Adafruit_Learning_System_Gu.../CP101_StateMachines/classes/code.py
2019-01-05 14:44:30 -05:00

518 lines
14 KiB
Python

"""
Class based state machine implementation
Adafruit invests time and resources providing this open source code.
Please support Adafruit and open source hardware by purchasing
products from Adafruit!
Written by Dave Astels for Adafruit Industries
Copyright (c) 2018 Adafruit Industries
Licensed under the MIT license.
All text above must be included in any redistribution.
"""
# pylint: disable=global-statement,stop-iteration-return,no-self-use,useless-super-delegation
import time
import random
import board
import digitalio
import busio
import adafruit_ds3231
import audioio
import pulseio
from adafruit_motor import servo
import neopixel
from adafruit_debouncer import Debouncer
# Set to false to disable testing/tracing code
TESTING = True
# Implementation dependant things to tweak
NUM_PIXELS = 8 # number of neopixels in the striup
DROP_THROTTLE = -0.2 # servo throttle during ball drop
DROP_DURATION = 10.0 # how many seconds the ball takes to drop
RAISE_THROTTLE = 0.3 # servo throttle while raising the ball
FIREWORKS_DURATION = 60.0 # how many second the fireworks last
# Pins
NEOPIXEL_PIN = board.D5
POWER_PIN = board.D10
SWITCH_PIN = board.D9
SERVO_PIN = board.A1
################################################################################
# Setup hardware
# Power to the speaker and neopixels must be enabled using this pin
enable = digitalio.DigitalInOut(POWER_PIN)
enable.direction = digitalio.Direction.OUTPUT
enable.value = True
i2c = busio.I2C(board.SCL, board.SDA)
rtc = adafruit_ds3231.DS3231(i2c)
audio = audioio.AudioOut(board.A0)
strip = neopixel.NeoPixel(NEOPIXEL_PIN, NUM_PIXELS, brightness=1, auto_write=False)
strip.fill(0) # NeoPixels off ASAP on startup
strip.show()
switch_io = digitalio.DigitalInOut(SWITCH_PIN)
switch_io.direction = digitalio.Direction.INPUT
switch_io.pull = digitalio.Pull.UP
switch = Debouncer(switch_io)
# create a PWMOut object on Pin A2.
pwm = pulseio.PWMOut(SERVO_PIN, duty_cycle=2 ** 15, frequency=50)
# Create a servo object, my_servo.
servo = servo.ContinuousServo(pwm)
servo.throttle = 0.0
# Set the time for testing
# Once finished testing, the time can be set using the REPL using similar code
if TESTING:
# year, mon, date, hour, min, sec, wday, yday, isdst
t = time.struct_time((2018, 12, 31, 23, 58, 55, 1, -1, -1))
# you must set year, mon, date, hour, min, sec and weekday
# yearday is not supported, isdst can be set but we don't do anything with it at this time
print("Setting time to:", t)
rtc.datetime = t
print()
################################################################################
# Global Variables
pixel_count = min([NUM_PIXELS // 2, 20])
################################################################################
# Support functions
def log(s):
"""Print the argument if testing/tracing is enabled."""
if TESTING:
print(s)
# Random color
def random_color_byte():
""" Return one of 32 evenly spaced byte values.
This provides random colors that are fairly distinctive."""
return random.randrange(0, 256, 16)
def random_color():
"""Return a random color"""
red = random_color_byte()
green = random_color_byte()
blue = random_color_byte()
return (red, green, blue)
# Color cycling.
def wheel(pos):
# Input a value 0 to 255 to get a color value.
# The colours are a transition r - g - b - back to r.
if pos < 0 or pos > 255:
return 0, 0, 0
if pos < 85:
return int(255 - pos*3), int(pos*3), 0
if pos < 170:
pos -= 85
return 0, int(255 - pos*3), int(pos*3)
pos -= 170
return int(pos * 3), 0, int(255 - (pos*3))
def cycle_sequence(seq):
while True:
for elem in seq:
yield elem
def rainbow_lamp(seq):
g = cycle_sequence(seq)
while True:
strip.fill(wheel(next(g)))
strip.show()
yield
# Fireworks effects
def burst(machine, time_now):
"""Show a burst of color on all pixels, fading in, holding briefly,
then fading out. Each call to this does one step in that
process. Return True once the sequence is finished."""
