Compare commits
No commits in common. "rp2040-circuitpython-timer-fix" and "master" have entirely different histories.
rp2040-cir
...
master
32 changed files with 2009 additions and 4714 deletions
46
.github/ISSUE_TEMPLATE.md
vendored
46
.github/ISSUE_TEMPLATE.md
vendored
|
|
@ -1,46 +0,0 @@
|
|||
Thank you for opening an issue on an Adafruit Arduino library repository. To
|
||||
improve the speed of resolution please review the following guidelines and
|
||||
common troubleshooting steps below before creating the issue:
|
||||
|
||||
- **Do not use GitHub issues for troubleshooting projects and issues.** Instead use
|
||||
the forums at http://forums.adafruit.com to ask questions and troubleshoot why
|
||||
something isn't working as expected. In many cases the problem is a common issue
|
||||
that you will more quickly receive help from the forum community. GitHub issues
|
||||
are meant for known defects in the code. If you don't know if there is a defect
|
||||
in the code then start with troubleshooting on the forum first.
|
||||
|
||||
- **If following a tutorial or guide be sure you didn't miss a step.** Carefully
|
||||
check all of the steps and commands to run have been followed. Consult the
|
||||
forum if you're unsure or have questions about steps in a guide/tutorial.
|
||||
|
||||
- **For Arduino projects check these very common issues to ensure they don't apply**:
|
||||
|
||||
- For uploading sketches or communicating with the board make sure you're using
|
||||
a **USB data cable** and **not** a **USB charge-only cable**. It is sometimes
|
||||
very hard to tell the difference between a data and charge cable! Try using the
|
||||
cable with other devices or swapping to another cable to confirm it is not
|
||||
the problem.
|
||||
|
||||
- **Be sure you are supplying adequate power to the board.** Check the specs of
|
||||
your board and plug in an external power supply. In many cases just
|
||||
plugging a board into your computer is not enough to power it and other
|
||||
peripherals.
|
||||
|
||||
- **Double check all soldering joints and connections.** Flakey connections
|
||||
cause many mysterious problems. See the [guide to excellent soldering](https://learn.adafruit.com/adafruit-guide-excellent-soldering/tools) for examples of good solder joints.
|
||||
|
||||
- **Ensure you are using an official Arduino or Adafruit board.** We can't
|
||||
guarantee a clone board will have the same functionality and work as expected
|
||||
with this code and don't support them.
|
||||
|
||||
If you're sure this issue is a defect in the code and checked the steps above
|
||||
please fill in the following fields to provide enough troubleshooting information.
|
||||
You may delete the guideline and text above to just leave the following details:
|
||||
|
||||
- Arduino board: **INSERT ARDUINO BOARD NAME/TYPE HERE**
|
||||
|
||||
- Arduino IDE version (found in Arduino -> About Arduino menu): **INSERT ARDUINO
|
||||
VERSION HERE**
|
||||
|
||||
- List the steps to reproduce the problem below (if possible attach a sketch or
|
||||
copy the sketch code in too): **LIST REPRO STEPS BELOW**
|
||||
26
.github/PULL_REQUEST_TEMPLATE.md
vendored
26
.github/PULL_REQUEST_TEMPLATE.md
vendored
|
|
@ -1,26 +0,0 @@
|
|||
Thank you for creating a pull request to contribute to Adafruit's GitHub code!
|
||||
Before you open the request please review the following guidelines and tips to
|
||||
help it be more easily integrated:
|
||||
|
||||
- **Describe the scope of your change--i.e. what the change does and what parts
|
||||
of the code were modified.** This will help us understand any risks of integrating
|
||||
the code.
|
||||
|
||||
- **Describe any known limitations with your change.** For example if the change
|
||||
doesn't apply to a supported platform of the library please mention it.
|
||||
|
||||
- **Please run any tests or examples that can exercise your modified code.** We
|
||||
strive to not break users of the code and running tests/examples helps with this
|
||||
process.
|
||||
|
||||
Thank you again for contributing! We will try to test and integrate the change
|
||||
as soon as we can, but be aware we have many GitHub repositories to manage and
|
||||
can't immediately respond to every request. There is no need to bump or check in
|
||||
on a pull request (it will clutter the discussion of the request).
|
||||
|
||||
Also don't be worried if the request is closed or not integrated--sometimes the
|
||||
priorities of Adafruit's GitHub code (education, ease of use) might not match the
|
||||
priorities of the pull request. Don't fret, the open source community thrives on
|
||||
forks and GitHub makes it easy to keep your changes in a forked repo.
|
||||
|
||||
After reviewing the guidelines above you can delete this text from the pull request.
|
||||
37
.github/workflows/githubci.yml
vendored
37
.github/workflows/githubci.yml
vendored
|
|
@ -1,37 +0,0 @@
|
|||
name: Arduino Library CI
|
||||
|
||||
on: [pull_request, push, repository_dispatch]
|
||||
|
||||
jobs:
|
||||
build:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
arduino-platform: ["metro_m0", "metro_m4", "nrf52840", "esp32"]
|
||||
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/setup-python@v1
|
||||
with:
|
||||
python-version: '3.8'
|
||||
- uses: actions/checkout@v2
|
||||
- uses: actions/checkout@v2
|
||||
with:
|
||||
repository: adafruit/ci-arduino
|
||||
path: ci
|
||||
|
||||
- name: pre-install
|
||||
run: bash ci/actions_install.sh
|
||||
|
||||
- name: test platforms
|
||||
run: python3 ci/build_platform.py ${{ matrix.arduino-platform }}
|
||||
|
||||
- name: clang
|
||||
run: python3 ci/run-clang-format.py -e "ci/*" -e "bin/*" -r .
|
||||
|
||||
- name: doxygen
|
||||
env:
|
||||
GH_REPO_TOKEN: ${{ secrets.GH_REPO_TOKEN }}
|
||||
PRETTYNAME : "Adafruit Protomatter"
|
||||
run: bash ci/doxy_gen_and_deploy.sh
|
||||
4
.gitignore
vendored
4
.gitignore
vendored
|
|
@ -1,4 +0,0 @@
|
|||
# Our handy .gitignore for automation ease
|
||||
Doxyfile*
|
||||
doxygen_sqlite3.db
|
||||
html
|
||||
93
Adafruit_Protomatter.cpp
Normal file
93
Adafruit_Protomatter.cpp
Normal file
|
|
@ -0,0 +1,93 @@
|
|||
// Arduino-specific wrapper for the Protomatter C library (provides
|
||||
// constructor and so forth, builds on Adafruit_GFX). There should
|
||||
// not be any device-specific #ifdefs here. See notes in core.c and
|
||||
// arch.h regarding portability.
|
||||
|
||||
#include "Adafruit_Protomatter.h" // Also includes core.h & Adafruit_GFX.h
|
||||
|
||||
extern Protomatter_core *_PM_protoPtr; // In core.c (via arch.h)
|
||||
|
||||
// Overall matrix refresh rate (frames/second) is a function of matrix width
|
||||
// and chain length, number of address lines, number of bit planes, CPU speed
|
||||
// and whether or not a GPIO toggle register is available. There is no "this
|
||||
// will run at X-frames-per-second" constant figure. You typically just have
|
||||
// to try it out and perhaps trade off some bit planes for refresh rate until
|
||||
// the image looks good and stable. Anything over 100 Hz is usually passable,
|
||||
// around 250 Hz is where things firm up. And while this could proceed higher
|
||||
// in some situations, the tradeoff is that faster rates use progressively
|
||||
// more CPU time (because it's timer interrupt based and not using DMA or
|
||||
// special peripherals). So a throttle is set here, an approximate maximum
|
||||
// frame rate which the software will attempt to avoid exceeding (but may
|
||||
// refresh slower than this, and in many cases will...just need to set an
|
||||
// upper limit to avoid excessive CPU load). An incredibly long comment block
|
||||
// for a single constant, thank you for coming to my TED talk!
|
||||
#define _PM_MAX_REFRESH_HZ 250
|
||||
|
||||
// Time (in milliseconds) to pause following any change in address lines
|
||||
// (individually or collectively). Some matrices respond slowly there...
|
||||
// must pause on change for matrix to catch up. Defined here (rather than
|
||||
// arch.h) because it's not architecture-specific.
|
||||
#define _PM_ROW_DELAY 8
|
||||
|
||||
|
||||
Adafruit_Protomatter::Adafruit_Protomatter(
|
||||
uint16_t bitWidth, uint8_t bitDepth,
|
||||
uint8_t rgbCount, uint8_t *rgbList,
|
||||
uint8_t addrCount, uint8_t *addrList,
|
||||
uint8_t clockPin, uint8_t latchPin, uint8_t oePin,
|
||||
bool doubleBuffer, void *timer) :
|
||||
GFXcanvas16(bitWidth, (2 << min(addrCount, 5)) * min(rgbCount, 5)) {
|
||||
if(bitDepth > 6) bitDepth = 6; // GFXcanvas16 color limit (565)
|
||||
|
||||
// Arguments are passed through to the C _PM_init() function which does
|
||||
// some input validation and minor allocation. Return value is ignored
|
||||
// because we can't really do anything about it in a C++ constructor.
|
||||
// The class begin() function checks rgbPins for NULL to determine
|
||||
// whether to proceed or indicate an error.
|
||||
(void)_PM_init(&core, bitWidth, bitDepth, rgbCount, rgbList,
|
||||
addrCount, addrList, clockPin, latchPin, oePin, doubleBuffer, timer);
|
||||
}
|
||||
|
||||
Adafruit_Protomatter::~Adafruit_Protomatter(void) {
|
||||
_PM_free(&core);
|
||||
_PM_protoPtr = NULL;
|
||||
}
|
||||
|
||||
ProtomatterStatus Adafruit_Protomatter::begin(void) {
|
||||
_PM_protoPtr = &core;
|
||||
_PM_begin(&core);
|
||||
return PROTOMATTER_OK;
|
||||
}
|
||||
|
||||
// Transfer data from GFXcanvas16 to the matrix framebuffer's weird
|
||||
// internal format. The actual conversion functions referenced below
|
||||
// are in core.c, reasoning is explained there.
|
||||
void Adafruit_Protomatter::show(void) {
|
||||
|
||||
// Destination address is computed in convert function
|
||||
// (based on active buffer value, if double-buffering),
|
||||
// just need to pass in the canvas buffer address and
|
||||
// width in pixels.
|
||||
if(core.bytesPerElement == 1) {
|
||||
_PM_convert_565_byte(&core, getBuffer(), WIDTH);
|
||||
} else if(core.bytesPerElement == 2) {
|
||||
_PM_convert_565_word(&core, getBuffer(), WIDTH);
|
||||
} else {
|
||||
_PM_convert_565_long(&core, getBuffer(), WIDTH);
|
||||
}
|
||||
|
||||
if(core.doubleBuffer) {
|
||||
core.swapBuffers = 1;
|
||||
// To avoid overwriting data on the matrix, don't return
|
||||
// until the timer ISR has performed the swap at the right time.
|
||||
while(core.swapBuffers);
|
||||
}
|
||||
}
|
||||
|
||||
// Returns current value of frame counter and resets its value to zero.
|
||||
// Two calls to this, timed one second apart (or use math with other
|
||||
// intervals), can be used to get a rough frames-per-second value for
|
||||
// the matrix (since this is difficult to estimate beforehand).
|
||||
uint32_t Adafruit_Protomatter::getFrameCount(void) {
|
||||
return _PM_getFrameCount(_PM_protoPtr);
|
||||
}
|
||||
28
Adafruit_Protomatter.h
Normal file
28
Adafruit_Protomatter.h
Normal file
|
|
@ -0,0 +1,28 @@
|
|||
// Arduino-specific header, accompanies Adafruit_Protomatter.cpp.
|
||||
// There should not be any device-specific #ifdefs here.
|
||||
|
||||
#ifndef _ADAFRUIT_PROTOMATTER_H_
|
||||
#define _ADAFRUIT_PROTOMATTER_H_
|
||||
|
||||
#include "core.h"
|
||||
#include <Adafruit_GFX.h>
|
||||
|
||||
class Adafruit_Protomatter : public GFXcanvas16 {
|
||||
public:
|
||||
Adafruit_Protomatter(uint16_t bitWidth, uint8_t bitDepth,
|
||||
uint8_t rgbCount, uint8_t *rgbList,
|
||||
uint8_t addrCount, uint8_t *addrList,
|
||||
uint8_t clockPin, uint8_t latchPin, uint8_t oePin,
|
||||
bool doubleBuffer, void *timer=NULL);
|
||||
~Adafruit_Protomatter(void);
|
||||
ProtomatterStatus begin(void);
|
||||
void show(void);
|
||||
uint32_t getFrameCount(void);
|
||||
private:
|
||||
Protomatter_core core; // Underlying C struct
|
||||
void convert_byte(uint8_t *dest); // GFXcanvas16-to-matrix
|
||||
void convert_word(uint16_t *dest); // conversion functions
|
||||
void convert_long(uint32_t *dest); // for 8/16/32 bit bufs
|
||||
};
|
||||
|
||||
#endif // _ADAFRUIT_PROTOMATTER_H_
|
||||
49
README.md
49
README.md
|
|
@ -1,4 +1,4 @@
|
|||
# Adafruit_Protomatter [](https://github.com/adafruit/Adafruit_Protomatter/actions)
|
||||
# Adafruit_Protomatter
|
||||
|
||||
"I used protomatter in the Genesis matrix." - David Marcus, Star Trek III
|
||||
|
||||
|
|
@ -6,6 +6,8 @@ Code for driving HUB75-style RGB LED matrices, targeted at 32-bit MCUs
|
|||
using brute-force GPIO (that is, not relying on DMA or other specialized
|
||||
peripherals beyond a timer interrupt, goal being portability).
|
||||
|
||||
Name might change as it's nondescriptive and tedious to type in code.
|
||||
|
||||
# Matrix Concepts and Jargon
|
||||
|
||||
HUB75 RGB LED matrices are basically a set of six concurrent shift register
|
||||
|
|
@ -39,16 +41,14 @@ help keep up-to-date with any future changes here!
|
|||
|
||||
The common ground for architectures to support this library:
|
||||
|
||||
* 32-bit device (e.g. ARM core, ESP32 and others)
|
||||
* 32-bit device (e.g. ARM core, but potentially ESP32 and others in future)
|
||||
* One or more 32-bit GPIO PORTs with atomic (single-cycle, not
|
||||
read-modify-write) bitmask SET and CLEAR registers. A bitmask TOGGLE
|
||||
register, if present, may improve performance but is NOT required.
|
||||
* There may be performance or storage benefits if the architecture tolerates
|
||||
8-bit or word-aligned 16-bit accesses within the 32-bit PORT registers
|
||||
(e.g. writing just one of four bytes, rather than the whole 32 bits), but
|
||||
this is NOT a hardware requirement. Also, the library does not use any
|
||||
unaligned accesses (i.e. "middle word" of a 32-bit register), even if a
|
||||
device tolerates such.
|
||||
* Tolerate 8-bit or word-aligned 16-bit accesses within the 32-bit PORT
|
||||
registers (e.g. writing just one of four bytes, rather than the whole
|
||||
32 bits). The library does not use any unaligned accesses (i.e. the
|
||||
"middle word" of a 32-bit register), even if a device tolerates such.
|
||||
|
||||
# Software Components
|
||||
|
||||
|
|
@ -58,15 +58,14 @@ This repository currently consists of:
|
|||
Adafruit_Protomatter.h, plus the "examples" directory). The Arduino code
|
||||
is dependent on the Adafruit_GFX library.
|
||||
|
||||
* An underlying C library (files core.c, core.h and headers in the arch
|
||||
directory) that might be adaptable to other runtime environments (e.g.
|
||||
CircuitPython).
|
||||
* An underlying C library (files core.c, core.h and arch.h) that might be
|
||||
adaptable to other runtime environments (e.g. CircuitPython).
|
||||
|
||||
# Arduino Library
|
||||
|
||||
This will likely supersede the RGBmatrixPanel library on non-AVR devices, as
|
||||
the older library has painted itself into a few corners. The newer library
|
||||
uses a single constructor for all matrix setups, potentially handling parallel
|
||||
This *might* supersede the RGBmatrixPanel library on non-AVR devices, as the
|
||||
older library has painted itself into a few corners. The newer library uses
|
||||
a single constructor for all matrix setups, potentially handling parallel
|
||||
chains (not yet fully implemented), various matrix sizes and chain lengths,
|
||||
and variable bit depths from 1 to 6 (refresh rate is a function of all of
|
||||
these). Note however that it is NOT A DROP-IN REPLACEMENT for RGBmatrixPanel.
|
||||
|
|
@ -94,22 +93,20 @@ drawing functions.
|
|||
|
||||
The C code has the same limitations as the Arduino library: all RGB data
|
||||
pins and the clock pin MUST be on the same PORT register, and it's most
|
||||
memory efficient (though still slightly gluttonous) if those pins are all
|
||||
memory efficient (though still a bit gluttonous) if those pins are all
|
||||
within the same 8-bit byte within the PORT (they do not need to be
|
||||
contiguous or sequential within that byte). Other pins (matrix address lines,
|
||||
latch and output enable) can reside on any PORT or bit.
|
||||
|
||||
When adapting this code to new devices (e.g. iMX) or new runtime environments
|
||||
(e.g. CircuitPython), goal is to put all the device- or platform-specific
|
||||
code into a new header file in the arch directory (or completely separate
|
||||
source files, as in the Arduino library .cpp and .h). core.c contains only
|
||||
the device-neutral bitbang code and should not have any "#ifdef DEVICE"- or
|
||||
"#ifdef ENVIRONMENT"-like lines (exception for the 565 color conversion
|
||||
functions, since the internal representation is common to both Arduino and
|
||||
CircuitPython). Macros for things like getting a PORT register address from
|
||||
a pin, or setting up a timer peripheral, all occur in the arch header files,
|
||||
which are ONLY #included by core.c (to prevent problems like multiple
|
||||
instances of ISR functions, which must be singularly declared at
|
||||
When adapting this code to new devices (e.g. nRF52, ESP32) or new runtime
|
||||
environments (e.g. CircuitPython), goal is to put all the device- or
|
||||
platform-specific code into the arch.h file (or completely separate source
|
||||
files, as in the Arduino library .cpp and .h). core.c contains only the
|
||||
device-neutral bitbang code and should not have any "#ifdef DEVICE"- or
|
||||
"#ifdef ENVIRONMENT"-like lines. Macros for things like getting a PORT
|
||||
register address from a pin, or setting up a timer peripheral, all occur
|
||||
in arch.h, which is ONLY #included by core.c (to prevent problems like
|
||||
multiple instances of ISR functions, which must be singularly declared at
|
||||
compile-time).
|
||||
|
||||
Most macros and functions begin with the prefix **\_PM\_** in order to
|
||||
|
|
|
|||
836
arch.h
Normal file
836
arch.h
Normal file
|
|
@ -0,0 +1,836 @@
|
|||
// Establishes some very low-level things specific to each supported device.
|
||||
// This should ONLY be included by core.c, nowhere else. Ever.
|
||||
|
||||
#if !defined(_PROTOMATTER_ARCH_H_)
|
||||
#define _PROTOMATTER_ARCH_H_
|
||||
|
||||
/*
|
||||
Common ground for architectures to support this library:
|
||||
|
||||
- 32-bit device (e.g. ARM core, but potentially ESP32 and others in future)
|
||||
- One or more 32-bit GPIO PORTs with atomic bitmask SET and CLEAR registers.
|
||||
A TOGGLE register, if present, may improve performance but is NOT required.
|
||||
- Tolerate 8-bit or word-aligned 16-bit accesses within the 32-bit PORT
|
||||
registers (e.g. writing just one of four bytes, rather than the whole
|
||||
32 bits). The library does not use any unaligned accesses (i.e. the
|
||||
"middle word" of a 32-bit register), even if a device tolerates such.
|
||||
|
||||
"Pin" as used in this code is always a uint8_t value, but the semantics
|
||||
of what it means may vary between Arduino and non-Arduino situations.
|
||||
In Arduino, it's the pin index one would pass to functions such as
|
||||
digitalWrite(), and doesn't necessarily correspond to physical hardware
|
||||
pins or any other arrangement. Some may have names like 'A0' that really
|
||||
just map to higher indices.
|
||||
In non-Arduino settings (CircuitPython, other languages, etc.), how a
|
||||
pin index relates to hardware is entirely implementation dependent, and
|
||||
how to get from one to the other is what must be implemented in this file.
|
||||
Quite often an environment will follow the Arduino pin designations
|
||||
(since the numbers are on a board's silkscreen) and will have an internal
|
||||
table mapping those indices to registers and bitmasks...but probably not
|
||||
an identically-named and -structured table to the Arduino code, hence the
|
||||
reason for many "else" situations in this code.
|
||||
|
||||
Each architecture defines the following macros and/or functions (the _PM_
|
||||
prefix on each is to reduce likelihood of naming collisions...especially
|
||||
on ESP32, which has some similarly-named timer functions...though note
|
||||
that this library is NOT CURRENTLY PORTED to ESP32):
|
||||
|
||||
GPIO-related macros/functions:
|
||||
|
||||
_PM_portOutRegister(pin): Get address of PORT out register. Code calling
|
||||
this can cast it to whatever type's needed.
|
||||
_PM_portSetRegister(pin): Get address of PORT set-bits register.
|
||||
_PM_portClearRegister(pin): Get address of PORT clear-bits register.
|
||||
_PM_portToggleRegister(pin): Get address of PORT toggle-bits register.
|
||||
Not all devices support this, in which case
|
||||
it must be left undefined.
|
||||
_PM_portBitMask(pin): Get bit mask within PORT register corresponding
|
||||
to a pin number. When compiling for Arduino,
|
||||
this just maps to digitalPinToBitMask(), other
|
||||
environments will need an equivalent.
|
||||
_PM_byteOffset(pin): Get index of byte (0 to 3) within 32-bit PORT
|
||||
corresponding to a pin number.
|
||||
_PM_wordOffset(pin): Get index of word (0 or 1) within 32-bit PORT
|
||||
corresponding to a pin number.
|
||||
_PM_pinOutput(pin): Set a pin to output mode. In Arduino this maps
|
||||
to pinMode(pin, OUTPUT). Other environments
|
||||
will need an equivalent.
|
||||
_PM_pinInput(pin): Set a pin to input mode, no pullup. In Arduino
|
||||
this maps to pinMode(pin, INPUT).
|
||||
_PM_pinHigh(pin): Set an output pin to a high or 1 state. In
|
||||
Arduino this maps to digitalWrite(pin, HIGH).
|
||||
_PM_pinLow(pin): Set an output pin to a low or 0 state. In
|
||||
Arduino this maps to digitalWrite(pin, LOW).
|
||||
|
||||
Timer-related macros/functions:
|
||||
|
||||
_PM_timerFreq: A numerical constant - the source clock rate
|
||||
(in Hz) that's fed to the timer peripheral.
|
||||
_PM_timerInit(void*): Initialize (but do not start) timer.
|
||||
_PM_timerStart(void*,count): (Re)start timer for a given timer-tick interval.
|
||||
_PM_timerStop(void*): Stop timer, return current timer counter value.
|
||||
_PM_timerGetCount(void*): Get current timer counter value (whether timer
|
||||
is running or stopped).
|
||||
A timer interrupt service routine is also required, syntax for which varies
|
||||
between architectures.
|
||||
The void* argument passed to the timer functions is some indeterminate type
|
||||
used to uniquely identify a timer peripheral within a given environment. For
|
||||
example, in the Arduino wrapper for this library, compiling for SAMD chips,
|
||||
it's just a pointer directly to a timer/counter peripheral base address. If
|
||||
an implementation needs more data associated alongside a peripheral, this
|
||||
could instead be a pointer to a struct, or an integer index.
|
||||
|
||||
Other macros/functions:
|
||||
|
||||
_PM_chunkSize: Matrix bitmap width (both in RAM and as issued
|
||||
to the device) is rounded up (if necessary) to
|
||||
a multiple of this value as a way of explicitly
|
||||
unrolling the innermost data-stuffing loops.
|
||||
So far all HUB75 displays I've encountered are
|
||||
a multiple of 32 pixels wide, but in case
|
||||
something new comes along, or if a larger
|
||||
unroll actually decreases performance due to
|
||||
cache size, this can be set to whatever works
|
||||
best (any additional data is simply shifted
|
||||
out the other end of the matrix). Default if
|
||||
unspecified is 8 (e.g. four loop passes on a
|
||||
32-pixel matrix, eight if 64-pixel). Only
|
||||
certain chunkSizes are actually implemented,
|
||||
see .cpp code (avoiding GCC-specific tricks
|
||||
that would handle arbitrary chunk sizes).
|
||||
_PM_delayMicroseconds(us): Function or macro to delay some number of
|
||||
microseconds. For Arduino, this just maps to
|
||||
delayMicroseconds(). Other environments will
|
||||
need to provide their own or map to an
|
||||
an equivalent function.
|
||||
_PM_clockHoldHigh: Additional code (typically some number of NOPs)
|
||||
needed to delay the clock fall after RGB data is
|
||||
written to PORT. Only required on fast devices.
|
||||
If left undefined, no delay happens.
|
||||
_PM_clockHoldLow: Additional code (e.g. NOPs) needed to delay
|
||||
clock rise after writing RGB data to PORT.
|
||||
No delay if left undefined.
|
||||
_PM_minMinPeriod: Mininum value for the "minPeriod" class member,
|
||||
so bit-angle-modulation time always doubles with
|
||||
each bitplane (else lower bits may be the same).
|
||||
*/
|
||||
|
||||
#if defined(ARDUINO) // If compiling in Arduino IDE...
|
||||
#include <Arduino.h> // pull in all that stuff.
|
||||
|
||||
#define _PM_delayMicroseconds(us) delayMicroseconds(us)
|
||||
#define _PM_pinOutput(pin) pinMode(pin, OUTPUT)
|
||||
#define _PM_pinInput(pin) pinMode(pin, INPUT)
|
||||
#define _PM_pinHigh(pin) digitalWrite(pin, HIGH)
|
||||
#define _PM_pinLow(pin) digitalWrite(pin, LOW)
|
||||
#define _PM_portBitMask(pin) digitalPinToBitMask(pin)
|
||||
|
||||
// No #else here. In non-Arduino case, declare things in the arch-specific
|
||||
// sections below...unless other environments provide device-neutral
|
||||
// functions as above, in which case those could go here (w/#elif).
|
||||
|
||||
#endif // end defined(ARDUINO)
|
||||
|
||||
|
||||
// CODE COMMON TO BOTH SAMD51 AND SAMD21 -----------------------------------
|
||||
|
||||
#if defined(__SAMD51__) || defined(_SAMD21_)
|
||||
#if defined(ARDUINO)
|
||||
|
||||
// g_APinDescription[] table and pin indices are Arduino specific:
|
||||
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
|
||||
#define _PM_byteOffset(pin) (g_APinDescription[pin].ulPin / 8)
|
||||
#else
|
||||
#define _PM_byteOffset(pin) (3 - (g_APinDescription[pin].ulPin / 8))
|
||||
#endif
|
||||
|
||||
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
|
||||
#define _PM_wordOffset(pin) (g_APinDescription[pin].ulPin / 16)
|
||||
#else
|
||||
#define _PM_wordOffset(pin) (1 - (g_APinDescription[pin].ulPin / 16))
|
||||
#endif
|
||||
|
||||
// Arduino implementation is tied to a specific timer/counter & freq:
|
||||
#define _PM_TIMER_DEFAULT TC4
|
||||
#define _PM_IRQ_HANDLER TC4_Handler
|
||||
#define _PM_timerFreq 48000000
|
||||
// Partly because IRQs must be declared at compile-time, and partly
|
||||
// because we know Arduino's already set up one of the GCLK sources
|
||||
// for 48 MHz.
|
||||
|
||||
// Because it's tied to a specific timer right now, there can be only
|
||||
// one instance of the Protomatter_core struct. The Arduino library
|
||||
// sets up this pointer when calling begin().
|
||||
void *_PM_protoPtr = NULL;
|
||||
|
||||
// Timer interrupt service routine
|
||||
void _PM_IRQ_HANDLER(void) {
|
||||
// Clear overflow flag:
|
||||
_PM_TIMER_DEFAULT->COUNT16.INTFLAG.reg = TC_INTFLAG_OVF;
|
||||
_PM_row_handler(_PM_protoPtr); // In core.c
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
// Non-arduino byte offset macros, timer and ISR work go here.
|
||||
|
||||
#endif
|
||||
|
||||
// Code below diverges for SAMD51 vs SAMD21, but is still very similar...
|
||||
// If making a change or bug fix in one, check to see if an equivalent
|
||||
// change should be made in the other!
|
||||
|
||||
#endif // __SAMD51__ || _SAMD21_
|
||||
|
||||
|
||||
// SAMD51-SPECIFIC CODE ----------------------------------------------------
|
||||
|
||||
#if defined(__SAMD51__)
|
||||
|
||||
#if defined(ARDUINO)
|
||||
|
||||
// g_APinDescription[] table and pin indices are Arduino specific:
|
||||
#define _PM_portOutRegister(pin) \
|
||||
&PORT->Group[g_APinDescription[pin].ulPort].OUT.reg
|
||||
|
||||
#define _PM_portSetRegister(pin) \
|
||||
&PORT->Group[g_APinDescription[pin].ulPort].OUTSET.reg
|
||||
|
||||
#define _PM_portClearRegister(pin) \
|
||||
&PORT->Group[g_APinDescription[pin].ulPort].OUTCLR.reg
|
||||
|
||||
#define _PM_portToggleRegister(pin) \
|
||||
&PORT->Group[g_APinDescription[pin].ulPort].OUTTGL.reg
|
||||
|
||||
#else
|
||||
|
||||
// Non-Arduino port register lookups go here
|
||||
|
||||
#endif
|
||||
|
||||
// Initialize, but do not start, timer
|
||||
void _PM_timerInit(void *tptr) {
|
||||
static const struct {
|
||||
Tc *tc; // -> Timer/counter peripheral base address
|
||||
IRQn_Type IRQn; // Interrupt number
|
||||
uint8_t GCLK_ID; // Peripheral channel # for clock source
|
||||
} timer[] = {
|
||||
TC0, TC0_IRQn, TC0_GCLK_ID,
|
||||
TC1, TC1_IRQn, TC1_GCLK_ID,
|
||||
TC2, TC2_IRQn, TC2_GCLK_ID,
|
||||
TC3, TC3_IRQn, TC3_GCLK_ID,
|
||||
TC4, TC4_IRQn, TC4_GCLK_ID,
|
||||
TC5, TC5_IRQn, TC5_GCLK_ID,
|
||||
#if defined(TC6)
|
||||
TC6, TC6_IRQn, TC6_GCLK_ID,
|
||||
#endif
|
||||
#if defined(TC7)
|
||||
TC7, TC7_IRQn, TC7_GCLK_ID,
|
||||
#endif
|
||||
#if defined(TC8)
|
||||
TC8, TC8_IRQn, TC8_GCLK_ID,
|
||||
#endif
|
||||
#if defined(TC9)
|
||||
TC9, TC9_IRQn, TC9_GCLK_ID,
|
||||
#endif
|
||||
#if defined(TC10)
|
||||
TC10, TC10_IRQn, TC10_GCLK_ID,
|
||||
#endif
|
||||
#if defined(TC11)
|
||||
TC11, TC11_IRQn, TC11_GCLK_ID,
|
||||
#endif
|
||||
#if defined(TC12)
|
||||
TC12, TC12_IRQn, TC12_GCLK_ID,
|
||||
#endif
|
||||
};
|
||||
#define NUM_TIMERS (sizeof timer / sizeof timer[0])
|
||||
|
||||
Tc *tc = (Tc *)tptr; // Cast peripheral address passed in
|
||||
|
||||
uint8_t timerNum = 0;
|
||||
while((timerNum < NUM_TIMERS) && (timer[timerNum].tc != tc)) {
|
||||
timerNum++;
|
||||
}
|
||||
if(timerNum >= NUM_TIMERS) return;
|
||||
|
||||
// Feed timer/counter off GCLK1 (already set 48 MHz by Arduino core).
|
||||
// Sure, SAMD51 can run timers up to F_CPU (e.g. 120 MHz or up to
|
||||
// 200 MHz with overclocking), but on higher bitplanes (which have
|
||||
// progressively longer timer periods) I could see this possibly
|
||||
// exceeding a 16-bit timer, and would have to switch prescalers.
|
||||
// We don't actually need atomic precision on the timer -- point is
|
||||
// simply that the period doubles with each bitplane, and this can
|
||||
// work fine at 48 MHz.
|
||||
GCLK->PCHCTRL[timer[timerNum].GCLK_ID].bit.CHEN = 0; // Disable
|
||||
while(GCLK->PCHCTRL[timer[timerNum].GCLK_ID].bit.CHEN); // Wait for it
|
||||
GCLK_PCHCTRL_Type pchctrl; // Read-modify-store
|
||||
pchctrl.reg = GCLK->PCHCTRL[timer[timerNum].GCLK_ID].reg;
|
||||
pchctrl.bit.GEN = GCLK_PCHCTRL_GEN_GCLK1_Val;
|
||||
pchctrl.bit.CHEN = 1;
|
||||
GCLK->PCHCTRL[timer[timerNum].GCLK_ID].reg = pchctrl.reg;
|
||||
while(!GCLK->PCHCTRL[timer[timerNum].GCLK_ID].bit.CHEN);
|
||||
|
||||
// Disable timer before configuring it
|
||||
tc->COUNT16.CTRLA.bit.ENABLE = 0;
|
||||
while(tc->COUNT16.SYNCBUSY.bit.ENABLE);
|
||||
|
||||
// 16-bit counter mode, 1:1 prescale
|
||||
tc->COUNT16.CTRLA.bit.MODE = TC_CTRLA_MODE_COUNT16;
|
||||
tc->COUNT16.CTRLA.bit.PRESCALER = TC_CTRLA_PRESCALER_DIV1_Val;
|
||||
|
||||
tc->COUNT16.WAVE.bit.WAVEGEN =
|
||||
TC_WAVE_WAVEGEN_MFRQ_Val; // Match frequency generation mode (MFRQ)
|
||||
|
||||
tc->COUNT16.CTRLBCLR.reg = TC_CTRLBCLR_DIR; // Count up
|
||||
while(tc->COUNT16.SYNCBUSY.bit.CTRLB);
|
||||
|
||||
// Overflow interrupt
|
||||
tc->COUNT16.INTENSET.reg = TC_INTENSET_OVF;
|
||||
|
||||
NVIC_DisableIRQ(timer[timerNum].IRQn);
|
||||
NVIC_ClearPendingIRQ(timer[timerNum].IRQn);
|
||||
NVIC_SetPriority(timer[timerNum].IRQn, 0); // Top priority
|
||||
NVIC_EnableIRQ(timer[timerNum].IRQn);
|
||||
|
||||
// Timer is configured but NOT enabled by default
|
||||
}
|
||||
|
||||
// Set timer period, initialize count value to zero, enable timer.
