hold_max_msecs = 100
# Percent chance the color will hold unchanged after dimming
dim_hold_percent = 5
# When holding after dimming, hold for a number of milliseconds in this range
dim_hold_min_msecs = 0
dim_hold_max_msecs = 50
numpix = 1 # Number of NeoPixels
pixpin = board.D0 # Pin where NeoPixels are connected
strip = neopixel.NeoPixel(pixpin, numpix, brightness=1, auto_write=True) # initialize strip
# Random number generator is seeded from an unused 'floating'
# analog input - this helps ensure the random color choices
# aren't always the same order.
pin = AnalogIn(unconnected_pin)
random.seed(pin.value)
pin.deinit()
index_start = 255
index_start = 255
index_end = 255
state = bright
def set_color(index):
index = max(min(index,index_max), index_bottom)
if ( index >= index_min ):
strip[0] = [index, int ( (index * 3) / 8 ), 0]
elif ( index < index_min ):
strip[0] = [index, int ( (index * 3.25) / 8 ) , 0]
set_color(255)
while True:
current_time = time.monotonic()
# BRIGHT
if ( state == bright ):
flicker_msecs = random.randint(0, down_max_msecs - down_min_msecs) + down_min_msecs
flicker_start = current_time
index_start = index_end
if (( index_start > index_bottom ) and ( random.randint(0, 100) < index_bottom_percent)):
index_end = random.randint(0, index_start - index_bottom) + index_bottom
else:
index_end = random.randint(0, index_start - index_min) + index_min
state = down
# DIM
elif ( state == dim ):
flicker_msecs = random.randint(0, up_max_msecs - up_min_msecs) + up_min_msecs
flicker_start = current_time
index_start = index_end
index_end = random.randint(0, (index_max - index_start) ) + index_min
state = down
# DIM_HOLD
elif ( state == dim_hold ):
if (current_time >= ( flicker_start + ( flicker_msecs / 1000) ) ): # dividing flicker_msecs by 1000 to convert to milliseconds
if ( state == bright_hold ):
state = bright
else:
state = dim
# DOWN
elif ( state == down ):
if (current_time < (flicker_start + ( flicker_msecs / 1000 ) )): # dividing flicker_msecs by 1000 to convert to milliseconds
set_color(index_start + int ( ((index_end - index_start) * (((current_time - flicker_start) * 1.0) / flicker_msecs))) )
else:
set_color(index_end)
if (state == down):
if (random.randint(0,100) < dim_hold_percent):
flicker_start = current_time
flicker_msecs = random.randint(0, dim_hold_max_msecs - dim_hold_min_msecs) + dim_hold_min_msecs
state = dim_hold
else:
state = dim
else:
if (random.randint(0,100) < bright_hold_percent):
flicker_start = current_time
flicker_msecs = random.randint(0, bright_hold_max_msecs - bright_hold_min_msecs) + bright_hold_min_msecs
state = bright_hold
else:
state = bright

4
LED_Candles/README.md Normal file
View file

@ -0,0 +1,4 @@
# LED_Candles
Code to accompany this tutorial:
https://learn.adafruit.com/led-candles-simple-easy-cheap