if machine.burst_count == 0:
strip.brightness = 0.0
strip.fill(machine.firework_color)
elif machine.burst_count == 22:
machine.firework_step_time = time_now + 0.3
return True
if time_now < machine.firework_step_time:
return False
elif machine.burst_count < 11:
strip.brightness = machine.burst_count / 10.0
machine.firework_step_time = time_now + 0.08
elif machine.burst_count == 11:
machine.firework_step_time = time_now + 0.3
elif machine.burst_count > 11:
strip.brightness = 1.0 - ((machine.burst_count - 11) / 10.0)
machine.firework_step_time = time_now + 0.08
strip.show()
machine.burst_count += 1
return False
def shower(machine, time_now):
"""Show a shower of sparks effect.
Each call to this does one step in the process. Return True once the
sequence is finished."""
if machine.shower_count == 0: # Initialize on the first step
strip.fill(0)
strip.brightness = 1.0
machine.pixels = [None] * pixel_count
machine.pixel_index = 0
if time_now < machine.firework_step_time:
return False
if machine.shower_count == NUM_PIXELS:
strip.fill(0)
strip.show()
return True
if machine.pixels[machine.pixel_index]:
strip[machine.pixels[machine.pixel_index]] = 0
random_pixel = random.randrange(NUM_PIXELS)
machine.pixels[machine.pixel_index] = random_pixel
strip[random_pixel] = machine.firework_color
strip.show()
machine.pixel_index = (machine.pixel_index + 1) % pixel_count
machine.shower_count += 1
machine.firework_step_time = time_now + 0.1
return False
def start_playing(fname):
sound_file = open(fname, 'rb')
wav = audioio.WaveFile(sound_file)
audio.play(wav, loop=False)
def stop_playing():
if audio.playing:
audio.stop()
################################################################################
# State Machine
class StateMachine(object):
def __init__(self):
self.state = None
self.states = {}
self.firework_color = 0
self.firework_step_time = 0
self.burst_count = 0
self.shower_count = 0
self.firework_stop_time = 0
self.paused_state = None
self.pixels = []
self.pixel_index = 0
def add_state(self, state):
self.states[state.name] = state
def go_to_state(self, state_name):
if self.state:
log('Exiting %s' % (self.state.name))
self.state.exit(self)
self.state = self.states[state_name]
log('Entering %s' % (self.state.name))
self.state.enter(self)
def update(self):
if self.state:
log('Updating %s' % (self.state.name))
self.state.update(self)
# When pausing, don't exit the state
def pause(self):
self.state = self.states['paused']
log('Pausing')
self.state.enter(self)
# When resuming, don't re-enter the state
def resume_state(self, state_name):
if self.state:
log('Exiting %s' % (self.state.name))
self.state.exit(self)
self.state = self.states[state_name]
log('Resuming %s' % (self.state.name))
def reset_fireworks(self):
"""As indicated, reset the fireworks system's variables."""
self.firework_color = random_color()
self.burst_count = 0
self.shower_count = 0
self.firework_step_time = time.monotonic() + 0.05
strip.fill(0)
strip.show()
################################################################################
# States
# Abstract parent state class.
class State(object):
def __init__(self):
pass
@property
def name(self):
return ''
def enter(self, machine):
pass
def exit(self, machine):
pass
def update(self, machine):
if switch.fell:
machine.paused_state = machine.state.name
machine.pause()
return False
return True
# Wait for 10 seconds to midnight or the witch to be pressed,
# then drop the ball.
class WaitingState(State):
def __init__(self):
super().__init__()
@property
def name(self):
return 'waiting'
def enter(self, machine):
State.enter(self, machine)
def exit(self, machine):
State.exit(self, machine)
def almost_NY(self):
now = rtc.datetime
return (now.tm_mday == 31 and
now.tm_mon == 12 and
now.tm_hour == 23 and
now.tm_min == 59 and
now.tm_sec == 50)
def update(self, machine):
# No super call to check for switch press to pause
# switch press here drops the ball
if switch.fell or self.almost_NY():
machine.go_to_state('dropping')