|
||||
// Timer must be initialized to 16-bit mode using the init function
|
||||
// above, but must be inactive before calling this.
|
||||
inline void _PM_timerStart(void *tptr, uint32_t period) {
|
||||
Tc *tc = (Tc *)tptr; // Cast peripheral address passed in
|
||||
tc->COUNT16.COUNT.reg = 0;
|
||||
while(tc->COUNT16.SYNCBUSY.bit.COUNT);
|
||||
tc->COUNT16.CC[0].reg = period;
|
||||
while(tc->COUNT16.SYNCBUSY.bit.CC0);
|
||||
tc->COUNT16.CTRLA.bit.ENABLE = 1;
|
||||
while(tc->COUNT16.SYNCBUSY.bit.STATUS);
|
||||
}
|
||||
|
||||
// Return current count value (timer enabled or not).
|
||||
// Timer must be previously initialized.
|
||||
inline uint32_t _PM_timerGetCount(void *tptr) {
|
||||
Tc *tc = (Tc *)tptr; // Cast peripheral address passed in
|
||||
tc->COUNT16.CTRLBSET.bit.CMD = 0x4; // Sync COUNT
|
||||
while(tc->COUNT16.CTRLBSET.bit.CMD); // Wait for command
|
||||
return tc->COUNT16.COUNT.reg;
|
||||
}
|
||||
|
||||
// Disable timer and return current count value.
|
||||
// Timer must be previously initialized.
|
||||
uint32_t _PM_timerStop(void *tptr) {
|
||||
Tc *tc = (Tc *)tptr; // Cast peripheral address passed in
|
||||
uint32_t count = _PM_timerGetCount(tptr);
|
||||
tc->COUNT16.CTRLA.bit.ENABLE = 0;
|
||||
while(tc->COUNT16.SYNCBUSY.bit.STATUS);
|
||||
return count;
|
||||
}
|
||||
|
||||
// See notes in core.c before the "blast" functions
|
||||
#if F_CPU >= 200000000
|
||||
#define _PM_clockHoldHigh asm("nop; nop; nop; nop; nop");
|
||||
#define _PM_clockHoldLow asm("nop; nop");
|
||||
#elif F_CPU >= 180000000
|
||||
#define _PM_clockHoldHigh asm("nop; nop; nop; nop");
|
||||
#define _PM_clockHoldLow asm("nop");
|
||||
#elif F_CPU >= 150000000
|
||||
#define _PM_clockHoldHigh asm("nop; nop; nop");
|
||||
#define _PM_clockHoldLow asm("nop");
|
||||
#else
|
||||
#define _PM_clockHoldHigh asm("nop; nop; nop");
|
||||
#define _PM_clockHoldLow asm("nop");
|
||||
#endif
|
||||
|
||||
#define _PM_minMinPeriod 160
|
||||
|
||||
#endif // end __SAMD51__
|
||||
|
||||
|
||||
// SAMD21-SPECIFIC CODE ----------------------------------------------------
|
||||
|
||||
#if defined(_SAMD21_)
|
||||
|
||||
#if defined(ARDUINO)
|
||||
|
||||
// g_APinDescription[] table and pin indices are Arduino specific:
|
||||
#define _PM_portOutRegister(pin) \
|
||||
&PORT_IOBUS->Group[g_APinDescription[pin].ulPort].OUT.reg
|
||||
|
||||
#define _PM_portSetRegister(pin) \
|
||||
&PORT_IOBUS->Group[g_APinDescription[pin].ulPort].OUTSET.reg
|
||||
|
||||
#define _PM_portClearRegister(pin) \
|
||||
&PORT_IOBUS->Group[g_APinDescription[pin].ulPort].OUTCLR.reg
|
||||
|
||||
#define _PM_portToggleRegister(pin) \
|
||||
&PORT_IOBUS->Group[g_APinDescription[pin].ulPort].OUTTGL.reg
|
||||
|
||||
#else
|
||||
|
||||
// Non-Arduino port register lookups go here
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
// Initialize, but do not start, timer
|
||||
void _PM_timerInit(void *tptr) {
|
||||
static const struct {
|
||||
Tc *tc; // -> Timer/counter peripheral base address
|
||||
IRQn_Type IRQn; // Interrupt number
|
||||
uint8_t GCM_ID; // GCLK selection ID
|
||||
} timer[] = {
|
||||
TC0, TC0_IRQn, GCM_TCC0_TCC1,
|
||||
TC1, TC1_IRQn, GCM_TCC0_TCC1,
|
||||
#if defined(TC2)
|
||||
TC2, TC2_IRQn, GCM_TCC2_TC3,
|
||||
#endif
|
||||
#if defined(TC3)
|
||||
TC3, TC3_IRQn, GCM_TCC2_TC3,
|
||||
#endif
|
||||
#if defined(TC4)
|
||||
TC4, TC4_IRQn, GCM_TC4_TC5,
|
||||
#endif
|
||||
};
|
||||
#define NUM_TIMERS (sizeof timer / sizeof timer[0])
|
||||
|
||||
Tc *tc = (Tc *)tptr; // Cast peripheral address passed in
|
||||
|
||||
uint8_t timerNum = 0;
|
||||
while((timerNum < NUM_TIMERS) && (timer[timerNum].tc != tc)) {
|
||||
timerNum++;
|
||||
}
|
||||
if(timerNum >= NUM_TIMERS) return;
|
||||
|
||||
// Enable GCLK for timer/counter
|
||||
GCLK->CLKCTRL.reg = (uint16_t)(GCLK_CLKCTRL_CLKEN |
|
||||
GCLK_CLKCTRL_GEN_GCLK0 | GCLK_CLKCTRL_ID(timer[timerNum].GCM_ID));
|
||||
while(GCLK->STATUS.bit.SYNCBUSY == 1);
|
||||
|
||||
// Counter must first be disabled to configure it
|
||||
tc->COUNT16.CTRLA.bit.ENABLE = 0;
|
||||
while(tc->COUNT16.STATUS.bit.SYNCBUSY);
|
||||
|
||||
tc->COUNT16.CTRLA.reg = // Configure timer counter
|
||||
TC_CTRLA_PRESCALER_DIV1 | // 1:1 Prescale
|
||||
TC_CTRLA_WAVEGEN_MFRQ | // Match frequency generation mode (MFRQ)
|
||||
TC_CTRLA_MODE_COUNT16; // 16-bit counter mode
|
||||
while(tc->COUNT16.STATUS.bit.SYNCBUSY);
|
||||
|
||||
tc->COUNT16.CTRLBCLR.reg = TCC_CTRLBCLR_DIR; // Count up
|
||||
while(tc->COUNT16.STATUS.bit.SYNCBUSY);
|
||||
|
||||
// Overflow interrupt
|
||||
tc->COUNT16.INTENSET.reg = TC_INTENSET_OVF;
|
||||
|
||||
NVIC_DisableIRQ(timer[timerNum].IRQn);
|
||||
NVIC_ClearPendingIRQ(timer[timerNum].IRQn);
|
||||
NVIC_SetPriority(timer[timerNum].IRQn, 0); // Top priority
|
||||
NVIC_EnableIRQ(timer[timerNum].IRQn);
|
||||
|
||||
// Timer is configured but NOT enabled by default
|
||||
}
|
||||
|
||||
// Set timer period, initialize count value to zero, enable timer.
|
||||
// Timer must be initialized to 16-bit mode using the init function
|
||||
// above, but must be inactive before calling this.
|
||||
inline void _PM_timerStart(void *tptr, uint32_t period) {
|
||||
Tc *tc = (Tc *)tptr; // Cast peripheral address passed in
|
||||
tc->COUNT16.COUNT.reg = 0;
|
||||
while(tc->COUNT16.STATUS.bit.SYNCBUSY);
|
||||
tc->COUNT16.CC[0].reg = period;
|
||||
while(tc->COUNT16.STATUS.bit.SYNCBUSY);
|
||||
tc->COUNT16.CTRLA.bit.ENABLE = 1;
|
||||
while(tc->COUNT16.STATUS.bit.SYNCBUSY);
|
||||
}
|
||||
|
||||
// Return current count value (timer enabled or not).
|
||||
// Timer must be previously initialized.
|
||||
inline uint32_t _PM_timerGetCount(void *tptr) {
|
||||
Tc *tc = (Tc *)tptr; // Cast peripheral address passed in
|
||||
tc->COUNT16.READREQ.reg = TC_READREQ_RCONT | TC_READREQ_ADDR(0x10);
|
||||
while(tc->COUNT16.STATUS.bit.SYNCBUSY);
|
||||
return tc->COUNT16.COUNT.reg;
|
||||
}
|
||||
|
||||
// Disable timer and return current count value.
|
||||
// Timer must be previously initialized.
|
||||
inline uint32_t _PM_timerStop(void *tptr) {
|
||||
Tc *tc = (Tc *)tptr; // Cast peripheral address passed in
|
||||
uint32_t count = _PM_timerGetCount(tptr);
|
||||
tc->COUNT16.CTRLA.bit.ENABLE = 0;
|
||||
while(tc->COUNT16.STATUS.bit.SYNCBUSY);
|
||||
return count;
|
||||
}
|
||||
|
||||
#endif // _SAMD21_
|
||||
|
||||
|
||||
// NRF52-SPECIFIC CODE -----------------------------------------------------
|
||||
|
||||
#if defined(NRF52_SERIES)
|
||||
#endif // NRF52_SERIES
|
||||
|
||||
|
||||
// ESP32-SPECIFIC CODE -----------------------------------------------------
|
||||
|
||||
#if defined(ARDUINO_ARCH_ESP32)
|
||||
#endif // ARDUINO_ARCH_ESP32
|
||||
|
||||
|
||||
// DEFAULTS IF NOT DEFINED ABOVE -------------------------------------------
|
||||
|
||||
#if !defined(_PM_chunkSize)
|
||||
#define _PM_chunkSize 8
|
||||
#endif
|
||||
|
||||
#if !defined(_PM_clockHoldHigh)
|
||||
#define _PM_clockHoldHigh
|
||||
#endif
|
||||
|
||||
#if !defined(_PM_clockHoldLow)
|
||||
#define _PM_clockHoldLow
|
||||
#endif
|
||||
|
||||
#if !defined(_PM_minMinPeriod)
|
||||
#define _PM_minMinPeriod 100
|
||||
#endif
|
||||
|
||||
// ARDUINO SPECIFIC CODE ---------------------------------------------------
|
||||
|
||||
#if defined(ARDUINO)
|
||||
|
||||
// 16-bit (565) color conversion functions go here (rather than in the
|
||||
// Arduino lib .cpp) because knowledge is required of chunksize and the
|
||||
// toggle register (or lack thereof), which are only known to this file,
|
||||
// not the .cpp or anywhere else
|
||||
// However...this file knows nothing of the GFXcanvas16 type (from
|
||||
// Adafruit_GFX...another C++ lib), so the .cpp just passes down some
|
||||
// pointers and minimal info about the canvas buffer.
|
||||
// It's probably not ideal but this is my life now, oh well.
|
||||
|
||||
// Different runtime environments (which might not use the 565 canvas
|
||||
// format) will need their own conversion functions.
|
||||
|
||||
// There are THREE COPIES of the following function -- one each for byte,
|
||||
// word and long. If changes are made in any one of them, the others MUST
|
||||
// be updated to match! Note that they are not simple duplicates of each
|
||||
// other. The byte case, for example, doesn't need to handle parallel
|
||||
// matrix chains (matrix data can only be byte-sized if one chain).
|
||||
|
||||
// width argument comes from GFX canvas width, which may be less than
|
||||
// core's bitWidth (due to padding). height isn't needed, it can be
|
||||
// inferred from core->numRowPairs.
|
||||
void _PM_convert_565_byte(Protomatter_core *core, uint16_t *source,
|
||||
uint16_t width) {
|
||||
uint16_t *upperSrc = source; // Canvas top half
|
||||
uint16_t *lowerSrc = source + width * core->numRowPairs; // " bottom half
|
||||
uint8_t *pinMask = (uint8_t *)core->rgbMask; // Pin bitmasks
|
||||
uint8_t *dest = (uint8_t *)core->screenData;
|
||||
if(core->doubleBuffer) {
|
||||
dest += core->bufferSize * (1 - core->activeBuffer);
|
||||
}
|
||||
|
||||
// No need to clear matrix buffer, loops below do a full overwrite
|
||||
// (except for any scanline pad, which was already initialized in the
|
||||
// begin() function and won't be touched here).
|
||||
|
||||
// Determine matrix bytes per bitplane & row (row pair really):
|
||||
|
||||
uint32_t bitplaneSize = _PM_chunkSize *
|
||||
((width + (_PM_chunkSize - 1)) / _PM_chunkSize); // 1 plane of row pair
|
||||
uint8_t pad = bitplaneSize - width; // Start-of-plane pad
|
||||
|
||||
// Skip initial scanline padding if present (HUB75 matrices shift data
|
||||
// in from right-to-left, so if we need scanline padding it occurs at
|
||||
// the start of a line, rather than the usual end). Destination pointer
|
||||
// passed in already handles double-buffer math, so we don't need to
|
||||
// handle that here, just the pad...
|
||||
dest += pad;
|
||||
|
||||
uint32_t initialRedBit, initialGreenBit, initialBlueBit;
|
||||
if(core->numPlanes == 6) {
|
||||
// If numPlanes is 6, red and blue are expanded from 5 to 6 bits.
|
||||
// This involves duplicating the MSB of the 5-bit value to the LSB
|
||||
// of its corresponding 6-bit value...or in this case, bitmasks for
|
||||
// red and blue are initially assigned to canvas MSBs, while green
|
||||
// starts at LSB (because it's already 6-bit). Inner loop below then
|
||||
// wraps red & blue after the first bitplane.
|
||||
initialRedBit = 0b1000000000000000; // MSB red
|
||||
initialGreenBit = 0b0000000000100000; // LSB green
|
||||
initialBlueBit = 0b0000000000010000; // MSB blue
|
||||
} else {
|
||||
// If numPlanes is 1 to 5, no expansion is needed, and one or all
|
||||
// three color components might be decimated by some number of bits.
|
||||
// The initial bitmasks are set to the components' numPlanesth bit
|
||||
// (e.g. for 5 planes, start at red & blue bit #0, green bit #1,
|
||||
// for 4 planes, everything starts at the next bit up, etc.).
|
||||
uint8_t shiftLeft = 5 - core->numPlanes;
|
||||
initialRedBit = 0b0000100000000000 << shiftLeft;
|
||||
initialGreenBit = 0b0000000001000000 << shiftLeft;
|
||||
initialBlueBit = 0b0000000000000001 << shiftLeft;
|
||||
}
|
||||
|
||||
// This works sequentially-ish through the destination buffer,
|
||||
// reading from the canvas source pixels in repeated passes,
|
||||
// beginning from the least bit.
|
||||
for(uint8_t row=0; row<core->numRowPairs; row++) {
|
||||
uint32_t redBit = initialRedBit;
|
||||
uint32_t greenBit = initialGreenBit;
|
||||
uint32_t blueBit = initialBlueBit;
|
||||
for(uint8_t plane=0; plane<core->numPlanes; plane++) {
|
||||
#if defined(_PM_portToggleRegister)
|
||||
uint8_t prior = core->clockMask; // Set clock bit on 1st out
|
||||
#endif
|
||||
for(uint16_t x=0; x<width; x++) {
|
||||
uint16_t upperRGB = upperSrc[x]; // Pixel in upper half
|
||||
uint16_t lowerRGB = lowerSrc[x]; // Pixel in lower half
|
||||
uint8_t result = 0;
|
||||
if(upperRGB & redBit) result |= pinMask[0];
|
||||
if(upperRGB & greenBit) result |= pinMask[1];
|
||||
if(upperRGB & blueBit) result |= pinMask[2];
|
||||
if(lowerRGB & redBit) result |= pinMask[3];
|
||||
if(lowerRGB & greenBit) result |= pinMask[4];
|
||||
if(lowerRGB & blueBit) result |= pinMask[5];
|
||||
#if defined(_PM_portToggleRegister)
|
||||
dest[x] = result ^ prior;
|
||||
prior = result | core->clockMask; // Set clock bit on next out
|
||||
#else
|
||||
dest[x] = result;
|
||||
#endif
|
||||
} // end x
|
||||
greenBit <<= 1;
|
||||
if(plane || (core->numPlanes < 6)) {
|
||||
// In most cases red & blue bit scoot 1 left...
|
||||
redBit <<= 1;
|
||||
blueBit <<= 1;
|
||||
} else {
|
||||
// Exception being after bit 0 with 6-plane display,
|
||||
// in which case they're reset to red & blue LSBs
|
||||
// (so 5-bit colors are expanded to 6 bits).
|
||||
redBit = 0b0000100000000000;
|
||||
blueBit = 0b0000000000000001;
|
||||
}
|
||||
#if defined(_PM_portToggleRegister)
|
||||
// If using bit-toggle register, erase the toggle bit on the
|
||||
// first element of each bitplane & row pair. The matrix-driving
|
||||
// interrupt functions correspondingly set the clock low before
|
||||
// finishing. This is all done for legibility on oscilloscope --
|
||||
// so idle clock appears LOW -- but really the matrix samples on
|
||||
// a rising edge and we could leave it high, but at this stage
|
||||
// in development just want the scope "readable."
|
||||
dest[-pad] &= ~core->clockMask; // Negative index is legal & intentional
|
||||
#endif
|
||||
dest += bitplaneSize; // Advance one scanline in dest buffer
|
||||
} // end plane
|
||||
upperSrc += width; // Advance one scanline in source buffer
|
||||
lowerSrc += width;
|
||||
} // end row
|
||||
}
|
||||
|
||||
// Corresponding function for word output -- either 12 RGB bits (2 parallel
|
||||
// matrix chains), or 1 chain with RGB bits not in the same byte (but in the
|
||||
// same 16-bit word). Some of the comments have been stripped out since it's
|
||||
// largely the same operation, but changes are noted.
|
||||
void _PM_convert_565_word(Protomatter_core *core, uint16_t *source,
|
||||
uint16_t width) {
|
||||
uint16_t *upperSrc = source; // Matrix top half
|
||||
uint16_t *lowerSrc = source + width * core->numRowPairs; // " bottom half
|
||||
uint16_t *pinMask = (uint16_t *)core->rgbMask; // Pin bitmasks
|
||||
uint16_t *dest = (uint16_t *)core->screenData;
|
||||
if(core->doubleBuffer) {
|
||||
dest += core->bufferSize / core->bytesPerElement *
|
||||
(1 - core->activeBuffer);
|
||||
}
|
||||
|
||||
uint32_t bitplaneSize = _PM_chunkSize *
|
||||
((width + (_PM_chunkSize - 1)) / _PM_chunkSize); // 1 plane of row pair
|
||||
uint8_t pad = bitplaneSize - width; // Start-of-plane pad
|
||||
|
||||
uint32_t initialRedBit, initialGreenBit, initialBlueBit;
|
||||
if(core->numPlanes == 6) {
|
||||
initialRedBit = 0b1000000000000000; // MSB red
|
||||
initialGreenBit = 0b0000000000100000; // LSB green
|
||||
initialBlueBit = 0b0000000000010000; // MSB blue
|
||||
} else {
|
||||
uint8_t shiftLeft = 5 - core->numPlanes;
|
||||
initialRedBit = 0b0000100000000000 << shiftLeft;
|
||||
initialGreenBit = 0b0000000001000000 << shiftLeft;
|
||||
initialBlueBit = 0b0000000000000001 << shiftLeft;
|
||||
}
|
||||
|
||||
// Unlike the 565 byte converter, the word converter DOES clear out the
|
||||
// matrix buffer (because each chain is OR'd into place). If a toggle
|
||||
// register exists, "clear" really means the clock mask is set in all
|
||||
// but the first element on a scanline (per bitplane). If no toggle
|
||||
// register, can just zero everything out.
|
||||
#if defined(_PM_portToggleRegister)
|
||||
// No per-chain loop is required; one clock bit handles all chains
|
||||
uint32_t offset = 0; // Current position in the 'dest' buffer
|
||||
for(uint8_t row=0; row<core->numRowPairs; row++) {
|
||||
for(uint8_t plane=0; plane<core->numPlanes; plane++) {
|
||||
dest[offset++] = 0; // First element of each plane
|
||||
for(uint16_t x=1; x<bitplaneSize; x++) { // All subsequent items
|
||||
dest[offset++] = core->clockMask;
|
||||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
memset(dest, 0, core->bufferSize);
|
||||
#endif
|
||||
|
||||
dest += pad; // Pad value is in 'elements,' not bytes, so this is OK
|
||||
|
||||
// After a set of rows+bitplanes are processed, upperSrc and lowerSrc
|
||||
// have advanced halfway down one matrix. This offset is used after
|
||||
// each chain to advance them to the start/middle of the next matrix.
|
||||
uint32_t halfMatrixOffset = width * core->numPlanes * core->numRowPairs;
|
||||
|
||||
for(uint8_t chain=0; chain<core->parallel; chain++) {
|
||||
for(uint8_t row=0; row<core->numRowPairs; row++) {
|
||||
uint32_t redBit = initialRedBit;
|
||||
uint32_t greenBit = initialGreenBit;
|
||||
uint32_t blueBit = initialBlueBit;
|
||||
for(uint8_t plane=0; plane<core->numPlanes; plane++) {
|
||||
#if defined(_PM_portToggleRegister)
|
||||
// Since we're ORing in bits over an existing clock bit,
|
||||
// prior is 0 rather than clockMask as in the byte case.
|
||||
uint16_t prior = 0;
|
||||
#endif
|
||||
for(uint16_t x=0; x<width; x++) {
|
||||
uint16_t upperRGB = upperSrc[x]; // Pixel in upper half
|
||||
uint16_t lowerRGB = lowerSrc[x]; // Pixel in lower half
|
||||
uint16_t result = 0;
|
||||
if(upperRGB & redBit) result |= pinMask[0];
|
||||
if(upperRGB & greenBit) result |= pinMask[1];
|
||||
if(upperRGB & blueBit) result |= pinMask[2];
|
||||
if(lowerRGB & redBit) result |= pinMask[3];
|
||||
if(lowerRGB & greenBit) result |= pinMask[4];
|
||||
if(lowerRGB & blueBit) result |= pinMask[5];
|
||||
// Main difference here vs byte converter is each chain
|
||||
// ORs new bits into place (vs single-pass overwrite).
|
||||
#if defined(_PM_portToggleRegister)
|
||||
dest[x] |= result ^ prior; // Bitwise OR
|
||||
prior = result;
|
||||
#else
|
||||
dest[x] |= result; // Bitwise OR
|
||||
#endif
|
||||
} // end x
|
||||
greenBit <<= 1;
|
||||
if(plane || (core->numPlanes < 6)) {
|
||||
redBit <<= 1;
|
||||
blueBit <<= 1;
|
||||
} else {
|
||||
redBit = 0b0000100000000000;
|
||||
blueBit = 0b0000000000000001;
|
||||
}
|
||||
dest += bitplaneSize; // Advance one scanline in dest buffer
|
||||
} // end plane
|
||||
upperSrc += width; // Advance one scanline in source buffer
|
||||
lowerSrc += width;
|
||||
} // end row
|
||||
pinMask += 6; // Next chain's RGB pin masks
|
||||
upperSrc += halfMatrixOffset; // Advance to next matrix start pos
|
||||
lowerSrc += halfMatrixOffset;
|
||||
}
|
||||
}
|
||||
|
||||
// Corresponding function for long output -- either several parallel chains
|
||||
// (up to 5), or 1 chain with RGB bits scattered widely about the PORT.
|
||||
// Same deal, comments are pared back, see above functions for explanations.
|
||||
void _PM_convert_565_long(Protomatter_core *core, uint16_t *source,
|
||||
uint16_t width) {
|
||||
uint16_t *upperSrc = source; // Matrix top half
|
||||
uint16_t *lowerSrc = source + width * core->numRowPairs; // " bottom half
|
||||
uint32_t *pinMask = (uint32_t *)core->rgbMask; // Pin bitmasks
|
||||
uint32_t *dest = (uint32_t *)core->screenData;
|
||||
if(core->doubleBuffer) {
|
||||
dest += core->bufferSize / core->bytesPerElement *
|
||||
(1 - core->activeBuffer);
|
||||
}
|
||||
|
||||
uint32_t bitplaneSize = _PM_chunkSize *
|
||||
((width + (_PM_chunkSize - 1)) / _PM_chunkSize); // 1 plane of row pair
|
||||
uint8_t pad = bitplaneSize - width; // Start-of-plane pad
|
||||
|
||||
uint32_t initialRedBit, initialGreenBit, initialBlueBit;
|
||||
if(core->numPlanes == 6) {
|
||||
initialRedBit = 0b1000000000000000; // MSB red
|
||||
initialGreenBit = 0b0000000000100000; // LSB green
|
||||
initialBlueBit = 0b0000000000010000; // MSB blue
|
||||
} else {
|
||||
uint8_t shiftLeft = 5 - core->numPlanes;
|
||||
initialRedBit = 0b0000100000000000 << shiftLeft;
|
||||
initialGreenBit = 0b0000000001000000 << shiftLeft;
|
||||
initialBlueBit = 0b0000000000000001 << shiftLeft;
|
||||
}
|
||||
|
||||
#if defined(_PM_portToggleRegister)
|
||||
// No per-chain loop is required; one clock bit handles all chains
|
||||
uint32_t offset = 0; // Current position in the 'dest' buffer
|
||||
for(uint8_t row=0; row<core->numRowPairs; row++) {
|
||||
for(uint8_t plane=0; plane<core->numPlanes; plane++) {
|
||||
dest[offset++] = 0; // First element of each plane
|
||||
for(uint16_t x=1; x<bitplaneSize; x++) { // All subsequent items
|
||||
dest[offset++] = core->clockMask;
|
||||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
memset(dest, 0, core->bufferSize);
|
||||
#endif
|
||||
|
||||
dest += pad; // Pad value is in 'elements,' not bytes, so this is OK
|
||||
|
||||
uint32_t halfMatrixOffset = width * core->numPlanes * core->numRowPairs;
|
||||
|
||||
for(uint8_t chain=0; chain<core->parallel; chain++) {
|
||||
for(uint8_t row=0; row<core->numRowPairs; row++) {
|
||||
uint32_t redBit = initialRedBit;
|
||||
uint32_t greenBit = initialGreenBit;
|
||||
uint32_t blueBit = initialBlueBit;
|
||||
for(uint8_t plane=0; plane<core->numPlanes; plane++) {
|
||||
#if defined(_PM_portToggleRegister)
|
||||
uint32_t prior = 0;
|
||||
#endif
|
||||
for(uint16_t x=0; x<width; x++) {
|
||||
uint16_t upperRGB = upperSrc[x]; // Pixel in upper half
|
||||
uint16_t lowerRGB = lowerSrc[x]; // Pixel in lower half
|
||||
uint32_t result = 0;
|
||||
if(upperRGB & redBit) result |= pinMask[0];
|
||||
if(upperRGB & greenBit) result |= pinMask[1];
|
||||
if(upperRGB & blueBit) result |= pinMask[2];
|
||||
if(lowerRGB & redBit) result |= pinMask[3];
|
||||
if(lowerRGB & greenBit) result |= pinMask[4];
|
||||
if(lowerRGB & blueBit) result |= pinMask[5];
|
||||
// Main difference here vs byte converter is each chain
|
||||
// ORs new bits into place (vs single-pass overwrite).
|
||||
#if defined(_PM_portToggleRegister)
|
||||
dest[x] |= result ^ prior; // Bitwise OR
|
||||
prior = result;
|
||||
#else
|
||||
dest[x] |= result; // Bitwise OR
|
||||
#endif
|
||||
} // end x
|
||||
greenBit <<= 1;
|
||||
if(plane || (core->numPlanes < 6)) {
|
||||
redBit <<= 1;
|
||||
blueBit <<= 1;
|
||||
} else {
|
||||
redBit = 0b0000100000000000;
|
||||
blueBit = 0b0000000000000001;
|
||||
}
|
||||
dest += bitplaneSize; // Advance one scanline in dest buffer
|
||||
} // end plane
|
||||
upperSrc += width; // Advance one scanline in source buffer
|
||||
lowerSrc += width;
|
||||
} // end row
|
||||
pinMask += 6; // Next chain's RGB pin masks
|
||||
upperSrc += halfMatrixOffset; // Advance to next matrix start pos
|
||||
lowerSrc += halfMatrixOffset;
|
||||
}
|
||||
}
|
||||
|
||||
#endif // ARDUINO
|
||||
|
||||
#endif // _PROTOMATTER_ARCH_H_
|
||||
668
core.c
Normal file
668
core.c
Normal file
|
|
@ -0,0 +1,668 @@
|
|||
// Device- and environment-neutral core matrix-driving functionality.
|
||||
// See notes near top of arch.h regarding assumptions of hardware
|
||||
// "common ground." If you find yourself doing an "#ifdef ARDUINO" or
|
||||
// "#ifdef _SAMD21_" in this file, STOP. Idea is that the code in this
|
||||
// file is neutral and portable (within aforementioned assumptions).
|
||||
// Nonportable elements should appear in arch.h. If arch.h functionality
|
||||
// is lacking, extend it there, do not go making device- or environment-
|
||||
// specific cases within this file.
|
||||
|
||||
// Function names are intentionally a little obtuse, idea is that one writes
|
||||
// a more sensible wrapper around this for specific environments (e.g. the
|
||||
// Arduino stuff in Adafruit_Protomatter.cpp). The "_PM_" prefix on most
|
||||
// things hopefully makes function and variable name collisions much less
|
||||
// likely with one's own code.
|
||||
|
||||
#include "core.h" // enums and structs
|
||||
#include "arch.h" // Do NOT include this in any other source files
|
||||
|
||||
// Overall matrix refresh rate (frames/second) is a function of matrix width
|
||||
// and chain length, number of address lines, number of bit planes, CPU speed
|
||||
// and whether or not a GPIO toggle register is available. There is no "this
|
||||
// will run at X-frames-per-second" constant figure. You typically just have
|
||||
// to try it out and perhaps trade off some bit planes for refresh rate until
|
||||
// the image looks good and stable. Anything over 100 Hz is usually passable,
|
||||
// around 250 Hz is where things firm up. And while this could proceed higher
|
||||
// in some situations, the tradeoff is that faster rates use progressively
|
||||
// more CPU time (because it's timer interrupt based and not using DMA or
|
||||
// special peripherals). So a throttle is set here, an approximate maximum
|
||||
// frame rate which the software will attempt to avoid exceeding (but may
|
||||
// refresh slower than this, and in many cases will...just need to set an
|
||||
// upper limit to avoid excessive CPU load). An incredibly long comment block
|
||||
// for a single constant, thank you for coming to my TED talk!
|
||||
#define _PM_MAX_REFRESH_HZ 250
|
||||
|
||||
// Time (in microseconds) to pause following any change in address lines
|
||||
// (individually or collectively). Some matrices respond slowly there...
|
||||
// must pause on change for matrix to catch up. Defined here (rather than
|
||||
// arch.h) because it's not architecture-specific.
|
||||
#define _PM_ROW_DELAY 8
|
||||
|
||||
// These are the lowest-level functions for issing data to matrices.
|
||||
// There are three versions because it depends on how the six RGB data bits
|
||||
// (and clock bit) are arranged within a 32-bit PORT register. If all six
|
||||
// (seven) fit within one byte or word of the PORT, the library's memory
|
||||
// use (and corresponding data-issuing function) change. This will also have
|
||||
// an impact on parallel chains in the future, where the number of concurrent
|
||||
// RGB data bits isn't always six, but some multiple thereof (i.e. up to five
|
||||
// parallel outputs -- 30 RGB bits + clock -- on a 32-bit PORT, though that's
|
||||
// largely hypothetical as the chance of finding a PORT with that many bits
|
||||
// exposed and NOT interfering with other peripherals on a board is highly
|
||||
// improbable. But I could see four happening, maybe on a Grand Central or
|
||||
// other kitchen-sink board.
|
||||
static void blast_byte(Protomatter_core *core, uint8_t *data);
|
||||
static void blast_word(Protomatter_core *core, uint16_t *data);
|
||||
static void blast_long(Protomatter_core *core, uint32_t *data);
|
||||
|
||||
// Validate and populate vital elements of core structure.
|
||||
// Does NOT allocate core struct -- calling function must provide that.
|
||||
// (In the Arduino C++ library, it’s part of the Protomatter class.)
|
||||
ProtomatterStatus _PM_init(Protomatter_core *core,
|
||||
uint16_t bitWidth, uint8_t bitDepth,
|
||||
uint8_t rgbCount, uint8_t *rgbList,
|
||||
uint8_t addrCount, uint8_t *addrList,
|
||||
uint8_t clockPin, uint8_t latchPin, uint8_t oePin,
|
||||
bool doubleBuffer, void *timer) {
|
||||
if(!core) return PROTOMATTER_ERR_ARG;
|
||||
|
||||
if(rgbCount > 5) rgbCount = 5; // Max 5 in parallel (32-bit PORT)
|
||||
if(addrCount > 5) addrCount = 5; // Max 5 address lines (A-E)
|
||||
// bitDepth is NOT constrained here, handle in calling function
|
||||
// (varies with implementation, e.g. GFX lib is max 6 bitplanes,
|
||||
// but might be more or less elsewhere)
|
||||
|
||||
// If NULL timer was passed in (the default case for the constructor),
|
||||
// use default value from arch.h. For example, in the Arduino case it's
|
||||
// tied to TC4 specifically.
|
||||
if(timer == NULL) timer = _PM_TIMER_DEFAULT;
|
||||
|
||||
core->timer = timer;
|
||||
core->width = bitWidth; // Total matrix chain length in bits
|
||||
core->numPlanes = bitDepth;
|
||||
core->parallel = rgbCount;
|
||||
core->numAddressLines = addrCount;
|
||||
core->clockPin = clockPin;
|
||||
core->latch.pin = latchPin;
|
||||
core->oe.pin = oePin;
|
||||
core->doubleBuffer = doubleBuffer;
|
||||
core->addr = NULL;
|
||||
core->screenData = NULL;
|
||||
|
||||
// Make a copy of the rgbList and addrList tables in case they're
|
||||
// passed from local vars on the stack or some other non-persistent
|
||||
// source. screenData is NOT allocated here because data size (byte,
|
||||
// word, long) is not known until the begin function evaluates all
|
||||
// the pin bitmasks.
