Circiuit Python Ported, INO also tested on Gemma M0

This commit is contained in:
Mikey Sklar 2017-11-08 08:22:20 -07:00
parent 223e1c3efc
commit eb83b9b425
3 changed files with 200 additions and 0 deletions

View file

@ -0,0 +1,86 @@
#include <Adafruit_NeoPixel.h>
#define N_PIXELS 12 // Number of pixels you are using
#define MIC_PIN A1 // Microphone is attached to Trinket GPIO #2/Gemma D2 (A1)
#define LED_PIN 0 // NeoPixel LED strand is connected to GPIO #0 / D0
#define DC_OFFSET 0 // DC offset in mic signal - if unusure, leave 0
#define NOISE 100 // Noise/hum/interference in mic signal
#define SAMPLES 60 // Length of buffer for dynamic level adjustment
#define TOP (N_PIXELS +1) // Allow dot to go slightly off scale
byte
peak = 0, // Used for falling dot
dotCount = 0, // Frame counter for delaying dot-falling speed
volCount = 0; // Frame counter for storing past volume data
int
vol[SAMPLES], // Collection of prior volume samples
lvl = 10, // Current "dampened" audio level
minLvlAvg = 0, // For dynamic adjustment of graph low & high
maxLvlAvg = 512;
Adafruit_NeoPixel strip = Adafruit_NeoPixel(N_PIXELS, LED_PIN, NEO_GRB + NEO_KHZ800);
void setup() {
memset(vol, 0, sizeof(vol));
strip.begin();
}
void loop() {
uint8_t i;
uint16_t minLvl, maxLvl;
int n, height;
n = analogRead(MIC_PIN); // Raw reading from mic
n = abs(n - 512 - DC_OFFSET); // Center on zero
n = (n <= NOISE) ? 0 : (n - NOISE); // Remove noise/hum
lvl = ((lvl * 7) + n) >> 3; // "Dampened" reading (else looks twitchy)
// Calculate bar height based on dynamic min/max levels (fixed point):
height = TOP * (lvl - minLvlAvg) / (long)(maxLvlAvg - minLvlAvg);
if(height < 0L) height = 0; // Clip output
else if(height > TOP) height = TOP;
if(height > peak) peak = height; // Keep 'peak' dot at top
// Color pixels based on rainbow gradient
for(i=0; i<N_PIXELS; i++) {
if(i >= height)
strip.setPixelColor(i, 0, 0, 0);
else
strip.setPixelColor(i,Wheel(map(i,0,strip.numPixels()-1,30,150)));
}
strip.show(); // Update strip
vol[volCount] = n; // Save sample for dynamic leveling
if(++volCount >= SAMPLES) volCount = 0; // Advance/rollover sample counter
// Get volume range of prior frames
minLvl = maxLvl = vol[0];
for(i=1; i<SAMPLES; i++) {
if(vol[i] < minLvl) minLvl = vol[i];
else if(vol[i] > maxLvl) maxLvl = vol[i];
}
// minLvl and maxLvl indicate the volume range over prior frames, used
// for vertically scaling the output graph (so it looks interesting
// regardless of volume level). If they're too close together though
// (e.g. at very low volume levels) the graph becomes super coarse
// and 'jumpy'...so keep some minimum distance between them (this
// also lets the graph go to zero when no sound is playing):
if((maxLvl - minLvl) < TOP) maxLvl = minLvl + TOP;
minLvlAvg = (minLvlAvg * 63 + minLvl) >> 6; // Dampen min/max levels
maxLvlAvg = (maxLvlAvg * 63 + maxLvl) >> 6; // (fake rolling average)
}
// Input a value 0 to 255 to get a color value.
// The colors are a transition r - g - b - back to r.
uint32_t Wheel(byte WheelPos) {
if(WheelPos < 85) {
return strip.Color(WheelPos * 3, 255 - WheelPos * 3, 0);
} else if(WheelPos < 170) {
WheelPos -= 85;
return strip.Color(255 - WheelPos * 3, 0, WheelPos * 3);
} else {
WheelPos -= 170;
return strip.Color(0, WheelPos * 3, 255 - WheelPos * 3);
}
}