# Drop the ball, playing the countdown and showing
# a rainbow effect.
class DroppingState(State):
def __init__(self):
super().__init__()
self.rainbow = None
self.rainbow_time = 0
self.drop_finish_time = 0
@property
def name(self):
return 'dropping'
def enter(self, machine):
State.enter(self, machine)
now = time.monotonic()
start_playing('./countdown.wav')
servo.throttle = DROP_THROTTLE
self.rainbow = rainbow_lamp(range(0, 256, 2))
self.rainbow_time = now + 0.1
self.drop_finish_time = now + DROP_DURATION
def exit(self, machine):
State.exit(self, machine)
servo.throttle = 0.0
stop_playing()
machine.reset_fireworks()
machine.firework_stop_time = time.monotonic() + FIREWORKS_DURATION
def update(self, machine):
if State.update(self, machine):
now = time.monotonic()
if now >= self.drop_finish_time:
machine.go_to_state('burst')
if now >= self.rainbow_time:
next(self.rainbow)
self.rainbow_time = now + 0.1
# Show a fireworks explosion: a burst of color. Then switch to a shower of sparks.
class BurstState(State):
def __init__(self):
super().__init__()
@property
def name(self):
return 'burst'
def enter(self, machine):
State.enter(self, machine)
def exit(self, machine):
State.exit(self, machine)
machine.shower_count = 0
def update(self, machine):
if State.update(self, machine):
if burst(machine, time.monotonic()):
machine.go_to_state('shower')
# Show a shower of sparks following an explosion
class ShowerState(State):
def __init__(self):
super().__init__()
@property
def name(self):
return 'shower'
def enter(self, machine):
State.enter(self, machine)
def exit(self, machine):
State.exit(self, machine)
machine.reset_fireworks()
def update(self, machine):
if State.update(self, machine):
if shower(machine, time.monotonic()):
if time.monotonic() >= machine.firework_stop_time:
machine.go_to_state('idle')
else:
machine.go_to_state('burst')
# Do nothing, wait to be reset
class IdleState(State):
def __init__(self):
super().__init__()
@property
def name(self):
return 'idle'
def enter(self, machine):
State.enter(self, machine)
def exit(self, machine):
State.exit(self, machine)
def update(self, machine):
State.update(self, machine)
# Reset the LEDs and audio, start the servo raising the ball
# When the switch is released, stop the ball and move to waiting
class RaisingState(State):
def __init__(self):
super().__init__()
@property
def name(self):
return 'raising'
def enter(self, machine):
State.enter(self, machine)
strip.fill(0)
strip.brightness = 1.0
strip.show()
if audio.playing:
audio.stop()
servo.throttle = RAISE_THROTTLE
def exit(self, machine):
State.exit(self, machine)
servo.throttle = 0.0
def update(self, machine):
if State.update(self, machine):
if switch.rose:
machine.go_to_state('waiting')
# Pause, resuming whem the switch is pressed again.
# Reset if the switch has been held for a second.
class PausedState(State):
def __init__(self):
super().__init__()
self.switch_pressed_at = 0
self.paused_servo = 0
@property
def name(self):
return 'paused'
def enter(self, machine):
State.enter(self, machine)
self.switch_pressed_at = time.monotonic()
if audio.playing:
audio.pause()
self.paused_servo = servo.throttle
servo.throttle = 0.0
def exit(self, machine):
State.exit(self, machine)
def update(self, machine):
if switch.fell:
if audio.paused:
audio.resume()
servo.throttle = self.paused_servo
self.paused_servo = 0.0
machine.resume_state(machine.paused_state)
elif not switch.value:
if time.monotonic() - self.switch_pressed_at > 1.0:
machine.go_to_state('raising')
################################################################################
# Create the state machine
pretty_state_machine = StateMachine()
pretty_state_machine.add_state(WaitingState())
pretty_state_machine.add_state(DroppingState())
pretty_state_machine.add_state(BurstState())
pretty_state_machine.add_state(ShowerState())
pretty_state_machine.add_state(IdleState())
pretty_state_machine.add_state(RaisingState())
pretty_state_machine.add_state(PausedState())
pretty_state_machine.go_to_state('waiting')
while True:
switch.update()
pretty_state_machine.update()