|
||||
|
||||
rgbCount *= 6; // Convert parallel count to pin count
|
||||
if((core->rgbPins = (uint8_t *)malloc(rgbCount * sizeof(uint8_t)))) {
|
||||
if((core->addr = (_PM_pin *)malloc(addrCount * sizeof(_PM_pin)))) {
|
||||
memcpy(core->rgbPins, rgbList, rgbCount * sizeof(uint8_t));
|
||||
for(uint8_t i=0; i<addrCount; i++) {
|
||||
core->addr[i].pin = addrList[i];
|
||||
}
|
||||
return PROTOMATTER_OK;
|
||||
}
|
||||
free(core->rgbPins);
|
||||
core->rgbPins = NULL;
|
||||
}
|
||||
return PROTOMATTER_ERR_MALLOC;
|
||||
}
|
||||
|
||||
// Allocate display buffers and populate additional elements.
|
||||
ProtomatterStatus _PM_begin(Protomatter_core *core) {
|
||||
if(!core) return PROTOMATTER_ERR_ARG;
|
||||
|
||||
if(!core->rgbPins) { // NULL if copy failed to allocate
|
||||
return PROTOMATTER_ERR_MALLOC;
|
||||
}
|
||||
|
||||
// Verify that rgbPins and clockPin are all on the same PORT. If not,
|
||||
// return an error. Pin list is not freed; please call dealloc function.
|
||||
// Also get bitmask of which bits within 32-bit PORT register are
|
||||
// referenced.
|
||||
uint8_t *port = (uint8_t *)_PM_portOutRegister(core->clockPin);
|
||||
#if defined(_PM_portToggleRegister)
|
||||
// If a bit-toggle register is present, the clock pin is included
|
||||
// in determining which bytes of the PORT register are used (and thus
|
||||
// the data storage efficiency).
|
||||
uint32_t bitMask = _PM_portBitMask(core->clockPin);
|
||||
#else
|
||||
// If no bit-toggle register, clock pin can be on any bit, doesn't
|
||||
// affect storage efficiency.
|
||||
uint32_t bitMask = 0;
|
||||
#endif
|
||||
|
||||
for(uint8_t i=0; i<core->parallel * 6; i++) {
|
||||
uint8_t *p2 = (uint8_t *)_PM_portOutRegister(core->rgbPins[i]);
|
||||
if(p2 != port) {
|
||||
return PROTOMATTER_ERR_PINS;
|
||||
}
|
||||
bitMask |= _PM_portBitMask(core->rgbPins[i]);
|
||||
}
|
||||
|
||||
// RGB + clock are on same port, we can proceed...
|
||||
|
||||
// Determine data type for internal representation. If all the data
|
||||
// bitmasks (and possibly clock bitmask, depending whether toggle-bits
|
||||
// register is present) are in the same byte, this can be stored more
|
||||
// compact than if they're spread across a word or long.
|
||||
uint8_t byteMask = 0;
|
||||
if(bitMask & 0xFF000000) byteMask |= 0b1000;
|
||||
if(bitMask & 0x00FF0000) byteMask |= 0b0100;
|
||||
if(bitMask & 0x0000FF00) byteMask |= 0b0010;
|
||||
if(bitMask & 0x000000FF) byteMask |= 0b0001;
|
||||
switch(byteMask) {
|
||||
case 0b0001: // If all PORT bits are in the same byte...
|
||||
case 0b0010:
|
||||
case 0b0100:
|
||||
case 0b1000:
|
||||
core->bytesPerElement = 1; // Use 8-bit PORT accesses.
|
||||
break;
|
||||
case 0b0011: // If all PORT bits in upper/lower word...
|
||||
case 0b1100:
|
||||
core->bytesPerElement = 2; // Use 16-bit PORT accesses.
|
||||
// Although some devices might tolerate unaligned 16-bit accesses
|
||||
// ('middle' word of 32-bit PORT), that is NOT handled here.
|
||||
// It's a portability liability.
|
||||
break;
|
||||
default: // Any other situation...
|
||||
core->bytesPerElement = 4; // Use 32-bit PORT accesses.
|
||||
break;
|
||||
}
|
||||
|
||||
// Planning for screen data allocation...
|
||||
core->numRowPairs = 1 << core->numAddressLines;
|
||||
uint8_t chunks = (core->width + (_PM_chunkSize - 1)) / _PM_chunkSize;
|
||||
uint16_t columns = chunks * _PM_chunkSize; // Padded matrix width
|
||||
uint32_t screenBytes = columns * core->numRowPairs * core->numPlanes *
|
||||
core->bytesPerElement;
|
||||
|
||||
core->bufferSize = screenBytes; // Bytes per matrix buffer (1 or 2)
|
||||
if(core->doubleBuffer) screenBytes *= 2; // Total for matrix buffer(s)
|
||||
uint32_t rgbMaskBytes = core->parallel * 6 * core->bytesPerElement;
|
||||
|
||||
// Allocate matrix buffer(s). Don't worry about the return type...
|
||||
// though we might be using words or longs for certain pin configs,
|
||||
// malloc() by definition always aligns to the longest type.
|
||||
if(!(core->screenData = (uint8_t *)malloc(screenBytes + rgbMaskBytes))) {
|
||||
return PROTOMATTER_ERR_MALLOC;
|
||||
}
|
||||
|
||||
// rgbMask data follows the matrix buffer(s)
|
||||
core->rgbMask = core->screenData + screenBytes;
|
||||
|
||||
#if !defined(_PM_portToggleRegister)
|
||||
// Clear entire screenData buffer so there's no cruft in any pad bytes
|
||||
// (if using toggle register, each is set to clockMask below instead).
|
||||
memset(core->screenData, 0, screenBytes);
|
||||
#endif
|
||||
|
||||
// Figure out clockMask and rgbAndClockMask, clear matrix buffers
|
||||
if(core->bytesPerElement == 1) {
|
||||
core->portOffset = _PM_byteOffset(core->rgbPins[0]);
|
||||
#if defined(_PM_portToggleRegister)
|
||||
// Clock and rgbAndClockMask are 8-bit values
|
||||
core->clockMask = _PM_portBitMask(core->clockPin) >>
|
||||
(core->portOffset * 8);
|
||||
core->rgbAndClockMask = (bitMask >> (core->portOffset * 8)) |
|
||||
core->clockMask;
|
||||
memset(core->screenData, core->clockMask, screenBytes);
|
||||
#else
|
||||
// Clock and rgbAndClockMask are 32-bit values
|
||||
core->clockMask = _PM_portBitMask(core->clockPin);
|
||||
core->rgbAndClockMask = bitMask | core->clockMask;
|
||||
#endif
|
||||
for(uint8_t i=0; i<core->parallel * 6; i++) {
|
||||
((uint8_t *)core->rgbMask)[i] = // Pin bitmasks are 8-bit
|
||||
_PM_portBitMask(core->rgbPins[i]) >> (core->portOffset * 8);
|
||||
}
|
||||
} else if(core->bytesPerElement == 2) {
|
||||
core->portOffset = _PM_wordOffset(core->rgbPins[0]);
|
||||
#if defined(_PM_portToggleRegister)
|
||||
// Clock and rgbAndClockMask are 16-bit values
|
||||
core->clockMask = _PM_portBitMask(core->clockPin) >>
|
||||
(core->portOffset * 16);
|
||||
core->rgbAndClockMask = (bitMask >> (core->portOffset * 16)) |
|
||||
core->clockMask;
|
||||
uint32_t elements = screenBytes / 2;
|
||||
for(uint32_t i=0; i<elements; i++) {
|
||||
((uint16_t *)core->screenData)[i] = core->clockMask;
|
||||
}
|
||||
#else
|
||||
// Clock and rgbAndClockMask are 32-bit values
|
||||
core->clockMask = _PM_portBitMask(core->clockPin);
|
||||
core->rgbAndClockMask = bitMask | core->clockMask;
|
||||
#endif
|
||||
for(uint8_t i=0; i<core->parallel * 6; i++) {
|
||||
((uint16_t *)core->rgbMask)[i] = // Pin bitmasks are 16-bit
|
||||
_PM_portBitMask(core->rgbPins[i]) >> (core->portOffset * 16);
|
||||
}
|
||||
} else {
|
||||
core->portOffset = 0;
|
||||
core->clockMask = _PM_portBitMask(core->clockPin);
|
||||
core->rgbAndClockMask = bitMask | core->clockMask;
|
||||
#if defined(_PM_portToggleRegister)
|
||||
uint32_t elements = screenBytes / 4;
|
||||
for(uint32_t i=0; i<elements; i++) {
|
||||
((uint32_t *)core->screenData)[i] = core->clockMask;
|
||||
}
|
||||
#endif
|
||||
for(uint8_t i=0; i<core->parallel * 6; i++) {
|
||||
((uint32_t *)core->rgbMask)[i] = // Pin bitmasks are 32-bit
|
||||
_PM_portBitMask(core->rgbPins[i]);
|
||||
}
|
||||
}
|
||||
|
||||
// Estimate minimum bitplane #0 period for _PM_MAX_REFRESH_HZ rate.
|
||||
uint32_t minPeriodPerFrame = _PM_timerFreq / _PM_MAX_REFRESH_HZ;
|
||||
uint32_t minPeriodPerLine = minPeriodPerFrame / core->numRowPairs;
|
||||
core->minPeriod = minPeriodPerLine / ((1 << core->numPlanes) - 1);
|
||||
if(core->minPeriod < _PM_minMinPeriod) {
|
||||
core->minPeriod = _PM_minMinPeriod;
|
||||
}
|
||||
// Actual frame rate may be lower than this...it's only an estimate
|
||||
// and does not factor in things like address line selection delays
|
||||
// or interrupt overhead. That's OK, just don't want to exceed this
|
||||
// rate, as it'll eat all the CPU cycles.
|
||||
// Make a wild guess for the initial bit-zero interval. It's okay
|
||||
// that this is off, code adapts to actual timer results pretty quick.
|
||||
|
||||
core->bitZeroPeriod = core->width * 5; // Initial guesstimate
|
||||
|
||||
core->activeBuffer = 0;
|
||||
|
||||
// Configure pins as outputs and initialize their states.
|
||||
|
||||
core->latch.setReg = _PM_portSetRegister(core->latch.pin);
|
||||
core->latch.clearReg = _PM_portClearRegister(core->latch.pin);
|
||||
core->latch.bit = _PM_portBitMask(core->latch.pin);
|
||||
core->oe.setReg = _PM_portSetRegister(core->oe.pin);
|
||||
core->oe.clearReg = _PM_portClearRegister(core->oe.pin);
|
||||
core->oe.bit = _PM_portBitMask(core->oe.pin);
|
||||
|
||||
_PM_pinOutput(core->clockPin);
|
||||
_PM_pinLow(core->clockPin); // Init clock LOW
|
||||
_PM_pinOutput(core->latch.pin);
|
||||
_PM_pinLow(core->latch.pin); // Init latch LOW
|
||||
_PM_pinOutput(core->oe.pin);
|
||||
_PM_pinHigh(core->oe.pin); // Init OE HIGH (disable output)
|
||||
|
||||
for(uint8_t i=0; i<core->parallel * 6; i++) {
|
||||
_PM_pinOutput(core->rgbPins[i]);
|
||||
_PM_pinLow(core->rgbPins[i]);
|
||||
}
|
||||
#if defined(_PM_portToggleRegister)
|
||||
core->addrPortToggle = _PM_portToggleRegister(core->addr[0].pin);
|
||||
core->singleAddrPort = 1;
|
||||
#endif
|
||||
for(uint8_t line=0,bit=1; line<core->numAddressLines; line++, bit<<=1) {
|
||||
core->addr[line].setReg =
|
||||
_PM_portSetRegister(core->addr[line].pin);
|
||||
core->addr[line].clearReg =
|
||||
_PM_portClearRegister(core->addr[line].pin);
|
||||
core->addr[line].bit =
|
||||
_PM_portBitMask(core->addr[line].pin);
|
||||
_PM_pinOutput(core->addr[line].pin);
|
||||
if(core->prevRow & bit) {
|
||||
_PM_pinHigh(core->addr[line].pin);
|
||||
} else {
|
||||
_PM_pinLow(core->addr[line].pin);
|
||||
}
|
||||
#if defined(_PM_portToggleRegister)
|
||||
// If address pin on different port than addr 0, no singleAddrPort.
|
||||
if(_PM_portToggleRegister(core->addr[line].pin) !=
|
||||
core->addrPortToggle) {
|
||||
core->singleAddrPort = 0;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
// Get pointers to bit set and clear registers (and toggle, if present)
|
||||
core->setReg = (uint8_t *)_PM_portSetRegister(core->clockPin);
|
||||
core->clearReg = (uint8_t *)_PM_portClearRegister(core->clockPin);
|
||||
#if defined(_PM_portToggleRegister)
|
||||
core->toggleReg = (uint8_t *)_PM_portToggleRegister(core->clockPin);
|
||||
#endif
|
||||
|
||||
// Reset plane/row counters, config and start timer
|
||||
_PM_resume(core);
|
||||
|
||||
return PROTOMATTER_OK;
|
||||
}
|
||||
|
||||
// Disable (but do not deallocate) a Protomatter matrix. Disables matrix by
|
||||
// setting OE pin HIGH and writing all-zero data to matrix shift registers,
|
||||
// so it won't halt with lit LEDs.
|
||||
void _PM_stop(Protomatter_core *core) {
|
||||
if((core)) {
|
||||
while(core->swapBuffers); // Wait for any pending buffer swap
|
||||
_PM_timerStop(core->timer); // Halt timer
|
||||
*core->oe.setReg = core->oe.bit; // Set OE HIGH (disable output)
|
||||
// So, in PRINCIPLE, setting OE high would be sufficient...
|
||||
// but in case that pin is shared with another function such
|
||||
// as the onloard LED (which pulses during bootloading) let's
|
||||
// also clear out the matrix shift registers for good measure.
|
||||
// Set all RGB pins LOW...
|
||||
for(uint8_t i=0; i<core->parallel * 6; i++) {
|
||||
_PM_pinLow(core->rgbPins[i]);
|
||||
}
|
||||
// Clock out bits (just need to toggle clock with RGBs held low)
|
||||
for(uint32_t i=0; i<core->width; i++) {
|
||||
_PM_pinHigh(core->clockPin);
|
||||
_PM_clockHoldHigh;
|
||||
_PM_pinLow(core->clockPin);
|
||||
_PM_clockHoldLow;
|
||||
}
|
||||
// Latch data
|
||||
*core->latch.setReg = core->latch.bit;
|
||||
*core->latch.clearReg = core->latch.bit;
|
||||
}
|
||||
}
|
||||
|
||||
void _PM_resume(Protomatter_core *core) {
|
||||
if((core)) {
|
||||
// Init plane & row to max values so they roll over on 1st interrupt
|
||||
core->plane = core->numPlanes - 1;
|
||||
core->row = core->numRowPairs - 1;
|
||||
core->prevRow = (core->numRowPairs > 1) ? (core->row - 1) : 1;
|
||||
core->swapBuffers = 0;
|
||||
core->frameCount = 0;
|
||||
|
||||
_PM_timerInit(core->timer); // Configure timer
|
||||
_PM_timerStart(core->timer, 1000); // Start timer
|
||||
}
|
||||
}
|
||||
|
||||
// Free memory associated with core structure. Does NOT dealloc struct.
|
||||
void _PM_free(Protomatter_core *core) {
|
||||
if((core)) {
|
||||
_PM_stop(core);
|
||||
// TO DO: Set all pins back to inputs here?
|
||||
if(core->screenData) free(core->screenData);
|
||||
if(core->addr) free(core->addr);
|
||||
if(core->rgbPins) {
|
||||
free(core->rgbPins);
|
||||
core->rgbPins = NULL;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// ISR function (in arch.h) calls this function which it extern'd.
|
||||
void _PM_row_handler(Protomatter_core *core) {
|
||||
|
||||
*core->oe.setReg = core->oe.bit; // Disable LED output
|
||||
|
||||
*core->latch.setReg = core->latch.bit; // Latch data from PRIOR pass
|
||||
// Stop timer, save count value at stop
|
||||
uint32_t elapsed = _PM_timerStop(core->timer);
|
||||
uint8_t prevPlane = core->plane; // Save that plane # for later timing
|
||||
*core->latch.clearReg = core->latch.bit; // (split to add a few cycles)
|
||||
|
||||
// If plane 0 just finished being displayed (plane 1 was loaded on prior
|
||||
// pass, or there's only one plane...I know, it's confusing), take note
|
||||
// of the elapsed timer value, for subsequent bitplane timing (each
|
||||
// plane period is double the previous). Value is filtered slightly to
|
||||
// avoid jitter.
|
||||
if((prevPlane == 1) || (core->numPlanes == 1)) {
|
||||
core->bitZeroPeriod = ((core->bitZeroPeriod * 7) + elapsed) / 8;
|
||||
if(core->bitZeroPeriod < core->minPeriod) {
|
||||
core->bitZeroPeriod = core->minPeriod;
|
||||
}
|
||||
}
|
||||
|
||||
if(prevPlane == 0) { // Plane 0 just finished loading
|
||||
#if defined(_PM_portToggleRegister)
|
||||
// If all address lines are on a single PORT (and bit toggle is
|
||||
// available), do address line change all at once. Even doing all
|
||||
// this math takes MUCH less time than the delays required when
|
||||
// doing line-by-line changes.
|
||||
if(core->singleAddrPort) {
|
||||
// Make bitmasks of prior and new row bits
|
||||
uint32_t priorBits = 0, newBits = 0;
|
||||
for(uint8_t line=0,bit=1; line<core->numAddressLines;
|
||||
line++, bit<<=1) {
|
||||
if(core->row & bit) {
|
||||
newBits |= core->addr[line].bit;
|
||||
}
|
||||
if(core->prevRow & bit) {
|
||||
priorBits |= core->addr[line].bit;
|
||||
}
|
||||
}
|
||||
*core->addrPortToggle = newBits ^ priorBits;
|
||||
_PM_delayMicroseconds(_PM_ROW_DELAY);
|
||||
} else {
|
||||
#endif
|
||||
// Configure row address lines individually, making changes
|
||||
// (with delays) only where necessary.
|
||||
for(uint8_t line=0,bit=1; line<core->numAddressLines;
|
||||
line++, bit<<=1) {
|
||||
if((core->row & bit) != (core->prevRow & bit)) {
|
||||
if(core->row & bit) { // Set addr line high
|
||||
*core->addr[line].setReg = core->addr[line].bit;
|
||||
} else { // Set addr line low
|
||||
*core->addr[line].clearReg = core->addr[line].bit;
|
||||
}
|
||||
_PM_delayMicroseconds(_PM_ROW_DELAY);
|
||||
}
|
||||
}
|
||||
#if defined(_PM_portToggleRegister)
|
||||
}
|
||||
#endif
|
||||
core->prevRow = core->row;
|
||||
}
|
||||
|
||||
// Advance bitplane index and/or row as necessary
|
||||
if(++core->plane >= core->numPlanes) { // Next data bitplane, or
|
||||
core->plane = 0; // roll over bitplane to start
|
||||
if(++core->row >= core->numRowPairs) { // Next row, or
|
||||
core->row = 0; // roll over row to start
|
||||
// Switch matrix buffers if due (only if double-buffered)
|
||||
if(core->swapBuffers) {
|
||||
core->activeBuffer = 1 - core->activeBuffer;
|
||||
core->swapBuffers = 0; // Swapped!
|
||||
}
|
||||
core->frameCount++;
|
||||
}
|
||||
}
|
||||
|
||||
// 'plane' now is index of data to issue, NOT data to display.
|
||||
// 'prevPlane' is the previously-loaded data, which gets displayed
|
||||
// now while the next plane data is loaded.
|
||||
|
||||
// Set timer and enable LED output for data loaded on PRIOR pass:
|
||||
_PM_timerStart(core->timer, core->bitZeroPeriod << prevPlane);
|
||||
*core->oe.clearReg = core->oe.bit; // Enable LED output
|
||||
|
||||
uint32_t elementsPerLine = _PM_chunkSize *
|
||||
((core->width + (_PM_chunkSize - 1)) / _PM_chunkSize);
|
||||
uint32_t srcOffset = elementsPerLine *
|
||||
(core->numPlanes * core->row + core->plane) * core->bytesPerElement;
|
||||
if(core->doubleBuffer) {
|
||||
srcOffset += core->bufferSize * core->activeBuffer;
|
||||
}
|
||||
|
||||
if(core->bytesPerElement == 1) {
|
||||
blast_byte(core, (uint8_t *)(core->screenData + srcOffset));
|
||||
} else if(core->bytesPerElement == 2) {
|
||||
blast_word(core, (uint16_t *)(core->screenData + srcOffset));
|
||||
} else {
|
||||
blast_long(core, (uint32_t *)(core->screenData + srcOffset));
|
||||
}
|
||||
|
||||
// 'plane' data is now loaded, will be shown on NEXT pass
|
||||
}
|
||||
|
||||
// Innermost data-stuffing loop functions
|
||||
|
||||
// The presence of a bit-toggle register can make the data-stuffing loop a
|
||||
// fair bit faster (2 PORT accesses per column vs 3). But ironically, some
|
||||
// devices (e.g. SAMD51) can outpace the matrix max CLK speed, so we slow
|
||||
// them down with a few NOPs. These are defined in arch.h as needed.
|
||||
// _PM_clockHoldLow is whatever code necessary to delay the clock rise
|
||||
// after data is placed on the PORT. _PM_clockHoldHigh is code for delay
|
||||
// before setting the clock back low. If undefined, nothing goes there.
|
||||
|
||||
#if defined(_PM_portToggleRegister)
|
||||
#define PEW \
|
||||
*toggle = *data++; /* Toggle in new data + toggle clock low */ \
|
||||
_PM_clockHoldLow; \
|
||||
*toggle = clock; /* Toggle clock high */ \
|
||||
_PM_clockHoldHigh;
|
||||
#else
|
||||
#define PEW \
|
||||
*set = *data++; /* Set RGB data high */ \
|
||||
_PM_clockHoldLow; \
|
||||
*set32 = clock; /* Set clock high */ \
|
||||
_PM_clockHoldHigh; \
|
||||
*clear32 = rgbclock; /* Clear RGB data + clock */
|
||||
#endif
|
||||
|
||||
#if _PM_chunkSize == 1
|
||||
#define PEW_UNROLL PEW
|
||||
#elif _PM_chunkSize == 8
|
||||
#define PEW_UNROLL PEW PEW PEW PEW PEW PEW PEW PEW
|
||||
#elif _PM_chunkSize == 16
|
||||
#define PEW_UNROLL \
|
||||
PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW
|
||||
#elif _PM_chunkSize == 32
|
||||
#define PEW_UNROLL \
|
||||
PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW \
|
||||
PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW
|
||||
#elif _PM_chunkSize == 64
|
||||
#define PEW_UNROLL \
|
||||
PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW \
|
||||
PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW \
|
||||
PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW \
|
||||
PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW PEW
|
||||
#else
|
||||
#error "Unimplemented _PM_chunkSize value"
|
||||
#endif
|
||||
|
||||
// There are THREE COPIES of the following function -- one each for byte,
|
||||
// word and long. If changes are made in any one of them, the others MUST
|
||||
// be updated to match! (Decided against using macro tricks for the
|
||||
// function, too often ends in disaster...but must be vigilant in the
|
||||
// three-function maintenance then.)
|
||||
|
||||
static void blast_byte(Protomatter_core *core, uint8_t *data) {
|
||||
#if defined(_PM_portToggleRegister)
|
||||
// If here, it was established in begin() that the RGB data bits and
|
||||
// clock are all within the same byte of a PORT register, else we'd be
|
||||
// in the word- or long-blasting functions now. So we just need an
|
||||
// 8-bit pointer to the PORT.
|
||||
volatile uint8_t *toggle = (volatile uint8_t *)core->toggleReg +
|
||||
core->portOffset;
|
||||
#else
|
||||
// No-toggle version is a little different. If here, RGB data is all
|
||||
// in one byte of PORT register, clock can be any bit in 32-bit PORT.
|
||||
volatile uint8_t *set; // For RGB data set
|
||||
volatile uint32_t *set32; // For clock set
|
||||
volatile uint32_t *clear32; // For RGB data + clock clear
|
||||
set = (volatile uint8_t *)core->setReg + portOffset;
|
||||
set32 = (volatile uint32_t *)core->setReg;
|
||||
clear32 = (volatile uint32_t *)core->clearReg;
|
||||
uint32_t rgbclock = core->rgbAndClockMask; // RGB + clock bit
|
||||
#endif
|
||||
uint32_t clock = core->clockMask; // Clock bit
|
||||
uint8_t chunks = (core->width + (_PM_chunkSize - 1)) / _PM_chunkSize;
|
||||
|
||||
// PORT has already been initialized with RGB data + clock bits
|
||||
// all LOW, so we don't need to initialize that state here.
|
||||
|
||||
while(chunks--) {
|
||||
PEW_UNROLL // _PM_chunkSize RGB+clock writes
|
||||
}
|
||||
|
||||
#if defined(_PM_portToggleRegister)
|
||||
// Want the PORT left with RGB data and clock LOW on function exit
|
||||
// (so it's easier to see on 'scope, and to prime it for the next call).
|
||||
// This is implicit in the no-toggle case (due to how the PEW macro
|
||||
// works), but toggle case requires explicitly clearing those bits.
|
||||
// rgbAndClockMask is an 8-bit value when toggling, hence offset here.
|
||||
*((volatile uint8_t *)core->clearReg + core->portOffset) =
|
||||
core->rgbAndClockMask;
|
||||
#endif
|
||||
}
|
||||
|
||||
static void blast_word(Protomatter_core *core, uint16_t *data) {
|
||||
#if defined(_PM_portToggleRegister)
|
||||
// See notes above -- except now 16-bit word in PORT.
|
||||
volatile uint16_t *toggle = (volatile uint16_t *)core->toggleReg +
|
||||
core->portOffset;
|
||||
#else
|
||||
volatile uint16_t *set; // For RGB data set
|
||||
volatile uint32_t *set32; // For clock set
|
||||
volatile uint32_t *clear32; // For RGB data + clock clear
|
||||
set = (volatile uint16_t *)core->setReg + core->portOffset;
|
||||
set32 = (volatile uint32_t *)core->setReg;
|
||||
clear32 = (volatile uint32_t *)core->clearReg;
|
||||
uint32_t rgbclock = core->rgbAndClockMask; // RGB + clock bit
|
||||
#endif
|
||||
uint32_t clock = core->clockMask; // Clock bit
|
||||
uint8_t chunks = (core->width + (_PM_chunkSize - 1)) / _PM_chunkSize;
|
||||
while(chunks--) {
|
||||
PEW_UNROLL // _PM_chunkSize RGB+clock writes
|
||||
}
|
||||
#if defined(_PM_portToggleRegister)
|
||||
// rgbAndClockMask is a 16-bit value when toggling, hence offset here.
|
||||
*((volatile uint16_t *)core->clearReg + core->portOffset) =
|
||||
core->rgbAndClockMask;
|
||||
#endif
|
||||
}
|
||||
|
||||
static void blast_long(Protomatter_core *core, uint32_t *data) {
|
||||
#if defined(_PM_portToggleRegister)
|
||||
// See notes above -- except now full 32-bit PORT.
|
||||
volatile uint32_t *toggle = (volatile uint32_t *)core->toggleReg;
|
||||
#else
|
||||
// Note in this case two copies exist of the PORT set register.
|
||||
// The optimizer will most likely simplify this; leaving as-is, not
|
||||
// wanting a special case of the PEW macro due to divergence risk.
|
||||
volatile uint32_t *set; // For RGB data set
|
||||
volatile uint32_t *set32; // For clock set
|
||||
volatile uint32_t *clear32; // For RGB data + clock clear
|
||||
set = (volatile uint32_t *)core->setReg;
|
||||
set32 = (volatile uint32_t *)core->setReg;
|
||||
clear32 = (volatile uint32_t *)core->clearReg;
|
||||
uint32_t rgbclock = core->rgbAndClockMask; // RGB + clock bit
|
||||
#endif
|
||||
uint32_t clock = core->clockMask; // Clock bit
|
||||
uint8_t chunks = (core->width + (_PM_chunkSize - 1)) / _PM_chunkSize;
|
||||
while(chunks--) {
|
||||
PEW_UNROLL // _PM_chunkSize RGB+clock writes
|
||||
}
|
||||
#if defined(_PM_portToggleRegister)
|
||||
*(volatile uint32_t *)core->clearReg = core->rgbAndClockMask;
|
||||
#endif
|
||||
}
|
||||
|
||||
// Returns current value of frame counter and resets its value to zero.
|
||||
// Two calls to this, timed one second apart (or use math with other
|
||||
// intervals), can be used to get a rough frames-per-second value for
|
||||
// the matrix (since this is difficult to estimate beforehand).
|
||||
uint32_t _PM_getFrameCount(Protomatter_core *core) {
|
||||
uint32_t count = 0;
|
||||
if((core)) {
|
||||
count = core->frameCount;
|
||||
core->frameCount = 0;
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
// Note to future self: I've gone back and forth between implementing all
|
||||
// this either as it currently is (with byte, word and long cases for various
|
||||
// steps), or using a uint32_t[64] table for expanding RGB bit combos to PORT
|
||||
// bit combos. The latter would certainly simplify the code a ton, and the
|
||||
// additional table lookup step wouldn't significantly impact performance,
|
||||
// especially going forward with faster processors (the SAMD51 code already
|
||||
// requires a few NOPs in the innermost loop to avoid outpacing the matrix).
|
||||
// BUT, the reason this is NOT currently done is that it only allows for a
|
||||
// single matrix chain (doing parallel chains would require either an
|
||||
// impractically large lookup table, or adding together multiple tables'
|
||||
// worth of bitmasks, which would slow things down in the vital inner loop).
|
||||
// Although parallel matrix chains aren't yet 100% implemented in this code
|
||||
// right now, I wanted to leave that possibility for the future, as a way to
|
||||
// handle larger matrix combos, because long chains will slow down the
|
||||
// refresh rate.
|
||||
110
core.h
Normal file
110
core.h
Normal file
|
|
@ -0,0 +1,110 @@
|
|||
#ifndef _PROTOMATTER_CORE_H_
|
||||
#define _PROTOMATTER_CORE_H_
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
// Status type returned by some functions.
|
||||
typedef enum {
|
||||
PROTOMATTER_OK, // Everything is hunky-dory!
|
||||
PROTOMATTER_ERR_PINS, // Clock and/or data pins on different PORTs
|
||||
PROTOMATTER_ERR_MALLOC, // Couldn't allocate memory for display
|
||||
PROTOMATTER_ERR_ARG, // Bad input to function
|
||||
} ProtomatterStatus;
|
||||
|
||||
// Struct for matrix control lines NOT related to RGB data or clock, i.e.
|
||||
// latch, OE and address lines. RGB data and clock ("RGBC") are handled
|
||||
// differently as they have specific requirements (and might use a toggle
|
||||
// register if present). The data conversion functions need bitmasks for
|
||||
// RGB data but do NOT need the set or clear registers, so those items
|
||||
// are also declared as separate things in the core structure that follows.
|
||||
typedef struct {
|
||||
volatile uint32_t *setReg; // GPIO bit set register
|
||||
volatile uint32_t *clearReg; // GPIO bit clear register
|
||||
uint32_t bit; // GPIO bitmask
|
||||
uint8_t pin; // Some identifier, e.g. Arduino pin #
|
||||
} _PM_pin;
|
||||
|
||||
// Struct with info about an RGB matrix chain and lots of state and buffer
|
||||
// details for the library. Toggle-related items in this structure MUST be
|
||||
// declared even if the device lacks GPIO bit-toggle registers (i.e. don't
|
||||
// do an ifdef check around these). All hardware-specific details (including
|
||||
// the presence or lack of toggle registers) are isolated to a single
|
||||
// file -- arch.h -- which should ONLY be included by core.c, and ifdef'ing
|
||||
// them would result in differing representations of this structure which
|
||||
// must be shared between the library and calling code. (An alternative is
|
||||
// to put any toggle-specific stuff at the end of the struct with an ifdef
|
||||
// check, but that's just dirty pool and asking for trouble.)
|
||||
typedef struct {
|
||||
void *timer; // Arch-specific timer/counter info
|
||||
void *setReg; // RGBC bit set register (cast to use)
|
||||
void *clearReg; // RGBC bit clear register "
|
||||
void *toggleReg; // RGBC bit toggle register "
|
||||
uint8_t *rgbPins; // Array of RGB data pins (mult of 6)
|
||||
void *rgbMask; // PORT bit mask for each RGB pin
|
||||
uint32_t clockMask; // PORT bit mask for RGB clock
|
||||
uint32_t rgbAndClockMask; // PORT bit mask for RGB data + clock
|
||||
volatile uint32_t *addrPortToggle; // See singleAddrPort below
|
||||
void *screenData; // Per-bitplane RGB data for matrix
|
||||
_PM_pin latch; // RGB data latch
|
||||
_PM_pin oe; // !OE (LOW out enable)
|
||||
_PM_pin *addr; // Array of address pins
|
||||
uint32_t bufferSize; // Bytes per matrix buffer
|
||||
uint32_t bitZeroPeriod; // Bitplane 0 timer period
|
||||
uint32_t minPeriod; // Plane 0 timer period for ~250Hz
|
||||
volatile uint32_t frameCount; // For estimating refresh rate
|
||||
uint16_t width; // Matrix chain width in bits
|
||||
uint8_t bytesPerElement; // Using 8, 16 or 32 bits of PORT?
|
||||
uint8_t clockPin; // RGB clock pin identifier
|
||||
uint8_t parallel; // Number of concurrent matrix outs
|
||||
uint8_t numAddressLines; // Number of address line pins
|
||||
uint8_t portOffset; // Active 8- or 16-bit pos. in PORT
|
||||
uint8_t numPlanes; // Display bitplanes (1 to 6)
|
||||
uint8_t numRowPairs; // Addressable row pairs
|
||||
bool doubleBuffer; // 2X buffers for clean switchover
|
||||
bool singleAddrPort; // If 1, all addr lines on same PORT
|
||||
volatile uint8_t activeBuffer; // Index of currently-displayed buf
|
||||
volatile uint8_t plane; // Current bitplane (changes in ISR)
|
||||
volatile uint8_t row; // Current scanline (changes in ISR)
|
||||
volatile uint8_t prevRow; // Scanline from prior ISR
|
||||
volatile bool swapBuffers; // If 1, awaiting double-buf switch
|
||||
} Protomatter_core;
|
||||
|
||||
// Protomatter core function prototypes. Environment-specific code (like the
|
||||
// Adafruit_Protomatter class for Arduino) calls on these underlying things,
|
||||
// and has to provide a few extras of its own (interrupt handlers and such).