View file

@ -0,0 +1,114 @@
import board
import neopixel
import time
from analogio import AnalogIn
import array
led_pin = board.D0 # NeoPixel LED strand is connected to GPIO #0 / D0
n_pixels = 12 # Number of pixels you are using
dc_offset = 0 # DC offset in mic signal - if unusure, leave 0
noise = 100 # Noise/hum/interference in mic signal
samples = 60 # Length of buffer for dynamic level adjustment
top = n_pixels + 1 # Allow dot to go slightly off scale
peak = 0 # Used for falling dot
dotcount = 0 # Frame counter for delaying dot-falling speed
volcount = 0 # Frame counter for storing past volume data
lvl = 10 # Current "dampened" audio level
minlvlavg = 0 # For dynamic adjustment of graph low & high
maxlvlavg = 512
# Collection of prior volume samples
vol = array.array('H', [0]*samples)
mic_pin = AnalogIn(board.A1)
strip = neopixel.NeoPixel(led_pin, n_pixels, brightness=.1, auto_write=True)
def wheel(pos):
# Input a value 0 to 255 to get a color value.
# The colours are a transition r - g - b - back to r.
if (pos < 0) or (pos > 255):
return (0, 0, 0)
if (pos < 85):
return (int(pos * 3), int(255 - (pos*3)), 0)
elif (pos < 170):
pos -= 85
return (int(255 - pos*3), 0, int(pos*3))
else:
pos -= 170
return (0, int(pos*3), int(255 - pos*3))
def remapRange(value, leftMin, leftMax, rightMin, rightMax):
# this remaps a value from original (left) range to new (right) range
# Figure out how 'wide' each range is
leftSpan = leftMax - leftMin
rightSpan = rightMax - rightMin
# Convert the left range into a 0-1 range (int)
valueScaled = int(value - leftMin) / int(leftSpan)
# Convert the 0-1 range into a value in the right range.
return int(rightMin + (valueScaled * rightSpan))
while True:
n = int ( ( mic_pin.value / 65536 ) * 1000 ) # 10-bit ADC format
n = abs(n - 512 - dc_offset) # Center on zero
if ( n >= noise ): # Remove noise/hum
n = n - noise
lvl = int ( ( (lvl * 7) + n ) / 8 ) # "Dampened" reading (else looks twitchy) - divide by 8 (2^3)
# Calculate bar height based on dynamic min/max levels (fixed point):
height = top * (lvl - minlvlavg) / (maxlvlavg - minlvlavg)
# Clip output
if(height < 0):
height = 0
elif (height > top):
height = top
# Keep 'peak' dot at top
if(height > peak):
peak = height
# Color pixels based on rainbow gradient
for i in range(0, len(strip)):
if (i >= height):
strip[i] = [0,0,0]
else:
strip[i] = wheel(remapRange(i, 0, (n_pixels - 1), 30, 150))
# Save sample for dynamic leveling
vol[volcount] = n
# Advance/rollover sample counter
if (++volcount >= samples):
volcount = 0
# Get volume range of prior frames
minlvl = vol[0]
maxlvl = vol[0]
for i in range(1, len(vol)):
if(vol[i] < minlvl):
minlvl = vol[i]
elif (vol[i] > maxlvl):
maxlvl = vol[i]
# minlvl and maxlvl indicate the volume range over prior frames, used
# for vertically scaling the output graph (so it looks interesting
# regardless of volume level). If they're too close together though
# (e.g. at very low volume levels) the graph becomes super coarse
# and 'jumpy'...so keep some minimum distance between them (this
# also lets the graph go to zero when no sound is playing):
if( (maxlvl - minlvl) < top ):
maxlvl = minlvl + top
minlvlavg = ( minlvlavg * 63 + minlvl ) >> 6 # Dampen min/max levels - divide by 64 (2^6)
maxlvlavg = ( maxlvlavg * 63 + maxlvl ) >> 6 # fake rolling average - divide by 64 (2^6)
print(n)