|
||||
// User code shouldn't need to invoke any of them directly.
|
||||
extern ProtomatterStatus _PM_init(Protomatter_core *core,
|
||||
uint16_t bitWidth, uint8_t bitDepth,
|
||||
uint8_t rgbCount, uint8_t *rgbList,
|
||||
uint8_t addrCount, uint8_t *addrList,
|
||||
uint8_t clockPin, uint8_t latchPin, uint8_t oePin,
|
||||
bool doubleBuffer, void *timer);
|
||||
extern ProtomatterStatus _PM_begin(Protomatter_core *core);
|
||||
extern void _PM_stop(Protomatter_core *core);
|
||||
extern void _PM_resume(Protomatter_core *core);
|
||||
extern void _PM_free(Protomatter_core *core);
|
||||
extern void _PM_row_handler(Protomatter_core *core);
|
||||
extern uint32_t _PM_getFrameCount(Protomatter_core *core);
|
||||
extern void _PM_timerStart(void *tptr, uint32_t period);
|
||||
extern uint32_t _PM_timerStop(void *tptr);
|
||||
extern uint32_t _PM_timerGetCount(void *tptr);
|
||||
|
||||
#if defined(ARDUINO)
|
||||
extern void _PM_convert_565_byte(Protomatter_core *core,
|
||||
uint16_t *source, uint16_t width);
|
||||
extern void _PM_convert_565_word(Protomatter_core *core,
|
||||
uint16_t *source, uint16_t width);
|
||||
extern void _PM_convert_565_long(Protomatter_core *core,
|
||||
uint16_t *source, uint16_t width);
|
||||
#endif // ARDUINO
|
||||
|
||||
#ifdef __cplusplus
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif // _PROTOMATTER_CORE_H_
|
||||
|
|
@ -1,376 +0,0 @@
|
|||
// Play GIFs from CIRCUITPY drive (USB-accessible filesystem) to LED matrix.
|
||||
// ***DESIGNED FOR ADAFRUIT MATRIXPORTAL M4***, but may run on some other
|
||||
// M4 & M0 and nRF52 boards (relies on TinyUSB stack). As written, runs on
|
||||
// 64x32 pixel matrix, this can be changed by editing the WIDTH and HEIGHT
|
||||
// definitions. See the "simple" example for a run-down on matrix config.
|
||||
// Adapted from examples from Larry Bank's AnimatedGIF library and
|
||||
// msc_external_flash example in Adafruit_TinyUSB_Arduino.
|
||||
// Prerequisite libraries:
|
||||
// - Adafruit_Protomatter
|
||||
// - Adafruit_SPIFlash
|
||||
// - Adafruit_TinyUSB
|
||||
// - SdFat (Adafruit fork)
|
||||
// - AnimatedGIF
|
||||
// Set ENABLE_EXTENDED_TRANSFER_CLASS and FAT12_SUPPORT in SdFatConfig.h.
|
||||
// Select Tools->USB Stack->TinyUSB before compiling.
|
||||
|
||||
#include <Adafruit_Protomatter.h>
|
||||
#include <Adafruit_SPIFlash.h>
|
||||
#include <Adafruit_TinyUSB.h>
|
||||
#include <AnimatedGIF.h>
|
||||
#include <SPI.h>
|
||||
#include <SdFat.h>
|
||||
|
||||
// CONFIGURABLE SETTINGS ---------------------------------------------------
|
||||
|
||||
char GIFpath[] = "/gifs"; // Absolute path to GIFs on CIRCUITPY drive
|
||||
uint16_t GIFminimumTime = 10; // Min. repeat time (seconds) until next GIF
|
||||
#define WIDTH 64 // Matrix width in pixels
|
||||
#define HEIGHT 32 // Matrix height in pixels
|
||||
// Maximim matrix height is 32px on most boards, 64 on MatrixPortal if the
|
||||
// 'E' jumper is set.
|
||||
|
||||
// FLASH FILESYSTEM STUFF --------------------------------------------------
|
||||
|
||||
// External flash macros for QSPI or SPI are defined in board variant file.
|
||||
#if defined(EXTERNAL_FLASH_USE_QSPI)
|
||||
Adafruit_FlashTransport_QSPI flashTransport;
|
||||
#elif defined(EXTERNAL_FLASH_USE_SPI)
|
||||
Adafruit_FlashTransport_SPI flashTransport(EXTERNAL_FLASH_USE_CS,
|
||||
EXTERNAL_FLASH_USE_SPI);
|
||||
#else
|
||||
#error No QSPI/SPI flash are defined in your board variant.h!
|
||||
#endif
|
||||
|
||||
Adafruit_SPIFlash flash(&flashTransport);
|
||||
FatFileSystem filesys; // Filesystem object from SdFat
|
||||
Adafruit_USBD_MSC usb_msc; // USB mass storage object
|
||||
|
||||
// RGB MATRIX (PROTOMATTER) LIBRARY STUFF ----------------------------------
|
||||
|
||||
#if defined(_VARIANT_MATRIXPORTAL_M4_)
|
||||
uint8_t rgbPins[] = {7, 8, 9, 10, 11, 12};
|
||||
uint8_t addrPins[] = {17, 18, 19, 20, 21}; // 16/32/64 pixels tall
|
||||
uint8_t clockPin = 14;
|
||||
uint8_t latchPin = 15;
|
||||
uint8_t oePin = 16;
|
||||
#define BACK_BUTTON 2
|
||||
#define NEXT_BUTTON 3
|
||||
#elif defined(_VARIANT_METRO_M4_)
|
||||
uint8_t rgbPins[] = {2, 3, 4, 5, 6, 7};
|
||||
uint8_t addrPins[] = {A0, A1, A2, A3}; // 16 or 32 pixels tall
|
||||
uint8_t clockPin = A4;
|
||||
uint8_t latchPin = 10;
|
||||
uint8_t oePin = 9;
|
||||
#elif defined(_VARIANT_FEATHER_M4_)
|
||||
uint8_t rgbPins[] = {6, 5, 9, 11, 10, 12};
|
||||
uint8_t addrPins[] = {A5, A4, A3, A2}; // 16 or 32 pixels tall
|
||||
uint8_t clockPin = 13;
|
||||
uint8_t latchPin = 0;
|
||||
uint8_t oePin = 1;
|
||||
#endif
|
||||
#if HEIGHT == 16
|
||||
#define NUM_ADDR_PINS 3
|
||||
#elif HEIGHT == 32
|
||||
#define NUM_ADDR_PINS 4
|
||||
#elif HEIGHT == 64
|
||||
#define NUM_ADDR_PINS 5
|
||||
#endif
|
||||
|
||||
Adafruit_Protomatter matrix(WIDTH, 6, 1, rgbPins, NUM_ADDR_PINS, addrPins,
|
||||
clockPin, latchPin, oePin, true);
|
||||
|
||||
// ANIMATEDGIF LIBRARY STUFF -----------------------------------------------
|
||||
|
||||
AnimatedGIF GIF;
|
||||
File GIFfile;
|
||||
int16_t xPos = 0, yPos = 0; // Top-left pixel coord of GIF in matrix space
|
||||
|
||||
// FILE ACCESS FUNCTIONS REQUIRED BY ANIMATED GIF LIB ----------------------
|
||||
|
||||
// Pass in ABSOLUTE PATH of GIF file to open
|
||||
void *GIFOpenFile(char *filename, int32_t *pSize) {
|
||||
GIFfile = filesys.open(filename);
|
||||
if (GIFfile) {
|
||||
*pSize = GIFfile.size();
|
||||
return (void *)&GIFfile;
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
void GIFCloseFile(void *pHandle) {
|
||||
File *f = static_cast<File *>(pHandle);
|
||||
if (f) f->close();
|
||||
}
|
||||
|
||||
int32_t GIFReadFile(GIFFILE *pFile, uint8_t *pBuf, int32_t iLen) {
|
||||
int32_t iBytesRead = iLen;
|
||||
File *f = static_cast<File *>(pFile->fHandle);
|
||||
// If a file is read all the way to last byte, seek() stops working
|
||||
if ((pFile->iSize - pFile->iPos) < iLen)
|
||||
iBytesRead = pFile->iSize - pFile->iPos - 1; // ugly work-around
|
||||
if (iBytesRead <= 0) return 0;
|
||||
iBytesRead = (int32_t)f->read(pBuf, iBytesRead);
|
||||
pFile->iPos = f->position();
|
||||
return iBytesRead;
|
||||
}
|
||||
|
||||
int32_t GIFSeekFile(GIFFILE *pFile, int32_t iPosition) {
|
||||
File *f = static_cast<File *>(pFile->fHandle);
|
||||
f->seek(iPosition);
|
||||
pFile->iPos = (int32_t)f->position();
|
||||
return pFile->iPos;
|
||||
}
|
||||
|
||||
// Draw one line of image to matrix back buffer
|
||||
void GIFDraw(GIFDRAW *pDraw) {
|
||||
uint8_t *s;
|
||||
uint16_t *d, *usPalette, usTemp[320];
|
||||
int x, y;
|
||||
|
||||
y = pDraw->iY + pDraw->y; // current line in image
|
||||
|
||||
// Vertical clip
|
||||
int16_t screenY = yPos + y; // current row on matrix
|
||||
if ((screenY < 0) || (screenY >= matrix.height())) return;
|
||||
|
||||
usPalette = pDraw->pPalette;
|
||||
|
||||
s = pDraw->pPixels;
|
||||
// Apply the new pixels to the main image
|
||||
if (pDraw->ucHasTransparency) { // if transparency used
|
||||
uint8_t *pEnd, c, ucTransparent = pDraw->ucTransparent;
|
||||
int x, iCount;
|
||||
pEnd = s + pDraw->iWidth;
|
||||
x = 0;
|
||||
iCount = 0; // count non-transparent pixels
|
||||
while (x < pDraw->iWidth) {
|
||||
c = ucTransparent - 1;
|
||||
d = usTemp;
|
||||
while (c != ucTransparent && s < pEnd) {
|
||||
c = *s++;
|
||||
if (c == ucTransparent) { // done, stop
|
||||
s--; // back up to treat it like transparent
|
||||
} else { // opaque
|
||||
*d++ = usPalette[c];
|
||||
iCount++;
|
||||
}
|
||||
} // while looking for opaque pixels
|
||||
if (iCount) { // any opaque pixels?
|
||||
span(usTemp, xPos + pDraw->iX + x, screenY, iCount);
|
||||
x += iCount;
|
||||
iCount = 0;
|
||||
}
|
||||
// no, look for a run of transparent pixels
|
||||
c = ucTransparent;
|
||||
while (c == ucTransparent && s < pEnd) {
|
||||
c = *s++;
|
||||
if (c == ucTransparent)
|
||||
iCount++;
|
||||
else
|
||||
s--;
|
||||
}
|
||||
if (iCount) {
|
||||
x += iCount; // skip these
|
||||
iCount = 0;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
s = pDraw->pPixels;
|
||||
// Translate 8-bit pixels through RGB565 palette (already byte reversed)
|
||||
for (x = 0; x < pDraw->iWidth; x++)
|
||||
usTemp[x] = usPalette[*s++];
|
||||
span(usTemp, xPos + pDraw->iX, screenY, pDraw->iWidth);
|
||||
}
|
||||
}
|
||||
|
||||
// Copy a horizontal span of pixels from a source buffer to an X,Y position
|
||||
// in matrix back buffer, applying horizontal clipping. Vertical clipping is
|
||||
// handled in GIFDraw() above -- y can safely be assumed valid here.
|
||||
void span(uint16_t *src, int16_t x, int16_t y, int16_t width) {
|
||||
if (x >= matrix.width()) return; // Span entirely off right of matrix
|
||||
int16_t x2 = x + width - 1; // Rightmost pixel
|
||||
if (x2 < 0) return; // Span entirely off left of matrix
|
||||
if (x < 0) { // Span partially off left of matrix
|
||||
width += x; // Decrease span width
|
||||
src -= x; // Increment source pointer to new start
|
||||
x = 0; // Leftmost pixel is first column
|
||||
}
|
||||
if (x2 >= matrix.width()) { // Span partially off right of matrix
|
||||
width -= (x2 - matrix.width() + 1);
|
||||
}
|
||||
if(matrix.getRotation() == 0) {
|
||||
memcpy(matrix.getBuffer() + y * matrix.width() + x, src, width * 2);
|
||||
} else {
|
||||
while(x <= x2) {
|
||||
matrix.drawPixel(x++, y, *src++);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// FUNCTIONS REQUIRED FOR USB MASS STORAGE ---------------------------------
|
||||
|
||||
static bool msc_changed = true; // Is set true on filesystem changes
|
||||
|
||||
// Callback on READ10 command.
|
||||
int32_t msc_read_cb(uint32_t lba, void *buffer, uint32_t bufsize) {
|
||||
return flash.readBlocks(lba, (uint8_t *)buffer, bufsize / 512) ? bufsize : -1;
|
||||
}
|
||||
|
||||
// Callback on WRITE10 command.
|
||||
int32_t msc_write_cb(uint32_t lba, uint8_t *buffer, uint32_t bufsize) {
|
||||
digitalWrite(LED_BUILTIN, HIGH);
|
||||
return flash.writeBlocks(lba, buffer, bufsize / 512) ? bufsize : -1;
|
||||
}
|
||||
|
||||
// Callback on WRITE10 completion.
|
||||
void msc_flush_cb(void) {
|
||||
flash.syncBlocks(); // Sync with flash
|
||||
filesys.cacheClear(); // Clear filesystem cache to force refresh
|
||||
digitalWrite(LED_BUILTIN, LOW);
|
||||
msc_changed = true;
|
||||
}
|
||||
|
||||
// Get number of files in a specified path that match extension ('filter').
|
||||
// Pass in absolute path (e.g. "/" or "/gifs") and extension WITHOUT period
|
||||
// (e.g. "gif", NOT ".gif").
|
||||
int16_t numFiles(const char *path, const char *filter) {
|
||||
File dir = filesys.open(path);
|
||||
if (!dir) return -1;
|
||||
char filename[256];
|
||||
for(int16_t num_files = 0;;) {
|
||||
File entry = dir.openNextFile();
|
||||
if (!entry) return num_files; // No more files
|
||||
entry.getName(filename, sizeof(filename) - 1);
|
||||
entry.close();
|
||||
if (!entry.isDirectory() && // Skip directories
|
||||
strncmp(filename, "._", 2)) { // and Mac junk files
|
||||
char *extension = strrchr(filename, '.');
|
||||
if (extension && !strcasecmp(&extension[1], filter)) num_files++;
|
||||
}
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
// Return name of file (matching extension) by index (0 to numFiles()-1)
|
||||
char *filenameByIndex(const char *path, const char *filter, int16_t index) {
|
||||
static char filename[256]; // Must be static, we return a pointer to this!
|
||||
File entry, dir = filesys.open(path);
|
||||
if (!dir) return NULL;
|
||||
while(entry = dir.openNextFile()) {
|
||||
entry.getName(filename, sizeof(filename) - 1);
|
||||
entry.close();
|
||||
if(!entry.isDirectory() && // Skip directories
|
||||
strncmp(filename, "._", 2)) { // and Mac junk files
|
||||
char *extension = strrchr(filename, '.');
|
||||
if (extension && !strcasecmp(&extension[1], filter)) {
|
||||
if(!index--) {
|
||||
return filename;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// SETUP FUNCTION - RUNS ONCE AT STARTUP -----------------------------------
|
||||
|
||||
void setup() {
|
||||
pinMode(LED_BUILTIN, OUTPUT);
|
||||
#if defined(BACK_BUTTON)
|
||||
pinMode(BACK_BUTTON, INPUT_PULLUP);
|
||||
#endif
|
||||
#if defined(NEXT_BUTTON)
|
||||
pinMode(NEXT_BUTTON, INPUT_PULLUP);
|
||||
#endif
|
||||
|
||||
// USB mass storage / filesystem setup (do BEFORE Serial init)
|
||||
flash.begin();
|
||||
// Set disk vendor id, product id and revision
|
||||
usb_msc.setID("Adafruit", "External Flash", "1.0");
|
||||
// Set disk size, block size is 512 regardless of spi flash page size
|
||||
usb_msc.setCapacity(flash.pageSize() * flash.numPages() / 512, 512);
|
||||
usb_msc.setReadWriteCallback(msc_read_cb, msc_write_cb, msc_flush_cb);
|
||||
usb_msc.setUnitReady(true); // MSC is ready for read/write
|
||||
usb_msc.begin();
|
||||
filesys.begin(&flash); // Start filesystem on the flash
|
||||
|
||||
Serial.begin(115200);
|
||||
//while (!Serial);
|
||||
|
||||
// Protomatter (RGB matrix) setup
|
||||
ProtomatterStatus status = matrix.begin();
|
||||
Serial.print("Protomatter begin() status: ");
|
||||
Serial.println((int)status);
|
||||
matrix.fillScreen(0);
|
||||
matrix.show();
|
||||
|
||||
// GIF setup
|
||||
GIF.begin(LITTLE_ENDIAN_PIXELS);
|
||||
}
|
||||
|
||||
// LOOP FUNCTION - RUNS REPEATEDLY UNTIL RESET / POWER OFF -----------------
|
||||
|
||||
int16_t GIFindex = -1; // Current file index in GIFpath
|
||||
int8_t GIFincrement = 1; // +1 = next GIF, -1 = prev, 0 = same
|
||||
uint32_t GIFstartTime = 0; // When current GIF started playing
|
||||
bool GIFisOpen = false; // True if GIF is currently open
|
||||
|
||||
void loop() {
|
||||
if (msc_changed) { // If filesystem has changed...
|
||||
msc_changed = false; // Clear flag
|
||||
GIFincrement = 1; // Set index to next file when we resume here
|
||||
return; // Prioritize USB, handled in calling func
|
||||
}
|
||||
|
||||
#if defined(BACK_BUTTON)
|
||||
if(!digitalRead(BACK_BUTTON)) {
|
||||
GIFincrement = -1; // Back
|
||||
while(!digitalRead(BACK_BUTTON)); // Wait for release
|
||||
}
|
||||
#endif
|
||||
#if defined(NEXT_BUTTON)
|
||||
if(!digitalRead(NEXT_BUTTON)) {
|
||||
GIFincrement = 1; // Forward
|
||||
while(!digitalRead(NEXT_BUTTON)); // Wait for release
|
||||
}
|
||||
#endif
|
||||
|
||||
if (GIFincrement) { // Change file?
|
||||
if (GIFisOpen) { // If currently playing,
|
||||
GIF.close(); // stop it
|
||||
GIFisOpen = false;
|
||||
}
|
||||
GIFindex += GIFincrement; // Fwd or back 1 file
|
||||
int num_files = numFiles(GIFpath, "GIF");
|
||||
if(GIFindex >= num_files) GIFindex = 0; // 'Wrap around' file index
|
||||
else if(GIFindex < 0) GIFindex = num_files - 1; // both directions
|
||||
|
||||
char *filename = filenameByIndex(GIFpath, "GIF", GIFindex);
|
||||
if (filename) {
|
||||
char fullname[sizeof GIFpath + 256];
|
||||
sprintf(fullname, "%s/%s", GIFpath, filename); // Absolute path to GIF
|
||||
Serial.printf("Opening file '%s'\n", fullname);
|
||||
if (GIF.open(fullname, GIFOpenFile, GIFCloseFile,
|
||||
GIFReadFile, GIFSeekFile, GIFDraw)) {
|
||||
matrix.fillScreen(0);
|
||||
Serial.printf("GIF dimensions: %d x %d\n",
|
||||
GIF.getCanvasWidth(), GIF.getCanvasHeight());
|
||||
xPos = (matrix.width() - GIF.getCanvasWidth()) / 2; // Center on matrix
|
||||
yPos = (matrix.height() - GIF.getCanvasHeight()) / 2;
|
||||
GIFisOpen = true;
|
||||
GIFstartTime = millis();
|
||||
GIFincrement = 0; // Reset increment flag
|
||||
}
|
||||
}
|
||||
} else if(GIFisOpen) {
|
||||
if (GIF.playFrame(true, NULL) >= 0) { // Auto resets to start if needed
|
||||
matrix.show();
|
||||
if ((millis() - GIFstartTime) >= (GIFminimumTime * 1000)) {
|
||||
GIFincrement = 1; // Minimum time has elapsed, proceed to next GIF
|
||||
}
|
||||
} else {
|
||||
GIFincrement = 1; // Decode error, proceed to next GIF
|
||||
}
|
||||
}
|
||||
}
|
||||
142
examples/doublebuffer/doublebuffer.ino
Normal file
142
examples/doublebuffer/doublebuffer.ino
Normal file
|
|
@ -0,0 +1,142 @@
|
|||
#include "Adafruit_Protomatter.h"
|
||||
|
||||
/*
|
||||
METRO M0 PORT-TO-PIN ASSIGNMENTS BY BYTE:
|
||||
PA00 PA08 D4 PA16 D11 PB00 PB08 A1
|
||||
PA01 PA09 D3 PA17 D13 PB01 PB09 A2
|
||||
PA02 A0 PA10 D1 PA18 D10 PB02 A5 PB10 MOSI
|
||||
PA03 PA11 D0 PA19 D12 PB03 PB11 SCK
|
||||
PA04 A3 PA12 MISO PA20 D6 PB04 PB12
|
||||
PA05 A4 PA13 PA21 D7 PB05 PB13
|
||||
PA06 D8 PA14 D2 PA22 SDA PB06 PB14
|
||||
PA07 D9 PA15 D5 PA23 SCL PB07 PB15
|
||||
|
||||
SAME, METRO M4:
|
||||
PA00 PA08 PA16 D13 PB00 PB08 A4 PB16 D3
|
||||
PA01 PA09 PA17 D12 PB01 PB09 A5 PB17 D2
|
||||
PA02 A0 PA10 PA18 D10 PB02 SDA PB10 PB18
|
||||
PA03 PA11 PA19 D11 PB03 SCL PB11 PB19
|
||||
PA04 A3 PA12 MISO PA20 D9 PB04 PB12 D7 PB20
|
||||
PA05 A1 PA13 SCK PA21 D8 PB05 PB13 D4 PB21
|
||||
PA06 A2 PA14 MISO PA22 D1 PB06 PB14 D5 PB22
|
||||
PA07 PA15 PA23 D0 PB07 PB15 D6 PB23
|
||||
|
||||
FEATHER M4:
|
||||
PA00 PA08 PA16 D5 PB08 A2 PB16 D1/TX
|
||||
PA01 PA09 PA17 SCK PB09 A3 PB17 D0/RX
|
||||
PA02 A0 PA10 PA18 D6 PB10 PB18
|
||||
PA03 PA11 PA19 D9 PB11 PB19
|
||||
PA04 A4 PA12 SDA PA20 D10 PB12 PB20
|
||||
PA05 A1 PA13 SCL PA21 D11 PB13 PB21
|
||||
PA06 A5 PA14 D4 PA22 D12 PB14 PB22 MISO
|
||||
PA07 PA15 PA23 D13 PB15 PB23 MOSI
|
||||
|
||||
FEATHER M0:
|
||||
PA00 PA08 PA16 D11 PB00 PB08 A1
|
||||
PA01 PA09 PA17 D13 PB01 PB09 A2
|
||||
PA02 A0 PA10 TX/D1 PA18 D10 PB02 A5 PB10 MOSI
|
||||
PA03 PA11 RX/D0 PA19 D12 PB03 PB11 SCK
|
||||
PA04 A3 PA12 MISO PA20 D6 PB04 PB12
|
||||
PA05 A4 PA13 PA21 D7 PB05 PB13
|
||||
PA06 PA14 PA22 SDA PB06 PB14
|
||||
PA07 D9 PA15 D5 PA23 SCL PB07 PB15
|
||||
|
||||
RGB Matrix FeatherWing:
|
||||
R1 D6 A A5
|
||||
G1 D5 B A4
|
||||
B1 D9 C A3
|
||||
R2 D11 D A2
|
||||
G2 D10 LAT D0/RX
|
||||
B2 D12 OE D1/TX
|
||||
CLK D13
|
||||
RGB+clock in one PORT byte on Feather M4!
|
||||
RGB+clock are on same PORT but not within same byte on Feather M0 --
|
||||
the code could run there (with some work to be done in the convert_*
|
||||
functions), but would be super RAM-inefficient. Should be fine on other
|
||||
M0 devices like a Metro, if wiring manually so one can pick a contiguous
|
||||
byte of PORT bits.
|
||||
*/
|
||||
|
||||
#if defined(__SAMD51__)
|
||||
// Use FeatherWing pinout
|
||||
uint8_t rgbPins[] = {6, 5, 9, 11, 10, 12};
|
||||
uint8_t addrPins[] = {A5, A4, A3, A2};
|
||||
uint8_t clockPin = 13;
|
||||
uint8_t latchPin = 0;
|
||||
uint8_t oePin = 1;
|
||||
#else // SAMD21
|
||||
uint8_t rgbPins[] = {6, 7, 10, 11, 12, 13};
|
||||
uint8_t addrPins[] = {0, 1, 2, 3};
|
||||
uint8_t clockPin = SDA;
|
||||
uint8_t latchPin = 4;
|
||||
uint8_t oePin = 5;
|
||||
#endif
|
||||
|
||||
// Last arg here enables double-buffering
|
||||
Adafruit_Protomatter matrix(
|
||||
64, 6, 1, rgbPins, 4, addrPins, clockPin, latchPin, oePin, true);
|
||||
|
||||
int16_t textMin,
|
||||
textX = matrix.width(),
|
||||
hue = 0;
|
||||
char str[40];
|
||||
int8_t ball[3][4] = {
|
||||
{ 3, 0, 1, 1 }, // Initial X,Y pos & velocity for 3 bouncy balls
|
||||
{ 17, 15, 1, -1 },
|
||||
{ 27, 4, -1, 1 }
|
||||
};
|
||||
|
||||
const uint16_t ballcolor[3] = {
|
||||
0b0000000001000000, // Dark green
|
||||
0b0000000000000001, // Dark blue
|
||||
0b0000100000000000 // Dark red
|
||||
};
|
||||
|
||||
void setup(void) {
|
||||
Serial.begin(9600);
|
||||
|
||||
ProtomatterStatus status = matrix.begin();
|
||||
Serial.print("Protomatter begin() status: ");
|
||||
Serial.println((int)status);
|
||||
|
||||
sprintf(str, "Adafruit %dx%d RGB LED Matrix",
|
||||
matrix.width(), matrix.height());
|
||||
textMin = strlen(str) * -12;
|
||||
matrix.setTextWrap(false);
|
||||
matrix.setTextSize(2);
|
||||
matrix.setTextColor(0xFFFF); // White
|
||||
}
|
||||
|
||||
void loop(void) {
|
||||
byte i;
|
||||
|
||||
// Clear background
|
||||
matrix.fillScreen(0);
|
||||
|
||||
// Bounce three balls around
|
||||
for(i=0; i<3; i++) {
|
||||
// Draw 'ball'
|
||||
matrix.fillCircle(ball[i][0], ball[i][1], 5, ballcolor[i]);
|
||||
// Update X, Y position
|
||||
ball[i][0] += ball[i][2];
|
||||
ball[i][1] += ball[i][3];
|
||||
// Bounce off edges
|
||||
if((ball[i][0] == 0) || (ball[i][0] == (matrix.width() - 1)))
|
||||
ball[i][2] *= -1;
|
||||
if((ball[i][1] == 0) || (ball[i][1] == (matrix.height() - 1)))
|
||||
ball[i][3] *= -1;
|
||||
}
|
||||
|
||||
// Draw big scrolly text on top
|
||||
matrix.setCursor(textX, 1);
|
||||
matrix.print(str);
|
||||
|
||||
// Move text left (w/wrap), increase hue
|
||||
if((--textX) < textMin) textX = matrix.width();
|
||||
hue += 7;
|
||||
if(hue >= 1536) hue -= 1536;
|
||||
|
||||
matrix.show();
|
||||
|
||||
delay(20);
|
||||
}
|
||||
|
|
@ -1,180 +0,0 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
Double-buffering (smooth animation) Protomatter library example.
|
||||
PLEASE SEE THE "simple" EXAMPLE FOR AN INTRODUCTORY SKETCH.
|
||||
Comments here pare down many of the basics and focus on the new concepts.
|
||||
|
||||
This example is written for a 64x32 matrix but can be adapted to others.
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
#include <Adafruit_Protomatter.h>
|
||||
#include <Fonts/FreeSansBold18pt7b.h> // Large friendly font
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
The RGB matrix must be wired to VERY SPECIFIC pins, different for each
|
||||
microcontroller board. This first section sets that up for a number of
|
||||
supported boards.
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
#if defined(_VARIANT_MATRIXPORTAL_M4_) // MatrixPortal M4
|
||||
uint8_t rgbPins[] = {7, 8, 9, 10, 11, 12};
|
||||
uint8_t addrPins[] = {17, 18, 19, 20};
|
||||
uint8_t clockPin = 14;
|
||||
uint8_t latchPin = 15;
|
||||
uint8_t oePin = 16;
|
||||
#elif defined(_VARIANT_FEATHER_M4_) // Feather M4 + RGB Matrix FeatherWing
|
||||
uint8_t rgbPins[] = {6, 5, 9, 11, 10, 12};
|
||||
uint8_t addrPins[] = {A5, A4, A3, A2};
|
||||
uint8_t clockPin = 13;
|
||||
uint8_t latchPin = 0;
|
||||
uint8_t oePin = 1;
|
||||
#elif defined(__SAMD51__) // M4 Metro Variants (Express, AirLift)
|
||||
uint8_t rgbPins[] = {6, 5, 9, 11, 10, 12};
|
||||
uint8_t addrPins[] = {A5, A4, A3, A2};
|
||||
uint8_t clockPin = 13;
|
||||
uint8_t latchPin = 0;
|
||||
uint8_t oePin = 1;
|
||||
#elif defined(_SAMD21_) // Feather M0 variants
|
||||
uint8_t rgbPins[] = {6, 7, 10, 11, 12, 13};
|
||||
uint8_t addrPins[] = {0, 1, 2, 3};
|
||||
uint8_t clockPin = SDA;
|
||||
uint8_t latchPin = 4;
|
||||
uint8_t oePin = 5;
|
||||
#elif defined(NRF52_SERIES) // Special nRF52840 FeatherWing pinout
|
||||
uint8_t rgbPins[] = {6, A5, A1, A0, A4, 11};
|
||||
uint8_t addrPins[] = {10, 5, 13, 9};
|
||||
uint8_t clockPin = 12;
|
||||
uint8_t latchPin = PIN_SERIAL1_RX;
|
||||
uint8_t oePin = PIN_SERIAL1_TX;
|
||||
#elif defined(ESP32)
|
||||
// 'Safe' pins, not overlapping any peripherals:
|
||||
// GPIO.out: 4, 12, 13, 14, 15, 21, 27, GPIO.out1: 32, 33
|
||||
// Peripheral-overlapping pins, sorted from 'most expendible':
|
||||
// 16, 17 (RX, TX)
|
||||
// 25, 26 (A0, A1)
|
||||
// 18, 5, 9 (MOSI, SCK, MISO)
|
||||
// 22, 23 (SCL, SDA)
|
||||
uint8_t rgbPins[] = {4, 12, 13, 14, 15, 21};
|
||||
uint8_t addrPins[] = {16, 17, 25, 26};
|
||||
uint8_t clockPin = 27; // Must be on same port as rgbPins
|
||||
uint8_t latchPin = 32;
|
||||
uint8_t oePin = 33;
|
||||
#elif defined(ARDUINO_TEENSY40)
|
||||
uint8_t rgbPins[] = {15, 16, 17, 20, 21, 22}; // A1-A3, A6-A8, skip SDA,SCL
|
||||
uint8_t addrPins[] = {2, 3, 4, 5};
|
||||
uint8_t clockPin = 23; // A9
|
||||
uint8_t latchPin = 6;
|
||||
uint8_t oePin = 9;
|
||||
#elif defined(ARDUINO_TEENSY41)
|
||||
uint8_t rgbPins[] = {26, 27, 38, 20, 21, 22}; // A12-14, A6-A8
|
||||
uint8_t addrPins[] = {2, 3, 4, 5};
|
||||
uint8_t clockPin = 23; // A9
|
||||
uint8_t latchPin = 6;
|
||||
uint8_t oePin = 9;
|
||||
#endif
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
Matrix initialization is explained EXTENSIVELY in "simple" example sketch!
|
||||
It's very similar here, but we're passing "true" for the last argument,
|
||||
enabling double-buffering -- this permits smooth animation by having us
|
||||
draw in a second "off screen" buffer while the other is being shown.
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
Adafruit_Protomatter matrix(
|
||||
64, // Matrix width in pixels
|
||||
6, // Bit depth -- 6 here provides maximum color options
|
||||
1, rgbPins, // # of matrix chains, array of 6 RGB pins for each
|
||||
4, addrPins, // # of address pins (height is inferred), array of pins
|
||||
clockPin, latchPin, oePin, // Other matrix control pins
|
||||
true); // HERE IS THE MAGIG FOR DOUBLE-BUFFERING!
|
||||
|
||||
// Sundry globals used for animation ---------------------------------------
|
||||
|
||||
int16_t textX = matrix.width(), // Current text position (X)
|
||||
textY, // Current text position (Y)
|
||||
textMin, // Text pos. (X) when scrolled off left edge
|
||||
hue = 0;
|
||||
char str[50]; // Buffer to hold scrolling message text
|
||||
int8_t ball[3][4] = {
|
||||
{ 3, 0, 1, 1 }, // Initial X,Y pos+velocity of 3 bouncy balls
|
||||
{ 17, 15, 1, -1 },
|
||||
{ 27, 4, -1, 1 }
|
||||
};
|
||||
uint16_t ballcolor[3]; // Colors for bouncy balls (init in setup())
|
||||
|
||||
// SETUP - RUNS ONCE AT PROGRAM START --------------------------------------
|
||||
|
||||
void setup(void) {
|
||||
Serial.begin(9600);
|
||||
|
||||
// Initialize matrix...
|
||||
ProtomatterStatus status = matrix.begin();
|
||||
Serial.print("Protomatter begin() status: ");
|
||||
Serial.println((int)status);
|
||||
if(status != PROTOMATTER_OK) {
|
||||
// DO NOT CONTINUE if matrix setup encountered an error.
|
||||
for(;;);
|
||||
}
|
||||
|
||||
// Unlike the "simple" example, we don't do any drawing in setup().
|
||||
// But we DO initialize some things we plan to animate...
|
||||
|
||||
// Set up the scrolling message...
|
||||
sprintf(str, "Adafruit %dx%d RGB LED Matrix",
|
||||
matrix.width(), matrix.height());
|
||||
matrix.setFont(&FreeSansBold18pt7b); // Use nice bitmap font
|
||||
matrix.setTextWrap(false); // Allow text off edge
|
||||
matrix.setTextColor(0xFFFF); // White
|
||||
int16_t x1, y1;
|
||||
uint16_t w, h;
|
||||
matrix.getTextBounds(str, 0, 0, &x1, &y1, &w, &h); // How big is it?
|
||||
textMin = -w; // All text is off left edge when it reaches this point
|
||||
textY = matrix.height() / 2 - (y1 + h / 2); // Center text vertically
|
||||
// Note: when making scrolling text like this, the setTextWrap(false)
|
||||
// call is REQUIRED (to allow text to go off the edge of the matrix),
|
||||
// AND it must be BEFORE the getTextBounds() call (or else that will
|
||||
// return the bounds of "wrapped" text).
|
||||
|
||||
// Set up the colors of the bouncy balls.
|
||||
ballcolor[0] = matrix.color565(0, 20, 0); // Dark green
|
||||
ballcolor[1] = matrix.color565(0, 0, 20); // Dark blue
|
||||
ballcolor[2] = matrix.color565(20, 0, 0); // ark red
|
||||
}
|
||||
|
||||
// LOOP - RUNS REPEATEDLY AFTER SETUP --------------------------------------
|
||||
|
||||
void loop(void) {
|
||||
// Every frame, we clear the background and draw everything anew.
|
||||
// This happens "in the background" with double buffering, that's
|
||||
// why you don't see everything flicker. It requires double the RAM,
|
||||
// so it's not practical for every situation.
|
||||
|
||||
matrix.fillScreen(0); // Fill background black
|
||||
|
||||
// Draw the big scrolly text
|
||||
matrix.setCursor(textX, textY);
|
||||
matrix.print(str);
|
||||
|
||||
// Update text position for next frame. If text goes off the
|
||||
// left edge, reset its position to be off the right edge.
|
||||
if((--textX) < textMin) textX = matrix.width();
|
||||
|
||||
// Draw the three bouncy balls on top of the text...
|
||||
for(byte i=0; i<3; i++) {
|
||||
// Draw 'ball'
|
||||
matrix.fillCircle(ball[i][0], ball[i][1], 5, ballcolor[i]);
|
||||
// Update ball's X,Y position for next frame
|
||||
ball[i][0] += ball[i][2];
|
||||
ball[i][1] += ball[i][3];
|
||||
// Bounce off edges
|
||||
if((ball[i][0] == 0) || (ball[i][0] == (matrix.width() - 1)))
|
||||
ball[i][2] *= -1;
|
||||
if((ball[i][1] == 0) || (ball[i][1] == (matrix.height() - 1)))
|
||||
ball[i][3] *= -1;
|
||||
}
|
||||
|
||||
// AFTER DRAWING, A show() CALL IS REQUIRED TO UPDATE THE MATRIX!
|
||||
|
||||
matrix.show();
|
||||
|
||||
delay(20); // 20 milliseconds = ~50 frames/second
|
||||
}
|
||||
|
|
@ -1,140 +0,0 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
"Pixel dust" Protomatter library example. As written, this is
|
||||
SPECIFICALLY FOR THE ADAFRUIT MATRIXPORTAL M4 with 64x32 pixel matrix.
|
||||
Change "HEIGHT" below for 64x64 matrix. Could also be adapted to other
|
||||
Protomatter-capable boards with an attached LIS3DH accelerometer.
|
||||
|
||||
PLEASE SEE THE "simple" EXAMPLE FOR AN INTRODUCTORY SKETCH,
|
||||
or "doublebuffer" for animation basics.
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
#include <Wire.h> // For I2C communication
|
||||
#include <Adafruit_LIS3DH.h> // For accelerometer
|
||||
#include <Adafruit_PixelDust.h> // For sand simulation
|
||||
#include <Adafruit_Protomatter.h> // For RGB matrix
|
||||
|
||||
#define HEIGHT 32 // Matrix height (pixels) - SET TO 64 FOR 64x64 MATRIX!
|
||||
#define WIDTH 64 // Matrix width (pixels)
|
||||
#define MAX_FPS 45 // Maximum redraw rate, frames/second
|
||||
|
||||
#if HEIGHT == 64 // 64-pixel tall matrices have 5 address lines:
|
||||
uint8_t addrPins[] = {17, 18, 19, 20, 21};
|
||||
#else // 32-pixel tall matrices have 4 address lines:
|
||||
uint8_t addrPins[] = {17, 18, 19, 20};
|
||||
#endif
|
||||
|
||||
// Remaining pins are the same for all matrix sizes. These values
|
||||
// are for MatrixPortal M4. See "simple" example for other boards.
|
||||
uint8_t rgbPins[] = {7, 8, 9, 10, 11, 12};
|
||||
uint8_t clockPin = 14;
|
||||
uint8_t latchPin = 15;
|
||||
uint8_t oePin = 16;
|
||||
|
||||
Adafruit_Protomatter matrix(
|
||||
WIDTH, 4, 1, rgbPins, sizeof(addrPins), addrPins,
|
||||
clockPin, latchPin, oePin, true);
|
||||
|
||||
Adafruit_LIS3DH accel = Adafruit_LIS3DH();
|
||||
|
||||
#define N_COLORS 8
|
||||
#define BOX_HEIGHT 8
|
||||
#define N_GRAINS (BOX_HEIGHT*N_COLORS*8)
|
||||
uint16_t colors[N_COLORS];
|
||||
|
||||
Adafruit_PixelDust sand(WIDTH, HEIGHT, N_GRAINS, 1, 128, false);
|
||||
|
||||
uint32_t prevTime = 0; // Used for frames-per-second throttle
|
||||
|
||||
// SETUP - RUNS ONCE AT PROGRAM START --------------------------------------
|
||||
|
||||
void err(int x) {
|
||||
uint8_t i;
|
||||
pinMode(LED_BUILTIN, OUTPUT); // Using onboard LED
|
||||
for(i=1;;i++) { // Loop forever...
|
||||
digitalWrite(LED_BUILTIN, i & 1); // LED on/off blink to alert user
|
||||
delay(x);
|
||||
}
|
||||
}
|
||||
|
||||
void setup(void) {
|
||||
Serial.begin(115200);
|
||||
//while (!Serial) delay(10);
|
||||
|
||||
ProtomatterStatus status = matrix.begin();
|
||||
Serial.printf("Protomatter begin() status: %d\n", status);
|
||||
|
||||
if (!sand.begin()) {
|
||||
Serial.println("Couldn't start sand");
|
||||
err(1000); // Slow blink = malloc error
|
||||
}
|
||||
|
||||
if (!accel.begin(0x19)) {
|
||||
Serial.println("Couldn't find accelerometer");
|
||||
err(250); // Fast bink = I2C error
|
||||
}
|
||||
accel.setRange(LIS3DH_RANGE_4_G); // 2, 4, 8 or 16 G!
|
||||
|
||||
//sand.randomize(); // Initialize random sand positions
|
||||
|
||||
// Set up initial sand coordinates, in 8x8 blocks
|
||||
int n = 0;
|
||||
for(int i=0; i<N_COLORS; i++) {
|
||||
int xx = i * WIDTH / N_COLORS;
|
||||
int yy = HEIGHT - BOX_HEIGHT;
|
||||
for(int y=0; y<BOX_HEIGHT; y++) {
|
||||
for(int x=0; x < WIDTH / N_COLORS; x++) {
|
||||
//Serial.printf("#%d -> (%d, %d)\n", n, xx + x, yy + y);
|
||||
sand.setPosition(n++, xx + x, yy + y);
|
||||
}
|
||||
}
|
||||
}
|
||||
Serial.printf("%d total pixels\n", n);
|
||||
|
||||
colors[0] = matrix.color565(64, 64, 64); // Dark Gray
|
||||
colors[1] = matrix.color565(120, 79, 23); // Brown
|
||||
colors[2] = matrix.color565(228, 3, 3); // Red
|
||||
colors[3] = matrix.color565(255,140, 0); // Orange
|
||||
colors[4] = matrix.color565(255,237, 0); // Yellow
|
||||
colors[5] = matrix.color565( 0,128, 38); // Green
|
||||
colors[6] = matrix.color565( 0, 77,255); // Blue
|
||||
colors[7] = matrix.color565(117, 7,135); // Purple
|
||||
}
|
||||
|
||||
// MAIN LOOP - RUNS ONCE PER FRAME OF ANIMATION ----------------------------
|
||||
|
||||
void loop() {
|
||||
// Limit the animation frame rate to MAX_FPS. Because the subsequent sand
|
||||
// calculations are non-deterministic (don't always take the same amount
|
||||
// of time, depending on their current states), this helps ensure that
|
||||
// things like gravity appear constant in the simulation.
|
||||
uint32_t t;
|
||||
while(((t = micros()) - prevTime) < (1000000L / MAX_FPS));
|
||||
prevTime = t;
|
||||
|
||||
// Read accelerometer...
|
||||
sensors_event_t event;
|
||||
accel.getEvent(&event);
|
||||
//Serial.printf("(%0.1f, %0.1f, %0.1f)\n", event.acceleration.x, event.acceleration.y, event.acceleration.z);
|
||||
|
||||
double xx, yy, zz;
|
||||
xx = event.acceleration.x * 1000;
|
||||
yy = event.acceleration.y * 1000;
|
||||
zz = event.acceleration.z * 1000;
|
||||
|
||||
// Run one frame of the simulation
|
||||
sand.iterate(xx, yy, zz);
|
||||
|
||||
//sand.iterate(-accel.y, accel.x, accel.z);
|
||||
|
||||
// Update pixel data in LED driver
|
||||
dimension_t x, y;
|
||||
matrix.fillScreen(0x0);
|
||||
for(int i=0; i<N_GRAINS ; i++) {
|
||||
sand.getPosition(i, &x, &y);
|
||||
int n = i / ((WIDTH / N_COLORS) * BOX_HEIGHT); // Color index
|
||||
uint16_t flakeColor = colors[n];
|
||||
matrix.drawPixel(x, y, flakeColor);
|
||||
//Serial.printf("(%d, %d)\n", x, y);
|
||||
}
|
||||
matrix.show(); // Copy data to matrix buffers
|
||||
}
|
||||
105
examples/protomatter/protomatter.ino
Normal file
105
examples/protomatter/protomatter.ino
Normal file
|
|
@ -0,0 +1,105 @@
|
|||
#include "Adafruit_Protomatter.h"
|
||||
|
||||
/*
|
||||
METRO M0 PORT-TO-PIN ASSIGNMENTS BY BYTE:
|
||||
PA00 PA08 D4 PA16 D11 PB00 PB08 A1
|
||||
PA01 PA09 D3 PA17 D13 PB01 PB09 A2
|
||||
PA02 A0 PA10 D1 PA18 D10 PB02 A5 PB10 MOSI
|
||||
PA03 PA11 D0 PA19 D12 PB03 PB11 SCK
|
||||
PA04 A3 PA12 MISO PA20 D6 PB04 PB12
|
||||
PA05 A4 PA13 PA21 D7 PB05 PB13
|
||||
PA06 D8 PA14 D2 PA22 SDA PB06 PB14
|
||||
PA07 D9 PA15 D5 PA23 SCL PB07 PB15
|
||||
|
||||
SAME, METRO M4:
|
||||
PA00 PA08 PA16 D13 PB00 PB08 A4 PB16 D3
|
||||
PA01 PA09 PA17 D12 PB01 PB09 A5 PB17 D2
|
||||
PA02 A0 PA10 PA18 D10 PB02 SDA PB10 PB18
|
||||
PA03 PA11 PA19 D11 PB03 SCL PB11 PB19
|
||||
PA04 A3 PA12 MISO PA20 D9 PB04 PB12 D7 PB20
|
||||
PA05 A1 PA13 SCK PA21 D8 PB05 PB13 D4 PB21
|
||||
PA06 A2 PA14 MISO PA22 D1 PB06 PB14 D5 PB22
|
||||
PA07 PA15 PA23 D0 PB07 PB15 D6 PB23
|
||||
|
||||
FEATHER M4:
|
||||
PA00 PA08 PA16 D5 PB08 A2 PB16 D1/TX
|
||||
PA01 PA09 PA17 SCK PB09 A3 PB17 D0/RX
|
||||
PA02 A0 PA10 PA18 D6 PB10 PB18
|
||||
PA03 PA11 PA19 D9 PB11 PB19
|
||||
PA04 A4 PA12 SDA PA20 D10 PB12 PB20
|
||||
PA05 A1 PA13 SCL PA21 D11 PB13 PB21
|
||||
PA06 A5 PA14 D4 PA22 D12 PB14 PB22 MISO
|
||||
PA07 PA15 PA23 D13 PB15 PB23 MOSI
|
||||
|
||||
FEATHER M0:
|
||||
PA00 PA08 PA16 D11 PB00 PB08 A1
|
||||
PA01 PA09 PA17 D13 PB01 PB09 A2
|
||||
PA02 A0 PA10 TX/D1 PA18 D10 PB02 A5 PB10 MOSI
|
||||
PA03 PA11 RX/D0 PA19 D12 PB03 PB11 SCK
|
||||
PA04 A3 PA12 MISO PA20 D6 PB04 PB12
|
||||
PA05 A4 PA13 PA21 D7 PB05 PB13
|
||||
PA06 PA14 PA22 SDA PB06 PB14
|
||||
PA07 D9 PA15 D5 PA23 SCL PB07 PB15
|
||||
|
||||
RGB Matrix FeatherWing:
|
||||
R1 D6 A A5
|
||||
G1 D5 B A4
|
||||
B1 D9 C A3
|
||||
R2 D11 D A2
|
||||
G2 D10 LAT D0/RX
|
||||
B2 D12 OE D1/TX
|
||||
CLK D13
|
||||
RGB+clock in one PORT byte on Feather M4!
|
||||
RGB+clock are on same PORT but not within same byte on Feather M0 --
|
||||
the code could run there (with some work to be done in the convert_*
|
||||
functions), but would be super RAM-inefficient. Should be fine on other
|
||||
M0 devices like a Metro, if wiring manually so one can pick a contiguous
|
||||
byte of PORT bits.
|
||||
*/
|
||||
|
||||
#if defined(__SAMD51__)
|
||||
// Use FeatherWing pinout
|
||||
uint8_t rgbPins[] = {6, 5, 9, 11, 10, 12};
|
||||
uint8_t addrPins[] = {A5, A4, A3, A2};
|
||||
uint8_t clockPin = 13;
|
||||
uint8_t latchPin = 0;
|
||||
uint8_t oePin = 1;
|
||||
#else // SAMD21
|
||||
uint8_t rgbPins[] = {6, 7, 10, 11, 12, 13};
|
||||
uint8_t addrPins[] = {0, 1, 2, 3};
|
||||
uint8_t clockPin = SDA;
|
||||
uint8_t latchPin = 4;
|
||||
uint8_t oePin = 5;
|
||||
#endif
|
||||
|
||||
Adafruit_Protomatter matrix(
|
||||
64, 4, 1, rgbPins, 4, addrPins, clockPin, latchPin, oePin, false);
|
||||
|
||||
void setup(void) {
|
||||
Serial.begin(9600);
|
||||
|
||||
ProtomatterStatus status = matrix.begin();
|
||||
Serial.print("Protomatter begin() status: ");
|
||||
Serial.println((int)status);
|
||||
|
||||
for(int x=0; x<matrix.width(); x++) {
|
||||
uint8_t rb = x * 32 / matrix.width();
|
||||
uint8_t g = x * 64 / matrix.width();
|
||||
matrix.drawPixel(x, matrix.height() - 4, rb << 11);
|
||||
matrix.drawPixel(x, matrix.height() - 3, g << 5);
|
||||
matrix.drawPixel(x, matrix.height() - 2, rb);
|
||||
matrix.drawPixel(x, matrix.height() - 1, (rb << 11) | (g << 5) | rb);
|
||||
}
|
||||
|
||||
matrix.drawCircle(12, 10, 9, 0b1111100000000000); // Red
|
||||
matrix.drawCircle(22, 14, 9, 0b0000011111100000); // Green
|
||||
matrix.drawCircle(32, 18, 9, 0b0000000000011111); // Blue
|
||||
matrix.println("ADAFRUIT");
|
||||
matrix.show(); // Copy data to matrix buffers
|
||||
}
|
||||
|
||||
void loop(void) {
|
||||
Serial.print("Refresh FPS = ~");
|
||||
Serial.println(matrix.getFrameCount());
|
||||
delay(1000);
|
||||
}
|
||||
|
|
@ -1,298 +0,0 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
"Simple" Protomatter library example sketch (once you get past all
|
||||
the various pin configurations at the top, and all the comments).
|
||||
Shows basic use of Adafruit_Protomatter library with different devices.
|
||||
|
||||
This example is written for a 64x32 matrix but can be adapted to others.
|
||||
|
||||
Once the RGB matrix is initialized, most functions of the Adafruit_GFX
|
||||
library are available for drawing -- code from other projects that use
|
||||
LCDs or OLEDs can be easily adapted, or may be insightful for reference.
|
||||
GFX library is documented here:
|
||||
https://learn.adafruit.com/adafruit-gfx-graphics-library
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
#include <Adafruit_Protomatter.h>
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
The RGB matrix must be wired to VERY SPECIFIC pins, different for each
|
||||
microcontroller board. This first section sets that up for a number of
|
||||
supported boards. Notes have been moved to the bottom of the code.
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
#if defined(_VARIANT_MATRIXPORTAL_M4_) // MatrixPortal M4
|
||||
uint8_t rgbPins[] = {7, 8, 9, 10, 11, 12};
|
||||
uint8_t addrPins[] = {17, 18, 19, 20};
|
||||
uint8_t clockPin = 14;
|
||||
uint8_t latchPin = 15;
|
||||
uint8_t oePin = 16;
|
||||
#elif defined(_VARIANT_FEATHER_M4_) // Feather M4 + RGB Matrix FeatherWing
|
||||
uint8_t rgbPins[] = {6, 5, 9, 11, 10, 12};
|
||||
uint8_t addrPins[] = {A5, A4, A3, A2};
|
||||
uint8_t clockPin = 13;
|
||||
uint8_t latchPin = 0;
|
||||
uint8_t oePin = 1;
|
||||
#elif defined(__SAMD51__) // M4 Metro Variants (Express, AirLift)
|
||||
uint8_t rgbPins[] = {6, 5, 9, 11, 10, 12};
|
||||
uint8_t addrPins[] = {A5, A4, A3, A2};
|
||||
uint8_t clockPin = 13;
|
||||
uint8_t latchPin = 0;
|
||||
uint8_t oePin = 1;
|
||||
#elif defined(_SAMD21_) // Feather M0 variants
|
||||
uint8_t rgbPins[] = {6, 7, 10, 11, 12, 13};
|
||||
uint8_t addrPins[] = {0, 1, 2, 3};
|
||||
uint8_t clockPin = SDA;
|
||||
uint8_t latchPin = 4;
|
||||
uint8_t oePin = 5;
|
||||
#elif defined(NRF52_SERIES) // Special nRF52840 FeatherWing pinout
|
||||
uint8_t rgbPins[] = {6, A5, A1, A0, A4, 11};
|
||||
uint8_t addrPins[] = {10, 5, 13, 9};
|
||||
uint8_t clockPin = 12;
|
||||
uint8_t latchPin = PIN_SERIAL1_RX;
|
||||
uint8_t oePin = PIN_SERIAL1_TX;
|
||||
#elif defined(ESP32)
|
||||
// 'Safe' pins, not overlapping any peripherals:
|
||||
// GPIO.out: 4, 12, 13, 14, 15, 21, 27, GPIO.out1: 32, 33
|
||||
// Peripheral-overlapping pins, sorted from 'most expendible':
|
||||
// 16, 17 (RX, TX)
|
||||
// 25, 26 (A0, A1)
|
||||
// 18, 5, 9 (MOSI, SCK, MISO)
|
||||
// 22, 23 (SCL, SDA)
|
||||
uint8_t rgbPins[] = {4, 12, 13, 14, 15, 21};
|
||||
uint8_t addrPins[] = {16, 17, 25, 26};
|
||||
uint8_t clockPin = 27; // Must be on same port as rgbPins
|
||||
uint8_t latchPin = 32;
|
||||
uint8_t oePin = 33;
|
||||
#elif defined(ARDUINO_TEENSY40)
|
||||
uint8_t rgbPins[] = {15, 16, 17, 20, 21, 22}; // A1-A3, A6-A8, skip SDA,SCL
|
||||
uint8_t addrPins[] = {2, 3, 4, 5};
|
||||
uint8_t clockPin = 23; // A9
|
||||
uint8_t latchPin = 6;
|
||||
uint8_t oePin = 9;
|
||||
#elif defined(ARDUINO_TEENSY41)
|
||||
uint8_t rgbPins[] = {26, 27, 38, 20, 21, 22}; // A12-14, A6-A8
|
||||
uint8_t addrPins[] = {2, 3, 4, 5};
|
||||
uint8_t clockPin = 23; // A9
|
||||
uint8_t latchPin = 6;
|
||||
uint8_t oePin = 9;
|
||||
#endif
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
Okay, here's where the RGB LED matrix is actually declared...
|
||||
|
||||
First argument is the matrix width, in pixels. Usually 32 or
|
||||
64, but might go larger if you're chaining multiple matrices.
|
||||
|
||||
Second argument is the "bit depth," which determines color
|
||||
fidelity, applied to red, green and blue (e.g. "4" here means
|
||||
4 bits red, 4 green, 4 blue = 2^4 x 2^4 x 2^4 = 4096 colors).
|
||||
There is a trade-off between bit depth and RAM usage. Most
|
||||
programs will tend to use either 1 (R,G,B on/off, 8 colors,
|
||||
best for text, LED sand, etc.) or the maximum of 6 (best for
|
||||
shaded images...though, because the GFX library was designed
|
||||
for LCDs, only 5 of those bits are available for red and blue.
|
||||
|
||||
Third argument is the number of concurrent (parallel) matrix
|
||||
outputs. THIS SHOULD ALWAYS BE "1" FOR NOW. Fourth is a uint8_t
|
||||
array listing six pins: red, green and blue data out for the
|
||||
top half of the display, and same for bottom half. There are
|
||||
hard constraints as to which pins can be used -- they must all
|
||||
be on the same PORT register, ideally all within the same byte
|
||||
of that PORT.
|
||||
|
||||
Fifth argument is the number of "address" (aka row select) pins,
|
||||
from which the matrix height is inferred. "4" here means four
|
||||
address lines, matrix height is then (2 x 2^4) = 32 pixels.
|
||||
16-pixel-tall matrices will have 3 pins here, 32-pixel will have
|
||||
4, 64-pixel will have 5. Sixth argument is a uint8_t array
|
||||
listing those pin numbers. No PORT constraints here.
|
||||
|
||||
Next three arguments are pin numbers for other RGB matrix
|
||||
control lines: clock, latch and output enable (active low).
|
||||
Clock pin MUST be on the same PORT register as RGB data pins
|
||||
(and ideally in same byte). Other pins have no special rules.
|
||||
|
||||
Last argument is a boolean (true/false) to enable double-
|
||||
buffering for smooth animation (requires 2X the RAM). See the
|
||||
"doublebuffer" example for a demonstration.
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
Adafruit_Protomatter matrix(
|
||||
64, // Width of matrix (or matrix chain) in pixels
|
||||
4, // Bit depth, 1-6
|
||||
1, rgbPins, // # of matrix chains, array of 6 RGB pins for each
|
||||
4, addrPins, // # of address pins (height is inferred), array of pins
|
||||
clockPin, latchPin, oePin, // Other matrix control pins
|
||||
false); // No double-buffering here (see "doublebuffer" example)
|
||||
|
||||
// SETUP - RUNS ONCE AT PROGRAM START --------------------------------------
|
||||
|
||||
void setup(void) {
|
||||
Serial.begin(9600);
|
||||
|
||||
// Initialize matrix...
|
||||
ProtomatterStatus status = matrix.begin();
|
||||
Serial.print("Protomatter begin() status: ");
|
||||
Serial.println((int)status);
|
||||
if(status != PROTOMATTER_OK) {
|
||||
// DO NOT CONTINUE if matrix setup encountered an error.
|
||||
for(;;);
|
||||
}
|
||||
|
||||
// Since this is a simple program with no animation, all the
|
||||
// drawing can be done here in setup() rather than loop():
|
||||
|
||||
// Make four color bars (red, green, blue, white) with brightness ramp:
|
||||
for(int x=0; x<matrix.width(); x++) {
|
||||
uint8_t level = x * 256 / matrix.width(); // 0-255 brightness
|
||||
matrix.drawPixel(x, matrix.height() - 4, matrix.color565(level, 0, 0));
|
||||
matrix.drawPixel(x, matrix.height() - 3, matrix.color565(0, level, 0));
|
||||
matrix.drawPixel(x, matrix.height() - 2, matrix.color565(0, 0, level));
|
||||
matrix.drawPixel(x, matrix.height() - 1,
|
||||
matrix.color565(level, level, level));
|
||||
}
|
||||
// You'll notice the ramp looks smoother as bit depth increases
|
||||
// (second argument to the matrix constructor call above setup()).
|
||||
|
||||
// Simple shapes and text, showing GFX library calls:
|
||||
matrix.drawCircle(12, 10, 9, matrix.color565(255, 0, 0));
|
||||
matrix.drawRect(14, 6, 17, 17, matrix.color565(0, 255, 0));
|
||||
matrix.drawTriangle(32, 9, 41, 27, 23, 27, matrix.color565(0, 0, 255));
|
||||
matrix.println("ADAFRUIT"); // Default text color is white
|
||||
|
||||
// AFTER DRAWING, A show() CALL IS REQUIRED TO UPDATE THE MATRIX!
|
||||
|
||||
matrix.show(); // Copy data to matrix buffers
|
||||
}
|
||||
|
||||
// LOOP - RUNS REPEATEDLY AFTER SETUP --------------------------------------
|
||||
|
||||
void loop(void) {
|
||||
// Since there's nothing more to be drawn, this loop() function just
|
||||
// shows the approximate refresh rate of the matrix at current settings.
|
||||
Serial.print("Refresh FPS = ~");
|
||||
Serial.println(matrix.getFrameCount());
|
||||
delay(1000);
|
||||
}
|
||||
|
||||
// MORE NOTES --------------------------------------------------------------
|
||||
|
||||
/*
|
||||
The "RGB and clock bits on same PORT register" constraint requires
|
||||
considerable planning and knowledge of the underlying microcontroller
|
||||
hardware. These are some earlier notes on various devices' PORT registers
|
||||
and bits and their corresponding Arduino pin numbers. You probably won't
|
||||
need this -- it's all codified in the #if defined() sections at the top
|
||||
of this sketch now -- but keeping it around for reference if needed.
|
||||
|
||||
METRO M0 PORT-TO-PIN ASSIGNMENTS BY BYTE:
|
||||
PA00 PA08 D4 PA16 D11 PB00 PB08 A1
|
||||
PA01 PA09 D3 PA17 D13 PB01 PB09 A2
|
||||
PA02 A0 PA10 D1 PA18 D10 PB02 A5 PB10 MOSI
|
||||
PA03 PA11 D0 PA19 D12 PB03 PB11 SCK
|
||||
PA04 A3 PA12 MISO PA20 D6 PB04 PB12
|
||||
PA05 A4 PA13 PA21 D7 PB05 PB13
|
||||
PA06 D8 PA14 D2 PA22 SDA PB06 PB14
|
||||
PA07 D9 PA15 D5 PA23 SCL PB07 PB15
|
||||
|
||||
SAME, METRO M4:
|
||||
PA00 PA08 PA16 D13 PB00 PB08 A4 PB16 D3
|
||||
PA01 PA09 PA17 D12 PB01 PB09 A5 PB17 D2
|
||||
PA02 A0 PA10 PA18 D10 PB02 SDA PB10 PB18
|
||||
PA03 PA11 PA19 D11 PB03 SCL PB11 PB19
|
||||
PA04 A3 PA12 MISO PA20 D9 PB04 PB12 D7 PB20
|
||||
PA05 A1 PA13 SCK PA21 D8 PB05 PB13 D4 PB21
|
||||
PA06 A2 PA14 MISO PA22 D1 PB06 PB14 D5 PB22
|
||||
PA07 PA15 PA23 D0 PB07 PB15 D6 PB23
|
||||
|
||||
FEATHER M4:
|
||||
PA00 PA08 PA16 D5 PB08 A2 PB16 D1/TX
|
||||
PA01 PA09 PA17 SCK PB09 A3 PB17 D0/RX
|
||||
PA02 A0 PA10 PA18 D6 PB10 PB18
|
||||
PA03 PA11 PA19 D9 PB11 PB19
|
||||
PA04 A4 PA12 SDA PA20 D10 PB12 PB20
|
||||
PA05 A1 PA13 SCL PA21 D11 PB13 PB21
|
||||
PA06 A5 PA14 D4 PA22 D12 PB14 PB22 MISO
|
||||
PA07 PA15 PA23 D13 PB15 PB23 MOSI
|
||||
|
||||
FEATHER M0:
|
||||
PA00 PA08 PA16 D11 PB00 PB08 A1
|
||||
PA01 PA09 PA17 D13 PB01 PB09 A2
|
||||
PA02 A0 PA10 TX/D1 PA18 D10 PB02 A5 PB10 MOSI
|
||||
PA03 PA11 RX/D0 PA19 D12 PB03 PB11 SCK
|
||||
PA04 A3 PA12 MISO PA20 D6 PB04 PB12
|
||||
PA05 A4 PA13 PA21 D7 PB05 PB13
|
||||
PA06 PA14 PA22 SDA PB06 PB14
|
||||
PA07 D9 PA15 D5 PA23 SCL PB07 PB15
|
||||
|
||||
FEATHER nRF52840:
|
||||
P0.00 P0.08 D12 P0.24 RXD P1.08 D5
|
||||
P0.01 P0.09 P0.25 TXD P1.09 D13
|
||||
P0.02 A4 P0.10 D2 (NFC) P0.26 D9 P1.10
|
||||
P0.03 A5 P0.11 SCL P0.27 D10 P1.11
|
||||
P0.04 A0 P0.12 SDA P0.28 A3 P1.12
|
||||
P0.05 A1 P0.13 MOSI P0.29 P1.13
|
||||
P0.06 D11 P0.14 SCK P0.30 A2 P1.14
|
||||
P0.07 D6 P0.15 MISO P0.31 P1.15
|
||||
|
||||
FEATHER ESP32:
|
||||
P0.00 P0.08 P0.16 16/RX P0.24 P1.00 32/A7
|
||||
P0.01 P0.09 P0.17 17/TX P0.25 25/A1 P1.01 33/A9/SS
|
||||
P0.02 P0.10 P0.18 18/MOSI P0.26 26/A0 P1.02 34/A2 (in)
|
||||
P0.03 P0.11 P0.19 19/MISO P0.27 27/A10 P1.03
|
||||
P0.04 4/A5 P0.12 12/A11 P0.20 P0.28 P1.04 36/A4 (in)
|
||||
P0.05 5/SCK P0.13 13/A12 P0.21 21 P0.29 P1.05
|
||||
P0.06 P0.14 14/A6 P0.22 22/SCL P0.30 P1.06
|
||||
P0.07 P0.15 15/A8 P0.23 23/SDA P0.31 P1.07 39/A3 (in)
|
||||
|
||||
GRAND CENTRAL M4: (___ = byte boundaries)
|
||||
PA00 PB00 D12 PC00 A3 PD00
|
||||
PA01 PB01 D13 (LED) PC01 A4 PD01
|
||||
PA02 A0 PB02 D9 PC02 A5 PD02
|
||||
PA03 84 (AREF) PB03 A2 PC03 A6 PD03
|
||||
PA04 A13 PB04 A7 PC04 D48 PD04
|
||||
PA05 A1 PB05 A8 PC05 D49 PD05
|
||||
PA06 A14 PB06 A9 PC06 D46 PD06
|
||||
PA07 A15 ______ PB07 A10 ______ PC07 D47 _____ PD07 __________
|
||||
PA08 PB08 A11 PC08 PD08 D51 (SCK)
|
||||
PA09 PB09 A12 PC09 PD09 D52 (MOSI)
|
||||
PA10 PB10 PC10 D45 PD10 D53
|
||||
PA11 PB11 PC11 D44 PD11 D50 (MISO)
|
||||
PA12 D26 PB12 D18 PC12 D41 PD12 D22
|
||||
PA13 D27 PB13 D19 PC13 D40 PD13
|
||||
PA14 D28 PB14 D39 PC14 D43 PD14
|
||||
PA15 D23 ______ PB15 D38 ______ PC15 D42 _____ PD15 __________
|
||||
PA16 D37 PB16 D14 PC16 D25 PD16
|
||||
PA17 D36 PB17 D15 PC17 D24 PD17
|
||||
PA18 D35 PB18 D8 PC18 D2 PD18
|
||||
PA19 D34 PB19 D29 PC19 D3 PD19
|
||||
PA20 D33 PB20 D20 (SDA) PC20 D4 PD20 D6
|
||||
PA21 D32 PB21 D21 (SCL) PC21 D5 PD21 D7
|
||||
PA22 D31 PB22 D10 PC22 D16 PD22
|
||||
PA23 D30 ______ PB23 D11 ______ PC23 D17 _____ PD23 __________
|
||||
PA24 PB24 D1
|
||||
PA25 PB25 D0
|
||||
PA26 PB26
|
||||
PA27 PB27
|
||||
PA28 PB28
|
||||
PA29 PB29
|
||||
PA30 PB30 96 (SWO)
|
||||
PA31 __________ PB31 95 (SD CD) ______________________________
|
||||
|
||||
RGB MATRIX FEATHERWING NOTES:
|
||||
R1 D6 A A5
|
||||
G1 D5 B A4
|
||||
B1 D9 C A3
|
||||
R2 D11 D A2
|
||||
G2 D10 LAT D0/RX
|
||||
B2 D12 OE D1/TX
|
||||
CLK D13
|
||||
RGB+clock fit in one PORT byte on Feather M4!
|
||||
RGB+clock are on same PORT but not within same byte on Feather M0 --
|
||||
the code could run there, but would be super RAM-inefficient. Avoid.
|
||||
Should be fine on other M0 devices like a Metro, if wiring manually
|
||||
so one can pick a contiguous byte of PORT bits.
|
||||
Original RGB Matrix FeatherWing will NOT work on Feather nRF52840
|
||||
because RGB+clock are on different PORTs. This was resolved by making
|
||||
a unique version of the FeatherWing that works with that board!
|
||||
*/
|
||||
|
|
@ -1,136 +0,0 @@
|
|||
/* ----------------------------------------------------------------------
|
||||
"Tiled" Protomatter library example sketch. Demonstrates use of multiple
|
||||
RGB LED matrices as a single larger drawing surface. This example is
|
||||
written for two 64x32 matrices (tiled into a 64x64 display) but can be
|
||||
adapted to others. If using MatrixPortal, larger multi-panel tilings like
|
||||
this should be powered from a separate 5V DC supply, not the USB port
|
||||
(this example works OK because the graphics are very minimal).
|
||||
|
||||
PLEASE SEE THE "simple" EXAMPLE FOR AN INTRODUCTORY SKETCH.
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
#include <Adafruit_Protomatter.h>
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
The RGB matrix must be wired to VERY SPECIFIC pins, different for each
|
||||
microcontroller board. This first section sets that up for a number of
|
||||
supported boards.
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
#if defined(_VARIANT_MATRIXPORTAL_M4_) // MatrixPortal M4
|
||||
uint8_t rgbPins[] = {7, 8, 9, 10, 11, 12};
|
||||
uint8_t addrPins[] = {17, 18, 19, 20};
|
||||
uint8_t clockPin = 14;
|
||||
uint8_t latchPin = 15;
|
||||
uint8_t oePin = 16;
|
||||
#elif defined(_VARIANT_FEATHER_M4_) // Feather M4 + RGB Matrix FeatherWing
|
||||
uint8_t rgbPins[] = {6, 5, 9, 11, 10, 12};
|
||||
uint8_t addrPins[] = {A5, A4, A3, A2};
|
||||
uint8_t clockPin = 13;
|
||||
uint8_t latchPin = 0;
|
||||
uint8_t oePin = 1;
|
||||
#elif defined(__SAMD51__) // M4 Metro Variants (Express, AirLift)
|
||||
uint8_t rgbPins[] = {6, 5, 9, 11, 10, 12};
|
||||
uint8_t addrPins[] = {A5, A4, A3, A2};
|
||||
uint8_t clockPin = 13;
|
||||
uint8_t latchPin = 0;
|
||||
uint8_t oePin = 1;
|
||||
#elif defined(_SAMD21_) // Feather M0 variants
|
||||
uint8_t rgbPins[] = {6, 7, 10, 11, 12, 13};
|
||||
uint8_t addrPins[] = {0, 1, 2, 3};
|
||||
uint8_t clockPin = SDA;
|
||||
uint8_t latchPin = 4;
|
||||
uint8_t oePin = 5;
|
||||
#elif defined(NRF52_SERIES) // Special nRF52840 FeatherWing pinout
|
||||
uint8_t rgbPins[] = {6, A5, A1, A0, A4, 11};
|
||||
uint8_t addrPins[] = {10, 5, 13, 9};
|
||||
uint8_t clockPin = 12;
|
||||
uint8_t latchPin = PIN_SERIAL1_RX;
|
||||
uint8_t oePin = PIN_SERIAL1_TX;
|
||||
#elif defined(ESP32)
|
||||
// 'Safe' pins, not overlapping any peripherals:
|
||||
// GPIO.out: 4, 12, 13, 14, 15, 21, 27, GPIO.out1: 32, 33
|
||||
// Peripheral-overlapping pins, sorted from 'most expendible':
|
||||
// 16, 17 (RX, TX)
|
||||
// 25, 26 (A0, A1)
|
||||
// 18, 5, 9 (MOSI, SCK, MISO)
|
||||
// 22, 23 (SCL, SDA)
|
||||
uint8_t rgbPins[] = {4, 12, 13, 14, 15, 21};
|
||||
uint8_t addrPins[] = {16, 17, 25, 26};
|
||||
uint8_t clockPin = 27; // Must be on same port as rgbPins
|
||||
uint8_t latchPin = 32;
|
||||
uint8_t oePin = 33;
|
||||
#elif defined(ARDUINO_TEENSY40)
|
||||
uint8_t rgbPins[] = {15, 16, 17, 20, 21, 22}; // A1-A3, A6-A8, skip SDA,SCL
|
||||
uint8_t addrPins[] = {2, 3, 4, 5};
|
||||
uint8_t clockPin = 23; // A9
|
||||
uint8_t latchPin = 6;
|
||||
uint8_t oePin = 9;
|
||||
#elif defined(ARDUINO_TEENSY41)
|
||||
uint8_t rgbPins[] = {26, 27, 38, 20, 21, 22}; // A12-14, A6-A8
|
||||
uint8_t addrPins[] = {2, 3, 4, 5};
|
||||
uint8_t clockPin = 23; // A9
|
||||
uint8_t latchPin = 6;
|
||||
uint8_t oePin = 9;
|
||||
#endif
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
Matrix initialization is explained EXTENSIVELY in "simple" example sketch!
|
||||
It's very similar here, but we're passing an extra argument to define the
|
||||
matrix tiling along the vertical axis: -2 means there are two matrices
|
||||
(or rows of matrices) arranged in a "serpentine" path (the second matrix
|
||||
is rotated 180 degrees relative to the first, and positioned below).
|
||||
A positive 2 would indicate a "progressive" path (both matrices are
|
||||
oriented the same way), but usually requires longer cables.
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
Adafruit_Protomatter matrix(
|
||||
64, // Width of matrix (or matrices, if tiled horizontally)
|
||||
6, // Bit depth, 1-6
|
||||
1, rgbPins, // # of matrix chains, array of 6 RGB pins for each
|
||||
4, addrPins, // # of address pins (height is inferred), array of pins
|
||||
clockPin, latchPin, oePin, // Other matrix control pins
|
||||
false, // No double-buffering here (see "doublebuffer" example)
|
||||
-2); // Row tiling: two rows in "serpentine" path
|
||||
|
||||
// SETUP - RUNS ONCE AT PROGRAM START --------------------------------------
|
||||
|
||||
void setup(void) {
|
||||
Serial.begin(9600);
|
||||
|
||||
// Initialize matrix...
|
||||
ProtomatterStatus status = matrix.begin();
|
||||
Serial.print("Protomatter begin() status: ");
|
||||
Serial.println((int)status);
|
||||
if(status != PROTOMATTER_OK) {
|
||||
// DO NOT CONTINUE if matrix setup encountered an error.
|
||||
for(;;);
|
||||
}
|
||||
|
||||
// Since this program has no animation, all the drawing can be done
|
||||
// here in setup() rather than loop(). It's just a few basic shapes
|
||||
// that span across the matrices...nothing showy, the goal of this
|
||||
// sketch is just to demonstrate tiling basics.
|
||||
|
||||
matrix.drawLine(0, 0, matrix.width() - 1, matrix.height() - 1,
|
||||
matrix.color565(255, 0, 0)); // Red line
|
||||
matrix.drawLine(matrix.width() - 1, 0, 0, matrix.height() - 1,
|
||||
matrix.color565(0, 0, 255)); // Blue line
|
||||
int radius = min(matrix.width(), matrix.height()) / 2;
|
||||
matrix.drawCircle(matrix.width() / 2, matrix.height() / 2, radius,
|
||||
matrix.color565(0, 255, 0)); // Green circle
|
||||
|
||||
// AFTER DRAWING, A show() CALL IS REQUIRED TO UPDATE THE MATRIX!
|
||||
|
||||
matrix.show(); // Copy data to matrix buffers
|
||||
}
|
||||
|
||||
// LOOP - RUNS REPEATEDLY AFTER SETUP --------------------------------------
|
||||
|
||||
void loop(void) {
|
||||
// Since there's nothing more to be drawn, this loop() function just
|
||||
// prints the approximate refresh rate of the matrix at current settings.
|
||||
Serial.print("Refresh FPS = ~");
|
||||
Serial.println(matrix.getFrameCount());
|
||||
delay(1000);
|
||||
}
|
||||
|
|
@ -1,10 +1,10 @@
|
|||
name=Adafruit Protomatter
|
||||
version=1.1.0
|
||||
version=0.0.0
|
||||
author=Adafruit
|
||||
maintainer=Adafruit <info@adafruit.com>
|
||||
sentence=A library for Adafruit RGB LED matrices.
|
||||
sentence=This is a library for the Adafruit RGB LED matrix.
|
||||
paragraph=RGB LED matrix.
|
||||
category=Display
|
||||
url=https://github.com/adafruit/Adafruit_protomatter
|
||||
architectures=samd,nrf52,stm32,esp32
|
||||
depends=Adafruit GFX Library, Adafruit LIS3DH, Adafruit PixelDust, AnimatedGIF, Adafruit SPIFlash, Adafruit TinyUSB Library
|
||||
architectures=*
|
||||
depends=Adafruit GFX Library
|
||||
|
|
|
|||
|
|
@ -1,141 +0,0 @@
|
|||
/*!
|
||||
* @file Adafruit_Protomatter.cpp
|
||||
*
|
||||
* @mainpage Adafruit Protomatter RGB LED matrix library.
|
||||
*
|
||||
* @section intro_sec Introduction
|
||||
*
|
||||
* This is documentation for Adafruit's protomatter library for HUB75-style
|
||||
* RGB LED matrices. It is designed to work with various matrices sold by
|
||||
* Adafruit ("HUB75" is a vague term and other similar matrices are not
|
||||
* guaranteed to work). This file is the Arduino-specific calls; the
|
||||
* underlying C code is more platform-neutral.
|
||||
*
|
||||
* Adafruit invests time and resources providing this open source code,
|
||||
* please support Adafruit and open-source hardware by purchasing products
|
||||
* from Adafruit!
|
||||
*
|
||||
* @section dependencies Dependencies
|
||||
*
|
||||
* This library depends on
|
||||
* <a href="https://github.com/adafruit/Adafruit-GFX-Library">Adafruit_GFX</a>
|
||||
* being present on your system. Please make sure you have installed the
|
||||
* latest version before using this library.
|
||||
*
|
||||
* @section author Author
|
||||
*
|
||||
* Written by Phil "Paint Your Dragon" Burgess and Jeff Epler for
|
||||
* Adafruit Industries, with contributions from the open source community.
|
||||
*
|
||||
* @section license License
|
||||
*
|
||||
* BSD license, all text here must be included in any redistribution.
|
||||
*
|
||||
*/
|
||||
|
||||
// Arduino-specific wrapper for the Protomatter C library (provides
|
||||
// constructor and so forth, builds on Adafruit_GFX). There should
|
||||
// not be any device-specific #ifdefs here. See notes in core.c and
|
||||
// arch/arch.h regarding portability.
|
||||
|
||||
#include "Adafruit_Protomatter.h" // Also includes core.h & Adafruit_GFX.h
|
||||
|
||||
extern Protomatter_core *_PM_protoPtr; ///< In core.c (via arch.h)
|
||||
|
||||
Adafruit_Protomatter::Adafruit_Protomatter(uint16_t bitWidth, uint8_t bitDepth,
|
||||
uint8_t rgbCount, uint8_t *rgbList,
|
||||
uint8_t addrCount, uint8_t *addrList,
|
||||
uint8_t clockPin, uint8_t latchPin,
|
||||
uint8_t oePin, bool doubleBuffer,
|
||||
int8_t tile, void *timer)
|
||||
: GFXcanvas16(bitWidth, (2 << min((int)addrCount, 5)) *
|
||||
min((int)rgbCount, 5) *
|
||||
(tile ? abs(tile) : 1)) {
|
||||
if (bitDepth > 6)
|
||||
bitDepth = 6; // GFXcanvas16 color limit (565)
|
||||
|
||||
// Arguments are passed through to the C _PM_init() function which does
|
||||
// some input validation and minor allocation. Return value is ignored
|
||||
// because we can't really do anything about it in a C++ constructor.
|
||||
// The class begin() function checks rgbPins for NULL to determine
|
||||
// whether to proceed or indicate an error.
|
||||
(void)_PM_init(&core, bitWidth, bitDepth, rgbCount, rgbList, addrCount,
|
||||
addrList, clockPin, latchPin, oePin, doubleBuffer, tile,
|
||||
timer);
|
||||
}
|
||||
|
||||
Adafruit_Protomatter::~Adafruit_Protomatter(void) {
|
||||
_PM_deallocate(&core);
|
||||
_PM_protoPtr = NULL;
|
||||
}
|
||||
|
||||
ProtomatterStatus Adafruit_Protomatter::begin(void) {
|
||||
_PM_protoPtr = &core;
|
||||
return _PM_begin(&core);
|
||||
}
|
||||
|
||||
// Transfer data from GFXcanvas16 to the matrix framebuffer's weird
|
||||
// internal format. The actual conversion functions referenced below
|
||||
// are in core.c, reasoning is explained there.
|
||||
void Adafruit_Protomatter::show(void) {
|
||||
_PM_convert_565(&core, getBuffer(), WIDTH);
|
||||
_PM_swapbuffer_maybe(&core);
|
||||
}
|
||||
|
||||
// Returns current value of frame counter and resets its value to zero.
|
||||
// Two calls to this, timed one second apart (or use math with other
|
||||
// intervals), can be used to get a rough frames-per-second value for
|
||||
// the matrix (since this is difficult to estimate beforehand).
|
||||
uint32_t Adafruit_Protomatter::getFrameCount(void) {
|
||||
return _PM_getFrameCount(_PM_protoPtr);
|
||||
}
|
||||
|
||||
// This is based on the HSV function in Adafruit_NeoPixel.cpp, but with
|
||||
// 16-bit RGB565 output for GFX lib rather than 24-bit. See that code for
|
||||
// an explanation of the math, this is stripped of comments for brevity.
|
||||
uint16_t Adafruit_Protomatter::colorHSV(uint16_t hue, uint8_t sat,
|
||||
uint8_t val) {
|
||||
uint8_t r, g, b;
|
||||
|
||||
hue = (hue * 1530L + 32768) / 65536;
|
||||
|
||||
if (hue < 510) { // Red to Green-1
|
||||
b = 0;
|
||||
if (hue < 255) { // Red to Yellow-1
|
||||
r = 255;
|
||||
g = hue; // g = 0 to 254
|
||||
} else { // Yellow to Green-1
|
||||
r = 510 - hue; // r = 255 to 1
|
||||
g = 255;
|
||||
}
|
||||
} else if (hue < 1020) { // Green to Blue-1
|
||||
r = 0;
|
||||
if (hue < 765) { // Green to Cyan-1
|
||||
g = 255;
|
||||
b = hue - 510; // b = 0 to 254
|
||||
} else { // Cyan to Blue-1
|
||||
g = 1020 - hue; // g = 255 to 1
|
||||
b = 255;
|
||||
}
|
||||
} else if (hue < 1530) { // Blue to Red-1
|
||||
g = 0;
|
||||
if (hue < 1275) { // Blue to Magenta-1
|
||||
r = hue - 1020; // r = 0 to 254
|
||||
b = 255;
|
||||
} else { // Magenta to Red-1
|
||||
r = 255;
|
||||
b = 1530 - hue; // b = 255 to 1
|
||||
}
|
||||
} else { // Last 0.5 Red (quicker than % operator)
|
||||
r = 255;
|
||||
g = b = 0;
|
||||
}
|
||||
|
||||
// Apply saturation and value to R,G,B, pack into 16-bit 'RGB565' result:
|
||||
uint32_t v1 = 1 + val; // 1 to 256; allows >>8 instead of /255
|
||||
uint16_t s1 = 1 + sat; // 1 to 256; same reason
|
||||
uint8_t s2 = 255 - sat; // 255 to 0
|
||||
return (((((r * s1) >> 8) + s2) * v1) & 0xF800) |
|
||||
((((((g * s1) >> 8) + s2) * v1) & 0xFC00) >> 5) |
|
||||
(((((b * s1) >> 8) + s2) * v1) >> 11);
|
||||
}
|
||||
|
|
@ -1,152 +0,0 @@
|
|||
// Arduino-specific header, accompanies Adafruit_Protomatter.cpp.
|
||||
// There should not be any device-specific #ifdefs here.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "core.h"
|
||||
#include <Adafruit_GFX.h>
|
||||
|
||||
/*!
|
||||
@brief Class representing the Arduino-facing side of the Protomatter
|
||||
library. Subclass of Adafruit_GFX's GFXcanvas16 to allow all
|
||||
the drawing operations.
|
||||
*/
|
||||
class Adafruit_Protomatter : public GFXcanvas16 {
|
||||
public:
|
||||
/*!
|
||||
@brief Adafruit_Protomatter constructor.
|
||||
@param bitWidth Total width of RGB matrix chain, in pixels.
|
||||
Usu. some multiple of 32, but maybe exceptions.
|
||||
@param bitDepth Color "depth" in bitplanes, determines range of
|
||||
shades of red, green and blue. e.g. passing 4
|
||||
bits = 16 shades ea. R,G,B = 16x16x16 = 4096
|
||||
colors. Max is 6, since the GFX library works
|
||||
with "565" RGB colors (6 bits green, 5 red/blue).
|
||||
@param rgbCount Number of "sets" of RGB data pins, each set
|
||||
containing 6 pins (2 ea. R,G,B). Typically 1,
|
||||
indicating a single matrix (or matrix chain).
|
||||
In theory (but not yet extensively tested),
|
||||
multiple sets of pins can be driven in parallel,
|
||||
up to 5 on some devices (if the hardware design
|
||||
provides all those bits on one PORT).
|
||||
@param rgbList A uint8_t array of pins (Arduino pin numbering),
|
||||
6X the prior rgbCount value, corresponding to
|
||||
the 6 output color bits for a matrix (or chain).
|
||||
Order is upper-half red, green, blue, lower-half
|
||||
red, green blue (repeat for each add'l chain).
|
||||
All the RGB pins (plus the clock pin below on
|
||||
some architectures) MUST be on the same PORT
|
||||
register. It's recommended (but not required)
|
||||
that all RGB pins (and clock depending on arch)
|
||||
be within the same byte of a PORT (but do not
|
||||
need to be sequential or contiguous within that
|
||||
byte) for more efficient RAM utilization. For
|
||||
two concurrent chains, same principle but 16-bit
|
||||
word instead of byte.
|
||||
@param addrCount Number of row address lines required of matrix.
|
||||
Total pixel height is then 2 x 2^addrCount, e.g.
|
||||
32-pixel-tall matrices have 4 row address lines.
|
||||
@param addrList A uint8_t array of pins (Arduino pin numbering),
|
||||
one per row address line.
|
||||
@param clockPin RGB clock pin (Arduino pin #).
|
||||
@param latchPin RGB data latch pin (Arduino pin #).
|
||||
@param oePin Output enable pin (Arduino pin #), active low.
|
||||
@param doubleBuffer If true, two matrix buffers are allocated,
|
||||
so changing display contents doesn't introduce
|
||||
artifacts mid-conversion. Requires ~2X RAM.
|
||||
@param tile If multiple matrices are chained and stacked
|
||||
vertically (rather than or in addition to
|
||||
horizontally), the number of vertical tiles is
|
||||
specified here. Positive values indicate a
|
||||
"progressive" arrangement (always left-to-right),
|
||||
negative for a "serpentine" arrangement (alternating
|
||||
180 degree orientation). Horizontal tiles are implied
|
||||
in the 'bitWidth' argument.
|
||||
@param timer Pointer to timer peripheral or timer-related
|
||||
struct (architecture-dependent), or NULL to
|
||||
use a default timer ID (also arch-dependent).
|
||||
*/
|
||||
Adafruit_Protomatter(uint16_t bitWidth, uint8_t bitDepth, uint8_t rgbCount,
|
||||
uint8_t *rgbList, uint8_t addrCount, uint8_t *addrList,
|
||||
uint8_t clockPin, uint8_t latchPin, uint8_t oePin,
|
||||
bool doubleBuffer, int8_t tile = 1, void *timer = NULL);
|
||||
~Adafruit_Protomatter(void);
|
||||
|
||||
/*!
|
||||
@brief Start a Protomatter matrix display running -- initialize
|
||||
pins, timer and interrupt into existence.
|
||||
@return A ProtomatterStatus status, one of:
|
||||
PROTOMATTER_OK if everything is good.
|
||||
PROTOMATTER_ERR_PINS if data and/or clock pins are split
|
||||
across different PORTs.
|
||||
PROTOMATTER_ERR_MALLOC if insufficient RAM to allocate
|
||||
display memory.
|
||||
PROTOMATTER_ERR_ARG if a bad value was passed to the
|
||||
constructor.
|
||||
*/
|
||||
ProtomatterStatus begin(void);
|
||||
|
||||
/*!
|
||||
@brief Process data from GFXcanvas16 to the matrix framebuffer's
|
||||
internal format for display.
|
||||
*/
|
||||
void show(void);
|
||||
|
||||
/*!
|
||||
@brief Disable (but do not deallocate) a Protomatter matrix.
|
||||
*/
|
||||
void stop(void) { _PM_stop(&core); }
|
||||
|
||||
/*!
|
||||
@brief Resume a previously-stopped matrix.
|
||||
*/
|
||||
void resume(void) { _PM_resume(&core); }
|
||||
|
||||
/*!
|
||||
@brief Returns current value of frame counter and resets its value
|
||||
to zero. Two calls to this, timed one second apart (or use
|
||||
math with other intervals), can be used to get a rough
|
||||
frames-per-second value for the matrix (since this is
|
||||
difficult to estimate beforehand).
|
||||
@return Frame count since previous call to function, as a uint32_t.
|
||||
*/
|
||||
uint32_t getFrameCount(void);
|
||||
|
||||
/*!
|
||||
@brief Converts 24-bit color (8 bits red, green, blue) used in a lot
|
||||
a lot of existing graphics code down to the "565" color format
|
||||
used by Adafruit_GFX. Might get further quantized by matrix if
|
||||
using less than 6-bit depth.
|
||||
@param red Red brightness, 0 (min) to 255 (max).
|
||||
@param green Green brightness, 0 (min) to 255 (max).
|
||||
@param blue Blue brightness, 0 (min) to 255 (max).
|
||||
@return Packed 16-bit (uint16_t) color value suitable for GFX drawing
|
||||
functions.
|
||||
*/
|
||||
uint16_t color565(uint8_t red, uint8_t green, uint8_t blue) {
|
||||
return ((red & 0xF8) << 8) | ((green & 0xFC) << 3) | (blue >> 3);
|
||||
}
|
||||
|
||||
/*!
|
||||
@brief Convert hue, saturation and value into a packed 16-bit RGB color
|
||||
that can be passed to GFX drawing functions.
|
||||
@param hue An unsigned 16-bit value, 0 to 65535, representing one full
|
||||
loop of the color wheel, which allows 16-bit hues to "roll
|
||||
over" while still doing the expected thing (and allowing
|
||||
more precision than the wheel() function that was common to
|
||||
older graphics examples).
|
||||
@param sat Saturation, 8-bit value, 0 (min or pure grayscale) to 255
|
||||
(max or pure hue). Default of 255 if unspecified.
|
||||
@param val Value (brightness), 8-bit value, 0 (min / black / off) to
|
||||
255 (max or full brightness). Default of 255 if unspecified.
|
||||
@return Packed 16-bit '565' RGB color. Result is linearly but not
|
||||
perceptually correct (no gamma correction).
|
||||
*/
|
||||
uint16_t colorHSV(uint16_t hue, uint8_t sat = 255, uint8_t val = 255);
|
||||
|
||||
private:
|
||||
Protomatter_core core; // Underlying C struct
|
||||
void convert_byte(uint8_t *dest); // GFXcanvas16-to-matrix
|
||||
void convert_word(uint16_t *dest); // conversion functions
|
||||
void convert_long(uint32_t *dest); // for 8/16/32 bit bufs
|
||||
};
|
||||
209
src/arch/arch.h
209
src/arch/arch.h
|
|
@ -1,209 +0,0 @@
|
|||
/*!
|
||||
* @file arch.h
|
||||
*
|
||||
* Part of Adafruit's Protomatter library for HUB75-style RGB LED matrices.
|
||||
* This file establishes some very low-level things and includes headers
|
||||
* specific to each supported device. This should ONLY be included by
|
||||
* core.c, nowhere else. Ever.
|
||||
*
|
||||
* Adafruit invests time and resources providing this open source code,
|
||||
* please support Adafruit and open-source hardware by purchasing
|
||||
* products from Adafruit!
|
||||
*
|
||||
* Written by Phil "Paint Your Dragon" Burgess and Jeff Epler for
|
||||
* Adafruit Industries, with contributions from the open source community.
|
||||
*
|
||||
* BSD license, all text here must be included in any redistribution.
|
||||
*
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <string.h>
|
||||
|
||||
/*
|
||||
Common ground for architectures to support this library:
|
||||
|
||||
- 32-bit device (e.g. ARM core, ESP32, potentially others in the future)
|
||||
- One or more 32-bit GPIO PORTs with atomic bitmask SET and CLEAR registers.
|
||||
A TOGGLE register, if present, may improve performance but is NOT required.
|
||||
- Tolerate 8-bit or word-aligned 16-bit accesses within the 32-bit PORT
|
||||
registers (e.g. writing just one of four bytes, rather than the whole
|
||||
32 bits). The library does not use any unaligned accesses (i.e. the
|
||||
"middle word" of a 32-bit register), even if a device tolerates such.
|
||||
|
||||
"Pin" as used in this code is always a uint8_t value, but the semantics
|
||||
of what it means may vary between Arduino and non-Arduino situations.
|
||||
In Arduino, it's the pin index one would pass to functions such as
|
||||
digitalWrite(), and doesn't necessarily correspond to physical hardware
|
||||
pins or any other arrangement. Some may have names like 'A0' that really
|
||||
just map to higher indices.
|
||||
In non-Arduino settings (CircuitPython, other languages, etc.), how a
|
||||
pin index relates to hardware is entirely implementation dependent, and
|
||||
how to get from one to the other is what must be implemented in this file.
|
||||
Quite often an environment will follow the Arduino pin designations
|
||||
(since the numbers are on a board's silkscreen) and will have an internal
|
||||
table mapping those indices to registers and bitmasks...but probably not
|
||||
an identically-named and -structured table to the Arduino code, hence the
|
||||
reason for many "else" situations in this code.
|
||||
|
||||
Each architecture defines the following macros and/or functions (the _PM_
|
||||
prefix on each is to reduce likelihood of naming collisions...especially
|
||||
on ESP32, which has some similarly-named timer functions:
|
||||
|
||||
GPIO-related macros/functions:
|
||||
|
||||
_PM_portOutRegister(pin): Get address of PORT out register. Code calling
|
||||
this can cast it to whatever type's needed.
|
||||
_PM_portSetRegister(pin): Get address of PORT set-bits register.
|
||||
_PM_portClearRegister(pin): Get address of PORT clear-bits register.
|
||||
_PM_portToggleRegister(pin): Get address of PORT toggle-bits register.
|
||||
Not all devices support this, in which case
|
||||
it must be left undefined.
|
||||
_PM_portBitMask(pin): Get bit mask within PORT register corresponding
|
||||
to a pin number. When compiling for Arduino,
|
||||
this just maps to digitalPinToBitMask(), other
|
||||
environments will need an equivalent.
|
||||
_PM_byteOffset(pin): Get index of byte (0 to 3) within 32-bit PORT
|
||||
corresponding to a pin number.
|
||||
_PM_wordOffset(pin): Get index of word (0 or 1) within 32-bit PORT
|
||||
corresponding to a pin number.
|
||||
_PM_pinOutput(pin): Set a pin to output mode. In Arduino this maps
|
||||
to pinMode(pin, OUTPUT). Other environments
|
||||
will need an equivalent.
|
||||
_PM_pinInput(pin): Set a pin to input mode, no pullup. In Arduino
|
||||
this maps to pinMode(pin, INPUT).
|
||||
_PM_pinHigh(pin): Set an output pin to a high or 1 state. In
|
||||
Arduino this maps to digitalWrite(pin, HIGH).
|
||||
_PM_pinLow(pin): Set an output pin to a low or 0 state. In
|
||||
Arduino this maps to digitalWrite(pin, LOW).
|
||||
|
||||
Timer-related macros/functions:
|
||||
|
||||
_PM_timerFreq: A numerical constant - the source clock rate
|
||||
(in Hz) that's fed to the timer peripheral.
|
||||
_PM_timerInit(void*): Initialize (but do not start) timer.
|
||||
_PM_timerStart(void*,count): (Re)start timer for a given timer-tick interval.
|
||||
_PM_timerStop(void*): Stop timer, return current timer counter value.
|
||||
_PM_timerGetCount(void*): Get current timer counter value (whether timer
|
||||
is running or stopped).
|
||||
A timer interrupt service routine is also required, syntax for which varies
|
||||
between architectures.
|
||||
The void* argument passed to the timer functions is some indeterminate type
|
||||
used to uniquely identify a timer peripheral within a given environment. For
|
||||
example, in the Arduino wrapper for this library, compiling for SAMD chips,
|
||||
it's just a pointer directly to a timer/counter peripheral base address. If
|
||||
an implementation needs more data associated alongside a peripheral, this
|
||||
could instead be a pointer to a struct, or an integer index.
|
||||
|
||||
Other macros/functions:
|
||||
|
||||
_PM_chunkSize: Matrix bitmap width (both in RAM and as issued
|
||||
to the device) is rounded up (if necessary) to
|
||||
a multiple of this value as a way of explicitly
|
||||
unrolling the innermost data-stuffing loops.
|
||||
So far all HUB75 displays I've encountered are
|
||||
a multiple of 32 pixels wide, but in case
|
||||
something new comes along, or if a larger
|
||||
unroll actually decreases performance due to
|
||||
cache size, this can be set to whatever works
|
||||
best (any additional data is simply shifted
|
||||
out the other end of the matrix). Default if
|
||||
unspecified is 8 (e.g. four loop passes on a
|
||||
32-pixel matrix, eight if 64-pixel). Only
|
||||
certain chunkSizes are actually implemented,
|
||||
see .cpp code (avoiding GCC-specific tricks
|
||||
that would handle arbitrary chunk sizes).
|
||||
_PM_delayMicroseconds(us): Function or macro to delay some number of
|
||||
microseconds. For Arduino, this just maps to
|
||||
delayMicroseconds(). Other environments will
|
||||
need to provide their own or map to an
|
||||
an equivalent function.
|
||||
_PM_clockHoldHigh: Additional code (typically some number of NOPs)
|
||||
needed to delay the clock fall after RGB data is
|
||||
written to PORT. Only required on fast devices.
|
||||
If left undefined, no delay happens.
|
||||
_PM_clockHoldLow: Additional code (e.g. NOPs) needed to delay
|
||||
clock rise after writing RGB data to PORT.
|
||||
No delay if left undefined.
|
||||
_PM_minMinPeriod: Mininum value for the "minPeriod" class member,
|
||||
so bit-angle-modulation time always doubles with
|
||||
each bitplane (else lower bits may be the same).
|
||||
_PM_allocate: Memory allocation function, should return a
|
||||
pointer to a buffer of requested size, aligned
|
||||
to the architecture's largest native type.
|
||||
If not defined, malloc() is used.
|
||||
_PM_free: Corresponding deallocator for _PM_allocate().
|
||||
If not defined, free() is used.
|
||||
*/
|
||||
|
||||
// ENVIRONMENT-SPECIFIC DECLARATIONS ---------------------------------------
|
||||
|
||||
#if defined(ARDUINO) // COMPILING FOR ARDUINO ------------------------------
|
||||
|
||||
#include <Arduino.h> // Pull in all that stuff.
|
||||
|
||||
#define _PM_delayMicroseconds(us) delayMicroseconds(us)
|
||||
#define _PM_pinOutput(pin) pinMode(pin, OUTPUT)
|
||||
#define _PM_pinInput(pin) pinMode(pin, INPUT)
|
||||
#define _PM_pinHigh(pin) digitalWrite(pin, HIGH)
|
||||
#define _PM_pinLow(pin) digitalWrite(pin, LOW)
|
||||
#define _PM_portBitMask(pin) digitalPinToBitMask(pin)
|
||||
|
||||
#elif defined(CIRCUITPY) // COMPILING FOR CIRCUITPYTHON --------------------
|
||||
|
||||
#include "py/mphal.h"
|
||||
#include "shared-bindings/microcontroller/Pin.h"
|
||||
|
||||
#define _PM_delayMicroseconds(us) mp_hal_delay_us(us)
|
||||
|
||||
// No #else here. In non-Arduino case, declare things in the arch-specific
|
||||
// files below...unless other environments provide device-neutral functions
|
||||
// as above, in which case those could go here (w/#elif).
|
||||
|
||||
#endif // END CIRCUITPYTHON ------------------------------------------------
|
||||
|
||||
// ARCHITECTURE-SPECIFIC HEADERS -------------------------------------------
|
||||
|
||||
#include "esp32.h"
|
||||
#include "nrf52.h"
|
||||
#include "rp2040.h"
|
||||
#include "samd-common.h"
|
||||
#include "samd21.h"
|
||||
#include "samd51.h"
|
||||
#include "stm32.h"
|
||||
#include "teensy4.h"
|
||||
|
||||
// DEFAULTS IF NOT DEFINED ABOVE -------------------------------------------
|
||||
|
||||
#if !defined(_PM_chunkSize)
|
||||
#define _PM_chunkSize 8 ///< Unroll data-stuffing loop to this size
|
||||
#endif
|
||||
|
||||
#if !defined(_PM_clockHoldHigh)
|
||||
#define _PM_clockHoldHigh ///< Extra cycles (if any) on clock HIGH signal
|
||||
#endif
|
||||
|
||||
#if !defined(_PM_clockHoldLow)
|
||||
#define _PM_clockHoldLow ///< Extra cycles (if any) on clock LOW signal
|
||||
#endif
|
||||
|
||||
#if !defined(_PM_minMinPeriod)
|
||||
#define _PM_minMinPeriod 100 ///< Minimum timer interval for least bit
|
||||
#endif
|
||||
|
||||
#if !defined(_PM_allocate)
|
||||
#define _PM_allocate(x) (malloc((x))) ///< Memory alloc call
|
||||
#endif
|
||||
|
||||
#if !defined(_PM_free)
|
||||
#define _PM_free(x) (free((x))) ///< Corresponding memory free call
|
||||
#endif
|
||||
|
||||
#if !defined(IRAM_ATTR)
|
||||
#define IRAM_ATTR ///< Neutralize ESP32-specific attribute in core.c
|
||||
#endif
|
||||
|
||||
#if !defined(_PM_PORT_TYPE)
|
||||
#define _PM_PORT_TYPE uint32_t ///< PORT register size/type
|
||||
#endif
|
||||
123
src/arch/esp32.h
123
src/arch/esp32.h
|
|
@ -1,123 +0,0 @@
|
|||
/*!
|
||||
* @file esp32.h
|
||||
*
|
||||
* Part of Adafruit's Protomatter library for HUB75-style RGB LED matrices.
|
||||
* This file contains ESP32-SPECIFIC CODE.
|
||||
*
|
||||
* Adafruit invests time and resources providing this open source code,
|
||||
* please support Adafruit and open-source hardware by purchasing
|
||||
* products from Adafruit!
|
||||
*
|
||||
* Written by Phil "Paint Your Dragon" Burgess and Jeff Epler for
|
||||
* Adafruit Industries, with contributions from the open source community.
|
||||
*
|
||||
* BSD license, all text here must be included in any redistribution.
|
||||
*
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#if defined(ESP32)
|
||||
|
||||
#if defined(ARDUINO) // COMPILING FOR ARDUINO ------------------------------
|
||||
|
||||
#include "driver/timer.h"
|
||||
|
||||
#define _PM_portOutRegister(pin) \
|
||||
(volatile uint32_t *)((pin < 32) ? &GPIO.out : &GPIO.out1.val)
|
||||
|
||||
#define _PM_portSetRegister(pin) \
|
||||
(volatile uint32_t *)((pin < 32) ? &GPIO.out_w1ts : &GPIO.out1_w1ts.val)
|
||||
|
||||
#define _PM_portClearRegister(pin) \
|
||||
(volatile uint32_t *)((pin < 32) ? &GPIO.out_w1tc : &GPIO.out1_w1tc.val)
|
||||
|
||||
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
|
||||
#define _PM_byteOffset(pin) ((pin & 31) / 8)
|
||||
#define _PM_wordOffset(pin) ((pin & 31) / 16)
|
||||
#else
|
||||
#define _PM_byteOffset(pin) (3 - ((pin & 31) / 8))
|
||||
#define _PM_wordOffset(pin) (1 - ((pin & 31) / 16))
|
||||
#endif
|
||||
|
||||
// ESP32 requires a custom PEW declaration (issues one set of RGB color bits
|
||||
// followed by clock pulse). Turns out the bit set/clear registers are not
|
||||
// actually atomic. If two writes are made in quick succession, the second
|
||||
// has no effect. One option is NOPs, other is to write a 0 (no effect) to
|
||||
// the opposing register (set vs clear) to synchronize the next write.
|
||||
#define PEW \
|
||||
*set = *data++; /* Set RGB data high */ \
|
||||
*clear_full = 0; /* ESP32 MUST sync before 2nd 'set' */ \
|
||||
*set_full = clock; /* Set clock high */ \
|
||||
*clear_full = rgbclock; /* Clear RGB data + clock */ \
|
||||
///< Bitbang one set of RGB data bits to matrix
|
||||
|
||||
// As written, because it's tied to a specific timer right now, the
|
||||
// Arduino lib only permits one instance of the Protomatter_core struct,
|
||||
// which it sets up when calling begin().
|
||||
void *_PM_protoPtr = NULL;
|
||||
|
||||
#define _PM_timerFreq 40000000 // 40 MHz (1:2 prescale)
|
||||
#define _PM_timerNum 0 // Timer #0 (can be 0-3)
|
||||
|
||||
// This is the default aforementioned singular timer. IN THEORY, other
|
||||
// timers could be used, IF an Arduino sketch passes the address of its
|
||||
// own hw_timer_t* to the Protomatter constructor and initializes that
|
||||
// timer using ESP32's timerBegin(). All of the timer-related functions
|
||||
// below pass around a handle rather than accessing _PM_esp32timer
|
||||
// directly, in case that's ever actually used in the future.
|
||||
static hw_timer_t *_PM_esp32timer = NULL;
|
||||
#define _PM_TIMER_DEFAULT &_PM_esp32timer
|
||||
|
||||
extern IRAM_ATTR void _PM_row_handler(Protomatter_core *core);
|
||||
|
||||
// Timer interrupt handler. This, _PM_row_handler() and any functions
|
||||
// called by _PM_row_handler() should all have the IRAM_ATTR attribute
|
||||
// (RAM-resident functions). This isn't really the ISR itself, but a
|
||||
// callback invoked by the real ISR (in arduino-esp32's esp32-hal-timer.c)
|
||||
// which takes care of interrupt status bits & such.
|
||||
IRAM_ATTR static void _PM_esp32timerCallback(void) {
|
||||
_PM_row_handler(_PM_protoPtr); // In core.c
|
||||
}
|
||||
|
||||
// Initialize, but do not start, timer.
|
||||
void _PM_timerInit(void *tptr) {
|
||||
hw_timer_t **timer = (hw_timer_t **)tptr; // pointer-to-pointer
|
||||
if (timer == _PM_TIMER_DEFAULT) {
|
||||
*timer = timerBegin(_PM_timerNum, 2, true); // 1:2 prescale, count up
|
||||
}
|
||||
timerAttachInterrupt(*timer, &_PM_esp32timerCallback, true);
|
||||
}
|
||||
|
||||
// Set timer period, initialize count value to zero, enable timer.
|
||||
IRAM_ATTR inline void _PM_timerStart(void *tptr, uint32_t period) {
|
||||
hw_timer_t *timer = *(hw_timer_t **)tptr;
|
||||
timerAlarmWrite(timer, period, true);
|
||||
timerAlarmEnable(timer);
|
||||
timerStart(timer);
|
||||
}
|
||||
|
||||
// Return current count value (timer enabled or not).
|
||||
// Timer must be previously initialized.
|
||||
IRAM_ATTR inline uint32_t _PM_timerGetCount(void *tptr) {
|
||||
hw_timer_t *timer = *(hw_timer_t **)tptr;
|
||||
return (uint32_t)timerRead(timer);
|
||||
}
|
||||
|
||||
// Disable timer and return current count value.
|
||||
// Timer must be previously initialized.
|
||||
IRAM_ATTR uint32_t _PM_timerStop(void *tptr) {
|
||||
hw_timer_t *timer = *(hw_timer_t **)tptr;
|
||||
timerStop(timer);
|
||||
return _PM_timerGetCount(tptr);
|
||||
}
|
||||
|
||||
#elif defined(CIRCUITPY) // COMPILING FOR CIRCUITPYTHON --------------------
|
||||
|
||||
// ESP32 CircuitPython magic goes here. If any of the above Arduino-specific
|
||||
// defines, structs or functions are useful as-is, don't copy them, just
|
||||
// move them above the ARDUINO check so fixes/changes carry over, thx.
|
||||
|
||||
#endif // END CIRCUITPYTHON ------------------------------------------------
|
||||
|
||||
#endif // END ESP32
|
||||
216
src/arch/nrf52.h
216
src/arch/nrf52.h
|
|
@ -1,216 +0,0 @@
|
|||
/*!
|
||||
* @file nrf52.h
|
||||
*
|
||||
* Part of Adafruit's Protomatter library for HUB75-style RGB LED matrices.
|
||||
* This file contains NRF52-SPECIFIC CODE.
|
||||
*
|
||||
* Adafruit invests time and resources providing this open source code,
|
||||
* please support Adafruit and open-source hardware by purchasing
|
||||
* products from Adafruit!
|
||||
*
|
||||
* Written by Phil "Paint Your Dragon" Burgess and Jeff Epler for
|
||||
* Adafruit Industries, with contributions from the open source community.
|
||||
*
|
||||
* BSD license, all text here must be included in any redistribution.
|
||||
*
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#if defined(NRF52_SERIES)
|
||||
|
||||
#if defined(ARDUINO) // COMPILING FOR ARDUINO ------------------------------
|
||||
|
||||
// digitalPinToPort, g_ADigitalPinMap[] are Arduino specific:
|
||||
|
||||
void *_PM_portOutRegister(uint32_t pin) {
|
||||
NRF_GPIO_Type *port = digitalPinToPort(pin);
|
||||
return &port->OUT;
|
||||
}
|
||||
|
||||
void *_PM_portSetRegister(uint32_t pin) {
|
||||
NRF_GPIO_Type *port = digitalPinToPort(pin);
|
||||
return &port->OUTSET;
|
||||
}
|
||||
|
||||
void *_PM_portClearRegister(uint32_t pin) {
|
||||
NRF_GPIO_Type *port = digitalPinToPort(pin);
|
||||
return &port->OUTCLR;
|
||||
}
|
||||
|
||||
// Leave _PM_portToggleRegister(pin) undefined on nRF!
|
||||
|
||||
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
|
||||
#define _PM_byteOffset(pin) ((g_ADigitalPinMap[pin] & 0x1F) / 8)
|
||||
#define _PM_wordOffset(pin) ((g_ADigitalPinMap[pin] & 0x1F) / 16)
|
||||
#else
|
||||
#define _PM_byteOffset(pin) (3 - ((g_ADigitalPinMap[pin] & 0x1F) / 8))
|
||||
#define _PM_wordOffset(pin) (1 - ((g_ADigitalPinMap[pin] & 0x1F) / 16))
|
||||
#endif
|
||||
|
||||
// Because it's tied to a specific timer right now, there can be only
|
||||
// one instance of the Protomatter_core struct. The Arduino library
|
||||
// sets up this pointer when calling begin().
|
||||
void *_PM_protoPtr = NULL;
|
||||
|
||||
// Arduino implementation is tied to a specific timer/counter,
|
||||
// Partly because IRQs must be declared at compile-time.
|
||||
#define _PM_IRQ_HANDLER TIMER4_IRQHandler
|
||||
#define _PM_timerFreq 16000000
|
||||
#define _PM_TIMER_DEFAULT NRF_TIMER4
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// Timer interrupt service routine
|
||||
void _PM_IRQ_HANDLER(void) {
|
||||
if (_PM_TIMER_DEFAULT->EVENTS_COMPARE[0]) {
|
||||
_PM_TIMER_DEFAULT->EVENTS_COMPARE[0] = 0;
|
||||
}
|
||||
_PM_row_handler(_PM_protoPtr); // In core.c
|
||||
}
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#elif defined(CIRCUITPY) // COMPILING FOR CIRCUITPYTHON --------------------
|
||||
|
||||
#include "nrf_gpio.h"
|
||||
|
||||
volatile uint32_t *_PM_portOutRegister(uint32_t pin) {
|
||||
NRF_GPIO_Type *port = nrf_gpio_pin_port_decode(&pin);
|
||||
return &port->OUT;
|
||||
}
|
||||
|
||||
volatile uint32_t *_PM_portSetRegister(uint32_t pin) {
|
||||
NRF_GPIO_Type *port = nrf_gpio_pin_port_decode(&pin);
|
||||
return &port->OUTSET;
|
||||
}
|
||||
|
||||
volatile uint32_t *_PM_portClearRegister(uint32_t pin) {
|
||||
NRF_GPIO_Type *port = nrf_gpio_pin_port_decode(&pin);
|
||||
return &port->OUTCLR;
|
||||
}
|
||||
#define _PM_pinOutput(pin) \
|
||||
nrf_gpio_cfg(pin, NRF_GPIO_PIN_DIR_OUTPUT, NRF_GPIO_PIN_INPUT_DISCONNECT, \
|
||||
NRF_GPIO_PIN_NOPULL, NRF_GPIO_PIN_H0H1, NRF_GPIO_PIN_NOSENSE)
|
||||
#define _PM_pinInput(pin) nrf_gpio_cfg_input(pin)
|
||||
#define _PM_pinHigh(pin) nrf_gpio_pin_set(pin)
|
||||
#define _PM_pinLow(pin) nrf_gpio_pin_clear(pin)
|
||||
#define _PM_portBitMask(pin) (1u << ((pin)&31))
|
||||
|
||||
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
|
||||
#define _PM_byteOffset(pin) ((pin & 31) / 8)
|
||||
#define _PM_wordOffset(pin) ((pin & 31) / 16)
|
||||
#else
|
||||
#define _PM_byteOffset(pin) (3 - ((pin & 31) / 8))
|
||||
#define _PM_wordOffset(pin) (1 - ((pin & 31) / 16))
|
||||
#endif
|
||||
|
||||
// CircuitPython implementation is tied to a specific freq (but the counter
|
||||
// is dynamically allocated):
|
||||
#define _PM_timerFreq 16000000
|
||||
|
||||
// Because it's tied to a specific timer right now, there can be only
|
||||
// one instance of the Protomatter_core struct. The Arduino library
|
||||
// sets up this pointer when calling begin().
|
||||
void *_PM_protoPtr = NULL;
|
||||
|
||||
// Timer interrupt service routine
|
||||
void _PM_IRQ_HANDLER(void) {
|
||||
NRF_TIMER_Type *timer = (((Protomatter_core *)_PM_protoPtr)->timer);
|
||||
if (timer->EVENTS_COMPARE[0]) {
|
||||
timer->EVENTS_COMPARE[0] = 0;
|
||||
}
|
||||
|
||||
_PM_row_handler(_PM_protoPtr); // In core.c
|
||||
}
|
||||
|
||||
#else // END CIRCUITPYTHON -------------------------------------------------
|
||||
|
||||
// Byte offset macros, timer and ISR work for other environments go here.
|
||||
|
||||
#endif
|
||||
|
||||
// CODE COMMON TO ALL ENVIRONMENTS -----------------------------------------
|
||||
|
||||
void _PM_timerInit(void *tptr) {
|
||||
static const struct {
|
||||
NRF_TIMER_Type *tc; // -> Timer peripheral base address
|
||||
IRQn_Type IRQn; // Interrupt number
|
||||
} timer[] = {
|
||||
#if defined(NRF_TIMER0)
|
||||
{NRF_TIMER0, TIMER0_IRQn},
|
||||
#endif
|
||||
#if defined(NRF_TIMER1)
|
||||
{NRF_TIMER1, TIMER1_IRQn},
|
||||
#endif
|
||||
#if defined(NRF_TIMER2)
|
||||
{NRF_TIMER2, TIMER2_IRQn},
|
||||
#endif
|
||||
#if defined(NRF_TIMER3)
|
||||
{NRF_TIMER3, TIMER3_IRQn},
|
||||
#endif
|
||||
#if defined(NRF_TIMER4)
|
||||
{NRF_TIMER4, TIMER4_IRQn},
|
||||
#endif
|
||||
};
|
||||
#define NUM_TIMERS (sizeof timer / sizeof timer[0])
|
||||
|
||||
// Determine IRQn from timer address
|
||||
uint8_t timerNum = 0;
|
||||
while ((timerNum < NUM_TIMERS) && (timer[timerNum].tc != tptr)) {
|
||||
timerNum++;
|
||||
}
|
||||
if (timerNum >= NUM_TIMERS)
|
||||
return;
|
||||
|
||||
NRF_TIMER_Type *tc = timer[timerNum].tc;
|
||||
|
||||
tc->TASKS_STOP = 1; // Stop timer
|
||||
tc->MODE = TIMER_MODE_MODE_Timer; // Timer (not counter) mode
|
||||
tc->TASKS_CLEAR = 1;
|
||||
tc->BITMODE = TIMER_BITMODE_BITMODE_16Bit
|
||||
<< TIMER_BITMODE_BITMODE_Pos; // 16-bit timer res
|
||||
tc->PRESCALER = 0; // 1:1 prescale (16 MHz)
|
||||
tc->INTENSET = TIMER_INTENSET_COMPARE0_Enabled
|
||||
<< TIMER_INTENSET_COMPARE0_Pos; // Event 0 interrupt
|
||||
// NVIC_DisableIRQ(timer[timerNum].IRQn);
|
||||
// NVIC_ClearPendingIRQ(timer[timerNum].IRQn);
|
||||
// NVIC_SetPriority(timer[timerNum].IRQn, 0); // Top priority
|
||||
NVIC_EnableIRQ(timer[timerNum].IRQn);
|
||||
}
|
||||
|
||||
inline void _PM_timerStart(void *tptr, uint32_t period) {
|
||||
volatile NRF_TIMER_Type *tc = (volatile NRF_TIMER_Type *)tptr;
|
||||
tc->TASKS_STOP = 1; // Stop timer
|
||||
tc->TASKS_CLEAR = 1; // Reset to 0
|
||||
tc->CC[0] = period;
|
||||
tc->TASKS_START = 1; // Start timer
|
||||
}
|
||||
|
||||
inline uint32_t _PM_timerGetCount(void *tptr) {
|
||||
volatile NRF_TIMER_Type *tc = (volatile NRF_TIMER_Type *)tptr;
|
||||
tc->TASKS_CAPTURE[0] = 1; // Capture timer to CC[n] register
|
||||
return tc->CC[0];
|
||||
}
|
||||
|
||||
uint32_t _PM_timerStop(void *tptr) {
|
||||
volatile NRF_TIMER_Type *tc = (volatile NRF_TIMER_Type *)tptr;
|
||||
tc->TASKS_STOP = 1; // Stop timer
|
||||
__attribute__((unused)) uint32_t count = _PM_timerGetCount(tptr);
|
||||
// NOTE TO FUTURE SELF: I don't know why the GetCount code isn't
|
||||
// working. It does the expected thing in a small test program but
|
||||
// not here. I need to get on with testing on an actual matrix, so
|
||||
// this is just a nonsense fudge value for now:
|
||||
return 100;
|
||||
// return count;
|
||||
}
|
||||
|
||||
#define _PM_clockHoldHigh asm("nop; nop");
|
||||
|
||||
#define _PM_minMinPeriod 100
|
||||
|
||||
#endif // END NRF52_SERIES
|
||||
|
|
@ -1,245 +0,0 @@
|
|||
/*!
|
||||
* @file rp2040.h
|
||||
*
|
||||
* Part of Adafruit's Protomatter library for HUB75-style RGB LED matrices.
|
||||
* This file contains RP2040 (Raspberry Pi Pico, etc.) SPECIFIC CODE.
|
||||
*
|
||||
* Adafruit invests time and resources providing this open source code,
|
||||
* please support Adafruit and open-source hardware by purchasing
|
||||
* products from Adafruit!
|
||||
*
|
||||
* Written by Phil "Paint Your Dragon" Burgess and Jeff Epler for
|
||||
* Adafruit Industries, with contributions from the open source community.
|
||||
*
|
||||
* BSD license, all text here must be included in any redistribution.
|
||||
*
|
||||
* RP2040 NOTES: This initial implementation does NOT use PIO. That's normal
|
||||
* for Protomatter, which was written for simple GPIO + timer interrupt for
|
||||
* broadest portability. While not entirely optimal, it's not pessimal
|
||||
* either...no worse than any other platform where we're not taking
|
||||
* advantage of device-specific DMA or peripherals. Would require changes to
|
||||
* the 'blast' functions or possibly the whole _PM_row_handler() (both
|
||||
* currently in core.c). CPU load is just a few percent for a 64x32
|
||||
* matrix @ 6-bit depth, so I'm not losing sleep over this.
|
||||
*
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
// TO DO: PUT A *PROPER* RP2040 CHECK HERE
|
||||
#if defined(PICO_BOARD) || defined(__RP2040__)
|
||||
|
||||
#include "../../hardware_pwm/include/hardware/pwm.h"
|
||||
#include "hardware/irq.h"
|
||||
#include "hardware/timer.h"
|
||||
#include "pico/stdlib.h" // For sio_hw, etc.
|
||||
|
||||
// RP2040 only allows full 32-bit aligned writes to GPIO.
|
||||
#define _PM_STRICT_32BIT_IO ///< Change core.c behavior for long accesses only
|
||||
|
||||
// TEMPORARY: FORCING ARDUINO COMPILATION FOR INITIAL C TESTING
|
||||
#if !defined(CIRCUITPY)
|
||||
#define ARDUINO
|
||||
#endif
|
||||
|
||||
// Enable this to use PWM for bitplane timing, else a timer alarm is used.
|
||||
// PWM has finer resolution, but alarm is adequate -- this is more about
|
||||
// which peripheral we'd rather use, as both are finite resources.
|
||||
#ifndef _PM_CLOCK_PWM
|
||||
#define _PM_CLOCK_PWM (1)
|
||||
#endif
|
||||
|
||||
#if _PM_CLOCK_PWM // Use PWM for timing
|
||||
static void _PM_PWM_ISR(void);
|
||||
#else // Use timer alarm for timing
|
||||
static void _PM_timerISR(void);
|
||||
#endif
|
||||
|
||||
#if defined(ARDUINO) // COMPILING FOR ARDUINO ------------------------------
|
||||
|
||||
// 'pin' here is GPXX # -- that might change in Arduino implementation
|
||||
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
|
||||
#define _PM_byteOffset(pin) ((pin & 31) / 8)
|
||||
#define _PM_wordOffset(pin) ((pin & 31) / 16)
|
||||
#else
|
||||
#define _PM_byteOffset(pin) (3 - ((pin & 31) / 8))
|
||||
#define _PM_wordOffset(pin) (1 - ((pin & 31) / 16))
|
||||
#endif
|
||||
|
||||
#if _PM_CLOCK_PWM
|
||||
|
||||
// Arduino implementation is tied to a specific PWM slice & frequency
|
||||
#define _PM_PWM_SLICE 0
|
||||
#define _PM_PWM_DIV 3 // ~41.6 MHz, similar to SAMD
|
||||
#define _PM_timerFreq (125000000 / _PM_PWM_DIV)
|
||||
#define _PM_TIMER_DEFAULT NULL
|
||||
|
||||
#else // Use alarm for timing
|
||||
|
||||
// Arduino implementation is tied to a specific timer alarm & frequency
|
||||
#define _PM_ALARM_NUM 1
|
||||
#define _PM_IRQ_HANDLER TIMER_IRQ_1
|
||||
#define _PM_timerFreq 1000000
|
||||
#define _PM_TIMER_DEFAULT NULL
|
||||
|
||||
// Initialize, but do not start, timer.
|
||||
void _PM_timerInit(void *tptr) {
|
||||
#if _PM_CLOCK_PWM
|
||||
// Enable PWM wrap interrupt
|
||||
pwm_clear_irq(_PM_PWM_SLICE);
|
||||
pwm_set_irq_enabled(_PM_PWM_SLICE, true);
|
||||
irq_set_exclusive_handler(PWM_IRQ_WRAP, _PM_PWM_ISR);
|
||||
irq_set_enabled(PWM_IRQ_WRAP, true);
|
||||
|
||||
// Config but do not start PWM
|
||||
pwm_config config = pwm_get_default_config();
|
||||
pwm_config_set_clkdiv_int(&config, _PM_PWM_DIV);
|
||||
pwm_init(_PM_PWM_SLICE, &config, true);
|
||||
#else
|
||||
timer_hw->alarm[_PM_ALARM_NUM] = timer_hw->timerawl; // Clear any timer
|
||||
hw_set_bits(&timer_hw->inte, 1u << _PM_ALARM_NUM);
|
||||
irq_set_exclusive_handler(_PM_IRQ_HANDLER, _PM_timerISR); // Set IRQ handler
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#elif defined(CIRCUITPY) // COMPILING FOR CIRCUITPYTHON --------------------
|
||||
|
||||
// 'pin' here is GPXX #
|
||||
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
|
||||
#define _PM_byteOffset(pin) ((pin & 31) / 8)
|
||||
#define _PM_wordOffset(pin) ((pin & 31) / 16)
|
||||
#else
|
||||
#define _PM_byteOffset(pin) (3 - ((pin & 31) / 8))
|
||||
#define _PM_wordOffset(pin) (1 - ((pin & 31) / 16))
|
||||
#endif
|
||||
|
||||
#if _PM_CLOCK_PWM
|
||||
|
||||
int _PM_pwm_slice;
|
||||
#define _PM_PWM_SLICE (_PM_pwm_slice & 0xff)
|
||||
#define _PM_PWM_DIV 3 // ~41.6 MHz, similar to SAMD
|
||||
#define _PM_timerFreq (125000000 / _PM_PWM_DIV)
|
||||
#define _PM_TIMER_DEFAULT NULL
|
||||
|
||||
#else // Use alarm for timing
|
||||
|
||||
// Currently tied to a specific timer alarm & frequency
|
||||
#define _PM_ALARM_NUM 1
|
||||
#define _PM_IRQ_HANDLER TIMER_IRQ_1
|
||||
#define _PM_timerFreq 1000000
|
||||
#define _PM_TIMER_DEFAULT NULL
|
||||
|
||||
#endif
|
||||
|
||||
// Initialize, but do not start, timer.
|
||||
void _PM_timerInit(void *tptr) {
|
||||
#if _PM_CLOCK_PWM
|
||||
_PM_pwm_slice = (int)tptr & 0xff;
|
||||
// Enable PWM wrap interrupt
|
||||
pwm_clear_irq(_PM_PWM_SLICE);
|
||||
pwm_set_irq_enabled(_PM_PWM_SLICE, true);
|
||||
irq_set_exclusive_handler(PWM_IRQ_WRAP, _PM_PWM_ISR);
|
||||
irq_set_enabled(PWM_IRQ_WRAP, true);
|
||||
|
||||
// Config but do not start PWM
|
||||
pwm_config config = pwm_get_default_config();
|
||||
pwm_config_set_clkdiv_int(&config, _PM_PWM_DIV);
|
||||
pwm_init(_PM_PWM_SLICE, &config, true);
|
||||
#else
|
||||
timer_hw->alarm[_PM_ALARM_NUM] = timer_hw->timerawl; // Clear any timer
|
||||
hw_set_bits(&timer_hw->inte, 1u << _PM_ALARM_NUM);
|
||||
irq_set_exclusive_handler(_PM_IRQ_HANDLER, _PM_timerISR); // Set IRQ handler
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if !_PM_CLOCK_PWM
|
||||
// Unlike timers on other devices, on RP2040 you don't reset a counter to
|
||||
// zero at the start of a cycle. To emulate that behavior (for determining
|
||||
// elapsed times), the timer start time must be saved somewhere...
|
||||
static volatile uint32_t _PM_timerSave;
|
||||
|
||||
#endif
|
||||
|
||||
// Because it's tied to a specific timer right now, there can be only
|
||||
// one instance of the Protomatter_core struct. The Arduino library
|
||||
// sets up this pointer when calling begin().
|
||||
void *_PM_protoPtr = NULL;
|
||||
|
||||
#define _PM_portOutRegister(pin) ((void *)&sio_hw->gpio_out)
|
||||
#define _PM_portSetRegister(pin) ((volatile uint32_t *)&sio_hw->gpio_set)
|
||||
#define _PM_portClearRegister(pin) ((volatile uint32_t *)&sio_hw->gpio_clr)
|
||||
#define _PM_portToggleRegister(pin) ((volatile uint32_t *)&sio_hw->gpio_togl)
|
||||
// 'pin' here is GPXX # -- that might change in Arduino implementation
|
||||
#define _PM_portBitMask(pin) (1UL << pin)
|
||||
// Same for these -- using GPXX #, but Arduino might assign different order
|
||||
#define _PM_pinOutput(pin) \
|
||||
{ \
|
||||
gpio_init(pin); \
|
||||
gpio_set_dir(pin, GPIO_OUT); \
|
||||
}
|
||||
#define _PM_pinLow(pin) gpio_clr_mask(1UL << pin)
|
||||
#define _PM_pinHigh(pin) gpio_set_mask(1UL << pin)
|
||||
|
||||
#ifndef _PM_delayMicroseconds
|
||||
#define _PM_delayMicroseconds(n) sleep_us(n)
|
||||
#endif
|
||||
|
||||
#if _PM_CLOCK_PWM // Use PWM for timing
|
||||
static void _PM_PWM_ISR(void) {
|
||||
pwm_clear_irq(_PM_PWM_SLICE); // Reset PWM wrap interrupt
|
||||
_PM_row_handler(_PM_protoPtr); // In core.c
|
||||
}
|
||||
#else // Use timer alarm for timing
|
||||
static void _PM_timerISR(void) {
|
||||
hw_clear_bits(&timer_hw->intr, 1u << _PM_ALARM_NUM); // Clear alarm flag
|
||||
_PM_row_handler(_PM_protoPtr); // In core.c
|
||||
}
|
||||
#endif
|
||||
|
||||
// Set timer period and enable timer.
|
||||
inline void _PM_timerStart(void *tptr, uint32_t period) {
|
||||
#if _PM_CLOCK_PWM
|
||||
pwm_set_counter(_PM_PWM_SLICE, 0);
|
||||
pwm_set_wrap(_PM_PWM_SLICE, period);
|
||||
pwm_set_enabled(_PM_PWM_SLICE, true);
|
||||
#else
|
||||
irq_set_enabled(_PM_IRQ_HANDLER, true); // Enable alarm IRQ
|
||||
_PM_timerSave = timer_hw->timerawl; // Time at start
|
||||
timer_hw->alarm[_PM_ALARM_NUM] = _PM_timerSave + period; // Time at end
|
||||
#endif
|
||||
}
|
||||
|
||||
// Return current count value (timer enabled or not).
|
||||
// Timer must be previously initialized.
|
||||
inline uint32_t _PM_timerGetCount(void *tptr) {
|
||||
#if _PM_CLOCK_PWM
|
||||
return pwm_get_counter(_PM_PWM_SLICE);
|
||||
#else
|
||||
return timer_hw->timerawl - _PM_timerSave;
|
||||
#endif
|
||||
}
|
||||
|
||||
// Disable timer and return current count value.
|
||||
// Timer must be previously initialized.
|
||||
uint32_t _PM_timerStop(void *tptr) {
|
||||
#if _PM_CLOCK_PWM
|
||||
pwm_set_enabled(_PM_PWM_SLICE, false);
|
||||
#else
|
||||
irq_set_enabled(_PM_IRQ_HANDLER, false); // Disable alarm IRQ
|
||||
#endif
|
||||
return _PM_timerGetCount(tptr);
|
||||
}
|
||||
|
||||
#define _PM_chunkSize 8
|
||||
#define _PM_clockHoldLow asm("nop; nop;");
|
||||
#if _PM_CLOCK_PWM
|
||||
#define _PM_minMinPeriod 100
|
||||
#else
|
||||
#define _PM_minMinPeriod 8
|
||||
#endif
|
||||
|
||||
#endif // END PICO_BOARD
|
||||
|
|
@ -1,98 +0,0 @@
|
|||
/*!
|
||||
* @file samd-common.h
|
||||
*
|
||||
* Part of Adafruit's Protomatter library for HUB75-style RGB LED matrices.
|
||||
* This file contains SAMD-SPECIFIC CODE (SAMD51 & SAMD21).
|
||||
*
|
||||
* Adafruit invests time and resources providing this open source code,
|
||||
* please support Adafruit and open-source hardware by purchasing
|
||||
* products from Adafruit!
|
||||
*
|
||||
* Written by Phil "Paint Your Dragon" Burgess and Jeff Epler for
|
||||
* Adafruit Industries, with contributions from the open source community.
|
||||
*
|
||||
* BSD license, all text here must be included in any redistribution.
|
||||
*
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#if defined(__SAMD51__) || defined(SAMD51) || defined(_SAMD21_) || \
|
||||
defined(SAMD21)
|
||||
|
||||
#if defined(ARDUINO) // COMPILING FOR ARDUINO ------------------------------
|
||||
|
||||
// g_APinDescription[] table and pin indices are Arduino specific:
|
||||
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
|
||||
#define _PM_byteOffset(pin) (g_APinDescription[pin].ulPin / 8)
|
||||
#define _PM_wordOffset(pin) (g_APinDescription[pin].ulPin / 16)
|
||||
#else
|
||||
#define _PM_byteOffset(pin) (3 - (g_APinDescription[pin].ulPin / 8))
|
||||
#define _PM_wordOffset(pin) (1 - (g_APinDescription[pin].ulPin / 16))
|
||||
#endif
|
||||
|
||||
// Arduino implementation is tied to a specific timer/counter & freq:
|
||||
#if defined(TC4)
|
||||
#define _PM_TIMER_DEFAULT TC4
|
||||
#define _PM_IRQ_HANDLER TC4_Handler
|
||||
#else // No TC4 on some M4's
|
||||
#define _PM_TIMER_DEFAULT TC3
|
||||
#define _PM_IRQ_HANDLER TC3_Handler
|
||||
#endif
|
||||
#define _PM_timerFreq 48000000
|
||||
// Partly because IRQs must be declared at compile-time, and partly
|
||||
// because we know Arduino's already set up one of the GCLK sources
|
||||
// for 48 MHz.
|
||||
|
||||
// Because it's tied to a specific timer right now, there can be only
|
||||
// one instance of the Protomatter_core struct. The Arduino library
|
||||
// sets up this pointer when calling begin().
|
||||
void *_PM_protoPtr = NULL;
|
||||
|
||||
// Timer interrupt service routine
|
||||
void _PM_IRQ_HANDLER(void) {
|
||||
// Clear overflow flag:
|
||||
_PM_TIMER_DEFAULT->COUNT16.INTFLAG.reg = TC_INTFLAG_OVF;
|
||||
_PM_row_handler(_PM_protoPtr); // In core.c
|
||||
}
|
||||
|
||||
#elif defined(CIRCUITPY) // COMPILING FOR CIRCUITPYTHON --------------------
|
||||
|
||||
#include "hal_gpio.h"
|
||||
|
||||
#define _PM_pinOutput(pin) gpio_set_pin_direction(pin, GPIO_DIRECTION_OUT)
|
||||
#define _PM_pinInput(pin) gpio_set_pin_direction(pin, GPIO_DIRECTION_IN)
|
||||
#define _PM_pinHigh(pin) gpio_set_pin_level(pin, 1)
|
||||
#define _PM_pinLow(pin) gpio_set_pin_level(pin, 0)
|
||||
#define _PM_portBitMask(pin) (1u << ((pin)&31))
|
||||
|
||||
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
|
||||
#define _PM_byteOffset(pin) ((pin & 31) / 8)
|
||||
#define _PM_wordOffset(pin) ((pin & 31) / 16)
|
||||
#else
|
||||
#define _PM_byteOffset(pin) (3 - ((pin & 31) / 8))
|
||||
#define _PM_wordOffset(pin) (1 - ((pin & 31) / 16))
|
||||
#endif
|
||||
|
||||
// CircuitPython implementation is tied to a specific freq (but the counter
|
||||
// is dynamically allocated):
|
||||
#define _PM_timerFreq 48000000
|
||||
|
||||
// As currently implemented, there can be only one instance of the
|
||||
// Protomatter_core struct. This pointer is set up when starting the matrix.
|
||||
void *_PM_protoPtr = NULL;
|
||||
|
||||
// Timer interrupt service routine
|
||||
void _PM_IRQ_HANDLER(void) {
|
||||
((Tc *)(((Protomatter_core *)_PM_protoPtr)->timer))->COUNT16.INTFLAG.reg =
|
||||
TC_INTFLAG_OVF;
|
||||
_PM_row_handler(_PM_protoPtr); // In core.c
|
||||
}
|
||||
|
||||
#else // END CIRCUITPYTHON -------------------------------------------------
|
||||
|
||||
// Byte offset macros, timer and ISR work for other environments go here.
|
||||
|
||||
#endif
|
||||
|
||||
#endif // END SAMD51/SAMD21
|
||||
|
|
@ -1,150 +0,0 @@
|
|||
/*!
|
||||
* @file samd21.h
|
||||
*
|
||||
* Part of Adafruit's Protomatter library for HUB75-style RGB LED matrices.
|
||||
* This file contains SAMD21-SPECIFIC CODE.
|
||||
*
|
||||
* Adafruit invests time and resources providing this open source code,
|
||||
* please support Adafruit and open-source hardware by purchasing
|
||||
* products from Adafruit!
|
||||
*
|
||||
* Written by Phil "Paint Your Dragon" Burgess and Jeff Epler for
|
||||
* Adafruit Industries, with contributions from the open source community.
|
||||
*
|
||||
* BSD license, all text here must be included in any redistribution.
|
||||
*
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#if defined(_SAMD21_) || defined(SAMD21) // Arduino, Circuitpy SAMD21 defs
|
||||
|
||||
#if defined(ARDUINO) // COMPILING FOR ARDUINO ------------------------------
|
||||
|
||||
// g_APinDescription[] table and pin indices are Arduino specific:
|
||||
#define _PM_portOutRegister(pin) \
|
||||
&PORT_IOBUS->Group[g_APinDescription[pin].ulPort].OUT.reg
|
||||
|
||||
#define _PM_portSetRegister(pin) \
|
||||
&PORT_IOBUS->Group[g_APinDescription[pin].ulPort].OUTSET.reg
|
||||
|
||||
#define _PM_portClearRegister(pin) \
|
||||
&PORT_IOBUS->Group[g_APinDescription[pin].ulPort].OUTCLR.reg
|
||||
|
||||
#define _PM_portToggleRegister(pin) \
|
||||
&PORT_IOBUS->Group[g_APinDescription[pin].ulPort].OUTTGL.reg
|
||||
|
||||
#else // END ARDUINO -------------------------------------------------------
|
||||
|
||||
// Non-Arduino port register lookups go here, if not already declared
|
||||
// in samd-common.h.
|
||||
|
||||
#endif
|
||||
|
||||
// CODE COMMON TO ALL ENVIRONMENTS -----------------------------------------
|
||||
|
||||
// Initialize, but do not start, timer
|
||||
void _PM_timerInit(void *tptr) {
|
||||
static const struct {
|
||||
Tc *tc; // -> Timer/counter peripheral base address
|
||||
IRQn_Type IRQn; // Interrupt number
|
||||
uint8_t GCM_ID; // GCLK selection ID
|
||||
} timer[] = {
|
||||
#if defined(TC0)
|
||||
{TC0, TC0_IRQn, GCM_TCC0_TCC1},
|
||||
#endif
|
||||
#if defined(TC1)
|
||||
{TC1, TC1_IRQn, GCM_TCC0_TCC1},
|
||||
#endif
|
||||
#if defined(TC2)
|
||||
{TC2, TC2_IRQn, GCM_TCC2_TC3},
|
||||
#endif
|
||||
#if defined(TC3)
|
||||
{TC3, TC3_IRQn, GCM_TCC2_TC3},
|
||||
#endif
|
||||
#if defined(TC4)
|
||||
{TC4, TC4_IRQn, GCM_TC4_TC5},
|
||||
#endif
|
||||
};
|
||||
#define NUM_TIMERS (sizeof timer / sizeof timer[0])
|
||||
|
||||
Tc *tc = (Tc *)tptr; // Cast peripheral address passed in
|
||||
|
||||
uint8_t timerNum = 0;
|
||||
while ((timerNum < NUM_TIMERS) && (timer[timerNum].tc != tc)) {
|
||||
timerNum++;
|
||||
}
|
||||
if (timerNum >= NUM_TIMERS)
|
||||
return;
|
||||
|
||||
// Enable GCLK for timer/counter
|
||||
GCLK->CLKCTRL.reg = (uint16_t)(GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK0 |
|
||||
GCLK_CLKCTRL_ID(timer[timerNum].GCM_ID));
|
||||
while (GCLK->STATUS.bit.SYNCBUSY == 1)
|
||||
;
|
||||
|
||||
// Counter must first be disabled to configure it
|
||||
tc->COUNT16.CTRLA.bit.ENABLE = 0;
|
||||
while (tc->COUNT16.STATUS.bit.SYNCBUSY)
|
||||
;
|
||||
|
||||
tc->COUNT16.CTRLA.reg = // Configure timer counter
|
||||
TC_CTRLA_PRESCALER_DIV1 | // 1:1 Prescale
|
||||
TC_CTRLA_WAVEGEN_MFRQ | // Match frequency generation mode (MFRQ)
|
||||
TC_CTRLA_MODE_COUNT16; // 16-bit counter mode
|
||||
while (tc->COUNT16.STATUS.bit.SYNCBUSY)
|
||||
;
|
||||
|
||||
tc->COUNT16.CTRLBCLR.reg = TCC_CTRLBCLR_DIR; // Count up
|
||||
while (tc->COUNT16.STATUS.bit.SYNCBUSY)
|
||||
;
|
||||
|
||||
// Overflow interrupt
|
||||
tc->COUNT16.INTENSET.reg = TC_INTENSET_OVF;
|
||||
|
||||
NVIC_DisableIRQ(timer[timerNum].IRQn);
|
||||
NVIC_ClearPendingIRQ(timer[timerNum].IRQn);
|
||||
NVIC_SetPriority(timer[timerNum].IRQn, 0); // Top priority
|
||||
NVIC_EnableIRQ(timer[timerNum].IRQn);
|
||||
|
||||
// Timer is configured but NOT enabled by default
|
||||
}
|
||||
|
||||
// Set timer period, initialize count value to zero, enable timer.
|
||||
// Timer must be initialized to 16-bit mode using the init function
|
||||
// above, but must be inactive before calling this.
|
||||
inline void _PM_timerStart(void *tptr, uint32_t period) {
|
||||
Tc *tc = (Tc *)tptr; // Cast peripheral address passed in
|
||||
tc->COUNT16.COUNT.reg = 0;
|
||||
while (tc->COUNT16.STATUS.bit.SYNCBUSY)
|
||||
;
|
||||
tc->COUNT16.CC[0].reg = period;
|
||||
while (tc->COUNT16.STATUS.bit.SYNCBUSY)
|
||||
;
|
||||
tc->COUNT16.CTRLA.bit.ENABLE = 1;
|
||||
while (tc->COUNT16.STATUS.bit.SYNCBUSY)
|
||||
;
|
||||
}
|
||||
|
||||
// Return current count value (timer enabled or not).
|
||||
// Timer must be previously initialized.
|
||||
inline uint32_t _PM_timerGetCount(void *tptr) {
|
||||
Tc *tc = (Tc *)tptr; // Cast peripheral address passed in
|
||||
tc->COUNT16.READREQ.reg = TC_READREQ_RCONT | TC_READREQ_ADDR(0x10);
|
||||
while (tc->COUNT16.STATUS.bit.SYNCBUSY)
|
||||
;
|
||||
return tc->COUNT16.COUNT.reg;
|
||||
}
|
||||
|
||||
// Disable timer and return current count value.
|
||||
// Timer must be previously initialized.
|
||||
inline uint32_t _PM_timerStop(void *tptr) {
|
||||
Tc *tc = (Tc *)tptr; // Cast peripheral address passed in
|
||||
uint32_t count = _PM_timerGetCount(tptr);
|
||||
tc->COUNT16.CTRLA.bit.ENABLE = 0;
|
||||
while (tc->COUNT16.STATUS.bit.SYNCBUSY)
|
||||
;
|
||||
return count;
|
||||
}
|
||||
|
||||
#endif // END _SAMD21_ || SAMD21
|
||||
|
|
@ -1,215 +0,0 @@
|
|||
/*!
|
||||
* @file samd51.h
|
||||
*
|
||||
* Part of Adafruit's Protomatter library for HUB75-style RGB LED matrices.
|
||||
* This file contains SAMD51-SPECIFIC CODE.
|
||||
*
|
||||
* Adafruit invests time and resources providing this open source code,
|
||||
* please support Adafruit and open-source hardware by purchasing
|
||||
* products from Adafruit!
|
||||
*
|
||||
* Written by Phil "Paint Your Dragon" Burgess and Jeff Epler for
|
||||
* Adafruit Industries, with contributions from the open source community.
|
||||
*
|
||||
* BSD license, all text here must be included in any redistribution.
|
||||
*
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#if defined(__SAMD51__) || defined(SAMD51) // Arduino, Circuitpy SAMD51 defs
|
||||
|
||||
#if defined(ARDUINO) // COMPILING FOR ARDUINO ------------------------------
|
||||
|
||||
// g_APinDescription[] table and pin indices are Arduino specific:
|
||||
#define _PM_portOutRegister(pin) \
|
||||
&PORT->Group[g_APinDescription[pin].ulPort].OUT.reg
|
||||
|
||||
#define _PM_portSetRegister(pin) \
|
||||
&PORT->Group[g_APinDescription[pin].ulPort].OUTSET.reg
|
||||
|
||||
#define _PM_portClearRegister(pin) \
|
||||
&PORT->Group[g_APinDescription[pin].ulPort].OUTCLR.reg
|
||||
|
||||
#define _PM_portToggleRegister(pin) \
|
||||
&PORT->Group[g_APinDescription[pin].ulPort].OUTTGL.reg
|
||||
|
||||
#elif defined(CIRCUITPY) // COMPILING FOR CIRCUITPYTHON --------------------
|
||||
|
||||
#define _PM_portOutRegister(pin) (&PORT->Group[(pin / 32)].OUT.reg)
|
||||
|
||||
#define _PM_portSetRegister(pin) (&PORT->Group[(pin / 32)].OUTSET.reg)
|
||||
|
||||
#define _PM_portClearRegister(pin) (&PORT->Group[(pin / 32)].OUTCLR.reg)
|
||||
|
||||
#define _PM_portToggleRegister(pin) (&PORT->Group[(pin / 32)].OUTTGL.reg)
|
||||
|
||||
#define F_CPU (120000000)
|
||||
|
||||
#else
|
||||
|
||||
// Other port register lookups go here
|
||||
|
||||
#endif
|
||||
|
||||
// CODE COMMON TO ALL ENVIRONMENTS -----------------------------------------
|
||||
|
||||
// Initialize, but do not start, timer
|
||||
void _PM_timerInit(void *tptr) {
|
||||
static const struct {
|
||||
Tc *tc; // -> Timer/counter peripheral base address
|
||||
IRQn_Type IRQn; // Interrupt number
|
||||
uint8_t GCLK_ID; // Peripheral channel # for clock source
|
||||
} timer[] = {
|
||||
#if defined(TC0)
|
||||
{TC0, TC0_IRQn, TC0_GCLK_ID},
|
||||
#endif
|
||||
#if defined(TC1)
|
||||
{TC1, TC1_IRQn, TC1_GCLK_ID},
|
||||
#endif
|
||||
#if defined(TC2)
|
||||
{TC2, TC2_IRQn, TC2_GCLK_ID},
|
||||
#endif
|
||||
#if defined(TC3)
|
||||
{TC3, TC3_IRQn, TC3_GCLK_ID},
|
||||
#endif
|
||||
#if defined(TC4)
|
||||
{TC4, TC4_IRQn, TC4_GCLK_ID},
|
||||
#endif
|
||||
#if defined(TC5)
|
||||
{TC5, TC5_IRQn, TC5_GCLK_ID},
|
||||
#endif
|
||||
#if defined(TC6)
|
||||
{TC6, TC6_IRQn, TC6_GCLK_ID},
|
||||
#endif
|
||||
#if defined(TC7)
|
||||
{TC7, TC7_IRQn, TC7_GCLK_ID},
|
||||
#endif
|
||||
#if defined(TC8)
|
||||
{TC8, TC8_IRQn, TC8_GCLK_ID},
|
||||
#endif
|
||||
#if defined(TC9)
|
||||
{TC9, TC9_IRQn, TC9_GCLK_ID},
|
||||
#endif
|
||||
#if defined(TC10)
|
||||
{TC10, TC10_IRQn, TC10_GCLK_ID},
|
||||
#endif
|
||||
#if defined(TC11)
|
||||
{TC11, TC11_IRQn, TC11_GCLK_ID},
|
||||
#endif
|
||||
#if defined(TC12)
|
||||
{TC12, TC12_IRQn, TC12_GCLK_ID},
|
||||
#endif
|
||||
};
|
||||
#define NUM_TIMERS (sizeof timer / sizeof timer[0])
|
||||
|
||||
Tc *tc = (Tc *)tptr; // Cast peripheral address passed in
|
||||
|
||||
uint8_t timerNum = 0;
|
||||
while ((timerNum < NUM_TIMERS) && (timer[timerNum].tc != tc)) {
|
||||
timerNum++;
|
||||
}
|
||||
if (timerNum >= NUM_TIMERS)
|
||||
return;
|
||||
|
||||
// Feed timer/counter off GCLK1 (already set 48 MHz by Arduino core).
|
||||
// Sure, SAMD51 can run timers up to F_CPU (e.g. 120 MHz or up to
|
||||
// 200 MHz with overclocking), but on higher bitplanes (which have
|
||||
// progressively longer timer periods) I could see this possibly
|
||||
// exceeding a 16-bit timer, and would have to switch prescalers.
|
||||
// We don't actually need atomic precision on the timer -- point is
|
||||
// simply that the period doubles with each bitplane, and this can
|
||||
// work fine at 48 MHz.
|
||||
GCLK->PCHCTRL[timer[timerNum].GCLK_ID].bit.CHEN = 0; // Disable
|
||||
while (GCLK->PCHCTRL[timer[timerNum].GCLK_ID].bit.CHEN)
|
||||
; // Wait for it
|
||||
GCLK_PCHCTRL_Type pchctrl; // Read-modify-store
|
||||
pchctrl.reg = GCLK->PCHCTRL[timer[timerNum].GCLK_ID].reg;
|
||||
pchctrl.bit.GEN = GCLK_PCHCTRL_GEN_GCLK1_Val;
|
||||
pchctrl.bit.CHEN = 1;
|
||||
GCLK->PCHCTRL[timer[timerNum].GCLK_ID].reg = pchctrl.reg;
|
||||
while (!GCLK->PCHCTRL[timer[timerNum].GCLK_ID].bit.CHEN)
|
||||
;
|
||||
|
||||
// Disable timer before configuring it
|
||||
tc->COUNT16.CTRLA.bit.ENABLE = 0;
|
||||
while (tc->COUNT16.SYNCBUSY.bit.ENABLE)
|
||||
;
|
||||
|
||||
// 16-bit counter mode, 1:1 prescale
|
||||
tc->COUNT16.CTRLA.bit.MODE = TC_CTRLA_MODE_COUNT16;
|
||||
tc->COUNT16.CTRLA.bit.PRESCALER = TC_CTRLA_PRESCALER_DIV1_Val;
|
||||
|
||||
tc->COUNT16.WAVE.bit.WAVEGEN =
|
||||
TC_WAVE_WAVEGEN_MFRQ_Val; // Match frequency generation mode (MFRQ)
|
||||
|
||||
tc->COUNT16.CTRLBCLR.reg = TC_CTRLBCLR_DIR; // Count up
|
||||
while (tc->COUNT16.SYNCBUSY.bit.CTRLB)
|
||||
;
|
||||
|
||||
// Overflow interrupt
|
||||
tc->COUNT16.INTENSET.reg = TC_INTENSET_OVF;
|
||||
|
||||
NVIC_DisableIRQ(timer[timerNum].IRQn);
|
||||
NVIC_ClearPendingIRQ(timer[timerNum].IRQn);
|
||||
NVIC_SetPriority(timer[timerNum].IRQn, 0); // Top priority
|
||||
NVIC_EnableIRQ(timer[timerNum].IRQn);
|
||||
|
||||
// Timer is configured but NOT enabled by default
|
||||
}
|
||||
|
||||
// Set timer period, initialize count value to zero, enable timer.
|
||||
// Timer must be initialized to 16-bit mode using the init function
|
||||
// above, but must be inactive before calling this.
|
||||
inline void _PM_timerStart(void *tptr, uint32_t period) {
|
||||
Tc *tc = (Tc *)tptr; // Cast peripheral address passed in
|
||||
tc->COUNT16.COUNT.reg = 0;
|
||||
while (tc->COUNT16.SYNCBUSY.bit.COUNT)
|
||||
;
|
||||
tc->COUNT16.CC[0].reg = period;
|
||||
while (tc->COUNT16.SYNCBUSY.bit.CC0)
|
||||
;
|
||||
tc->COUNT16.CTRLA.bit.ENABLE = 1;
|
||||
while (tc->COUNT16.SYNCBUSY.bit.STATUS)
|
||||
;
|
||||
}
|
||||
|
||||
// Return current count value (timer enabled or not).
|
||||
// Timer must be previously initialized.
|
||||
inline uint32_t _PM_timerGetCount(void *tptr) {
|
||||
Tc *tc = (Tc *)tptr; // Cast peripheral address passed in
|
||||
tc->COUNT16.CTRLBSET.bit.CMD = 0x4; // Sync COUNT
|
||||
while (tc->COUNT16.CTRLBSET.bit.CMD)
|
||||
; // Wait for command
|
||||
return tc->COUNT16.COUNT.reg;
|
||||
}
|
||||
|
||||
// Disable timer and return current count value.
|
||||
// Timer must be previously initialized.
|
||||
uint32_t _PM_timerStop(void *tptr) {
|
||||
Tc *tc = (Tc *)tptr; // Cast peripheral address passed in
|
||||
uint32_t count = _PM_timerGetCount(tptr);
|
||||
tc->COUNT16.CTRLA.bit.ENABLE = 0;
|
||||
while (tc->COUNT16.SYNCBUSY.bit.STATUS)
|
||||
;
|
||||
return count;
|
||||
}
|
||||
|
||||
// See notes in core.c before the "blast" functions
|
||||
#if F_CPU >= 200000000
|
||||
#define _PM_clockHoldHigh asm("nop; nop; nop; nop; nop");
|
||||
#define _PM_clockHoldLow asm("nop; nop");
|
||||
#elif F_CPU >= 180000000
|
||||
#define _PM_clockHoldHigh asm("nop; nop; nop; nop");
|
||||
#define _PM_clockHoldLow asm("nop");
|
||||
#elif F_CPU >= 150000000
|
||||
#define _PM_clockHoldHigh asm("nop; nop; nop");
|
||||
#define _PM_clockHoldLow asm("nop");
|
||||
#else
|
||||
#define _PM_clockHoldHigh asm("nop; nop; nop");
|
||||
#define _PM_clockHoldLow asm("nop");
|
||||
#endif
|
||||
|
||||
#define _PM_minMinPeriod 160
|
||||
|
||||
#endif // END __SAMD51__ || SAMD51
|
||||
146
src/arch/stm32.h
146
src/arch/stm32.h
|
|
@ -1,146 +0,0 @@
|
|||
/*!
|
||||
* @file stm32.h
|
||||
*
|
||||
* Part of Adafruit's Protomatter library for HUB75-style RGB LED matrices.
|
||||
* This file contains STM32-SPECIFIC CODE.
|
||||
*
|
||||
* Adafruit invests time and resources providing this open source code,
|
||||
* please support Adafruit and open-source hardware by purchasing
|
||||
* products from Adafruit!
|
||||
*
|
||||
* Written by Phil "Paint Your Dragon" Burgess and Jeff Epler for
|
||||
* Adafruit Industries, with contributions from the open source community.
|
||||
*
|
||||
* BSD license, all text here must be included in any redistribution.
|
||||
*
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#if defined(STM32F4_SERIES) || defined(STM32F405xx) // Arduino, CircuitPy
|
||||
|
||||
#if defined(ARDUINO) // COMPILING FOR ARDUINO ------------------------------
|
||||
|
||||
// Arduino port register lookups go here, else ones in arch.h are used.
|
||||
|
||||
#elif defined(CIRCUITPY) // COMPILING FOR CIRCUITPYTHON --------------------
|
||||
|
||||
#include "timers.h"
|
||||
|
||||
#undef _PM_portBitMask
|
||||
#define _PM_portBitMask(pin) (1u << ((pin)&15))
|
||||
#define _PM_byteOffset(pin) ((pin & 15) / 8)
|
||||
#define _PM_wordOffset(pin) ((pin & 15) / 16)
|
||||
|
||||
#define _PM_pinOutput(pin_) \
|
||||
do { \
|
||||
int8_t pin = (pin_); \
|
||||
GPIO_InitTypeDef GPIO_InitStruct = {0}; \
|
||||
GPIO_InitStruct.Pin = 1 << (pin & 15); \
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; \
|
||||
GPIO_InitStruct.Pull = GPIO_NOPULL; \
|
||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; \
|
||||
HAL_GPIO_Init(pin_port(pin / 16), &GPIO_InitStruct); \
|
||||
} while (0)
|
||||
#define _PM_pinInput(pin_) \
|
||||
do { \
|
||||
int8_t pin = (pin_); \
|
||||
GPIO_InitTypeDef GPIO_InitStruct = {0}; \
|
||||
GPIO_InitStruct.Pin = 1 << (pin & 15); \
|
||||
GPIO_InitStruct.Mode = GPIO_MODE_INPUT; \
|
||||
GPIO_InitStruct.Pull = GPIO_NOPULL; \
|
||||
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; \
|
||||
HAL_GPIO_Init(pin_port(pin / 16), &GPIO_InitStruct); \
|
||||
} while (0)
|
||||
#define _PM_pinHigh(pin) \
|
||||
HAL_GPIO_WritePin(pin_port(pin / 16), 1 << (pin & 15), GPIO_PIN_SET)
|
||||
#define _PM_pinLow(pin) \
|
||||
HAL_GPIO_WritePin(pin_port(pin / 16), 1 << (pin & 15), GPIO_PIN_RESET)
|
||||
|
||||
#define _PM_PORT_TYPE uint16_t
|
||||
|
||||
volatile uint16_t *_PM_portOutRegister(uint32_t pin) {
|
||||
return (uint16_t *)&pin_port(pin / 16)->ODR;
|
||||
}
|
||||
|
||||
volatile uint16_t *_PM_portSetRegister(uint32_t pin) {
|
||||
return (uint16_t *)&pin_port(pin / 16)->BSRR;
|
||||
}
|
||||
|
||||
// To make things interesting, STM32F4xx places the set and clear
|
||||
// GPIO bits within a single register. The "clear" bits are upper, so
|
||||
// offset by 1 in uint16_ts
|
||||
volatile uint16_t *_PM_portClearRegister(uint32_t pin) {
|
||||
return 1 + (uint16_t *)&pin_port(pin / 16)->BSRR;
|
||||
}
|
||||
|
||||
// TODO: was this somehow specific to TIM6?
|
||||
#define _PM_timerFreq 42000000
|
||||
|
||||
// Because it's tied to a specific timer right now, there can be only
|
||||
// one instance of the Protomatter_core struct. The Arduino library
|
||||
// sets up this pointer when calling begin().
|
||||
// TODO: this is no longer true, should it change?
|
||||
void *_PM_protoPtr = NULL;
|
||||
|
||||
STATIC TIM_HandleTypeDef tim_handle;
|
||||
|
||||
// Timer interrupt service routine
|
||||
void _PM_IRQ_HANDLER(void) {
|
||||
// Clear overflow flag:
|
||||
//_PM_TIMER_DEFAULT->COUNT16.INTFLAG.reg = TC_INTFLAG_OVF;
|
||||
_PM_row_handler(_PM_protoPtr); // In core.c
|
||||
}
|
||||
|
||||
// Initialize, but do not start, timer
|
||||
void _PM_timerInit(void *tptr) {
|
||||
TIM_TypeDef *tim_instance = (TIM_TypeDef *)tptr;
|
||||
stm_peripherals_timer_reserve(tim_instance);
|
||||
// Set IRQs at max priority and start clock
|
||||
stm_peripherals_timer_preinit(tim_instance, 0, _PM_IRQ_HANDLER);
|
||||
|
||||
tim_handle.Instance = tim_instance;
|
||||
tim_handle.Init.Period = 1000; // immediately replaced.
|
||||
tim_handle.Init.Prescaler = 0;
|
||||
tim_handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
|
||||
tim_handle.Init.CounterMode = TIM_COUNTERMODE_UP;
|
||||
tim_handle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
|
||||
|
||||
HAL_TIM_Base_Init(&tim_handle);
|
||||
|
||||
size_t tim_irq = stm_peripherals_timer_get_irqnum(tim_instance);
|
||||
HAL_NVIC_DisableIRQ(tim_irq);
|
||||
NVIC_ClearPendingIRQ(tim_irq);
|
||||
NVIC_SetPriority(tim_irq, 0); // Top priority
|
||||
}
|
||||
|
||||
inline void _PM_timerStart(void *tptr, uint32_t period) {
|
||||
TIM_TypeDef *tim = tptr;
|
||||
tim->SR = 0;
|
||||
tim->ARR = period;
|
||||
tim->CR1 |= TIM_CR1_CEN;
|
||||
tim->DIER |= TIM_DIER_UIE;
|
||||
HAL_NVIC_EnableIRQ(stm_peripherals_timer_get_irqnum(tim));
|
||||
}
|
||||
|
||||
inline uint32_t _PM_timerGetCount(void *tptr) {
|
||||
TIM_TypeDef *tim = tptr;
|
||||
return tim->CNT;
|
||||
}
|
||||
|
||||
uint32_t _PM_timerStop(void *tptr) {
|
||||
TIM_TypeDef *tim = tptr;
|
||||
HAL_NVIC_DisableIRQ(stm_peripherals_timer_get_irqnum(tim));
|
||||
tim->CR1 &= ~TIM_CR1_CEN;
|
||||
tim->DIER &= ~TIM_DIER_UIE;
|
||||
return tim->CNT;
|
||||
}
|
||||
// settings from M4 for >= 150MHz, we use this part at 168MHz
|
||||
#define _PM_clockHoldHigh asm("nop; nop; nop");
|
||||
#define _PM_clockHoldLow asm("nop");
|
||||
|
||||
#define _PM_minMinPeriod 140
|
||||
|
||||
#endif // END CIRCUITPYTHON ------------------------------------------------
|
||||
|
||||
#endif // END STM32F4_SERIES || STM32F405xx
|
||||
|
|
@ -1,172 +0,0 @@
|
|||
/*!
|
||||
* @file teensy4.h
|
||||
*
|
||||
* Part of Adafruit's Protomatter library for HUB75-style RGB LED matrices.
|
||||
* This file contains i.MX 1062 (Teensy 4.x) SPECIFIC CODE.
|
||||
*
|
||||
* Adafruit invests time and resources providing this open source code,
|
||||
* please support Adafruit and open-source hardware by purchasing
|
||||
* products from Adafruit!
|
||||
*
|
||||
* Written by Phil "Paint Your Dragon" Burgess and Jeff Epler for
|
||||
* Adafruit Industries, with contributions from the open source community.
|
||||
*
|
||||
* BSD license, all text here must be included in any redistribution.
|
||||
*
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#if defined(__IMXRT1062__)
|
||||
|
||||
// i.MX only allows full 32-bit aligned writes to GPIO.
|
||||
#define _PM_STRICT_32BIT_IO ///< Change core.c behavior for long accesses only
|
||||
|
||||
#if defined(ARDUINO) // COMPILING FOR ARDUINO ------------------------------
|
||||
|
||||
static const struct {
|
||||
volatile uint32_t *base; ///< GPIO base address for pin
|
||||
uint8_t bit; ///< GPIO bit number for pin (0-31)
|
||||
} _PM_teensyPins[] = {
|
||||
{&CORE_PIN0_PORTREG, CORE_PIN0_BIT},
|
||||
{&CORE_PIN1_PORTREG, CORE_PIN1_BIT},
|
||||
{&CORE_PIN2_PORTREG, CORE_PIN2_BIT},
|
||||
{&CORE_PIN3_PORTREG, CORE_PIN3_BIT},
|
||||
{&CORE_PIN4_PORTREG, CORE_PIN4_BIT},
|
||||
{&CORE_PIN5_PORTREG, CORE_PIN5_BIT},
|
||||
{&CORE_PIN6_PORTREG, CORE_PIN6_BIT},
|
||||
{&CORE_PIN7_PORTREG, CORE_PIN7_BIT},
|
||||
{&CORE_PIN8_PORTREG, CORE_PIN8_BIT},
|
||||
{&CORE_PIN9_PORTREG, CORE_PIN9_BIT},
|
||||
{&CORE_PIN10_PORTREG, CORE_PIN10_BIT},
|
||||
{&CORE_PIN11_PORTREG, CORE_PIN11_BIT},
|
||||
{&CORE_PIN12_PORTREG, CORE_PIN12_BIT},
|
||||
{&CORE_PIN13_PORTREG, CORE_PIN13_BIT},
|
||||
{&CORE_PIN14_PORTREG, CORE_PIN14_BIT},
|
||||
{&CORE_PIN15_PORTREG, CORE_PIN15_BIT},
|
||||
{&CORE_PIN16_PORTREG, CORE_PIN16_BIT},
|
||||
{&CORE_PIN17_PORTREG, CORE_PIN17_BIT},
|
||||
{&CORE_PIN18_PORTREG, CORE_PIN18_BIT},
|
||||
{&CORE_PIN19_PORTREG, CORE_PIN19_BIT},
|
||||
{&CORE_PIN20_PORTREG, CORE_PIN20_BIT},
|
||||
{&CORE_PIN21_PORTREG, CORE_PIN21_BIT},
|
||||
{&CORE_PIN22_PORTREG, CORE_PIN22_BIT},
|
||||
{&CORE_PIN23_PORTREG, CORE_PIN23_BIT},
|
||||
{&CORE_PIN24_PORTREG, CORE_PIN24_BIT},
|
||||
{&CORE_PIN25_PORTREG, CORE_PIN25_BIT},
|
||||
{&CORE_PIN26_PORTREG, CORE_PIN26_BIT},
|
||||
{&CORE_PIN27_PORTREG, CORE_PIN27_BIT},
|
||||
{&CORE_PIN28_PORTREG, CORE_PIN28_BIT},
|
||||
{&CORE_PIN29_PORTREG, CORE_PIN29_BIT},
|
||||
{&CORE_PIN30_PORTREG, CORE_PIN30_BIT},
|
||||
{&CORE_PIN31_PORTREG, CORE_PIN31_BIT},
|
||||
{&CORE_PIN32_PORTREG, CORE_PIN32_BIT},
|
||||
{&CORE_PIN33_PORTREG, CORE_PIN33_BIT},
|
||||
{&CORE_PIN34_PORTREG, CORE_PIN34_BIT},
|
||||
{&CORE_PIN35_PORTREG, CORE_PIN35_BIT},
|
||||
{&CORE_PIN36_PORTREG, CORE_PIN36_BIT},
|
||||
{&CORE_PIN37_PORTREG, CORE_PIN37_BIT},
|
||||
{&CORE_PIN38_PORTREG, CORE_PIN38_BIT},
|
||||
{&CORE_PIN39_PORTREG, CORE_PIN39_BIT},
|
||||
};
|
||||
|
||||
#define _PM_SET_OFFSET 33 ///< 0x84 byte offset = 33 longs
|
||||
#define _PM_CLEAR_OFFSET 34 ///< 0x88 byte offset = 34 longs
|
||||
#define _PM_TOGGLE_OFFSET 35 ///< 0x8C byte offset = 35 longs
|
||||
|
||||
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
|
||||
#define _PM_byteOffset(pin) (_PM_teensyPins[pin].bit / 8)
|
||||
#define _PM_wordOffset(pin) (_PM_teensyPins[pin].bit / 16)
|
||||
#else
|
||||
#define _PM_byteOffset(pin) (3 - (_PM_teensyPins[pin].bit / 8))
|
||||
#define _PM_wordOffset(pin) (1 - (_PM_teensyPins[pin].bit / 16))
|
||||
#endif
|
||||
|
||||
#define _PM_portOutRegister(pin) (void *)_PM_teensyPins[pin].base
|
||||
|
||||
#define _PM_portSetRegister(pin) \
|
||||
((volatile uint32_t *)_PM_teensyPins[pin].base + _PM_SET_OFFSET)
|
||||
|
||||
#define _PM_portClearRegister(pin) \
|
||||
((volatile uint32_t *)_PM_teensyPins[pin].base + _PM_CLEAR_OFFSET)
|
||||
|
||||
#define _PM_portToggleRegister(pin) \
|
||||
((volatile uint32_t *)_PM_teensyPins[pin].base + _PM_TOGGLE_OFFSET)
|
||||
|
||||
// As written, because it's tied to a specific timer right now, the
|
||||
// Arduino lib only permits one instance of the Protomatter_core struct,
|
||||
// which it sets up when calling begin().
|
||||
void *_PM_protoPtr = NULL;
|
||||
|
||||
// Code as written works with the Periodic Interrupt Timer directly,
|
||||
// rather than using the Teensy IntervalTimer library, reason being we
|
||||
// need to be able to poll the current timer value in _PM_timerGetCount(),
|
||||
// but that's not available from IntervalTimer, and the timer base address
|
||||
// it keeps is a private member (possible alternative is to do dirty pool
|
||||
// and access the pointer directly, knowing it's the first element in the
|
||||
// IntervalTimer object, but this is fraught with peril).
|
||||
|
||||
#define _PM_timerFreq 24000000 // 24 MHz
|
||||
#define _PM_timerNum 0 // PIT timer #0 (can be 0-3)
|
||||
#define _PM_TIMER_DEFAULT (IMXRT_PIT_CHANNELS + _PM_timerNum) // PIT channel *
|
||||
|
||||
// Interrupt service routine for Periodic Interrupt Timer
|
||||
static void _PM_timerISR(void) {
|
||||
IMXRT_PIT_CHANNEL_t *timer = _PM_TIMER_DEFAULT;
|
||||
_PM_row_handler(_PM_protoPtr); // In core.c
|
||||
timer->TFLG = 1; // Clear timer interrupt
|
||||
}
|
||||
|
||||
// Initialize, but do not start, timer.
|
||||
void _PM_timerInit(void *tptr) {
|
||||
IMXRT_PIT_CHANNEL_t *timer = (IMXRT_PIT_CHANNEL_t *)tptr;
|
||||
CCM_CCGR1 |= CCM_CCGR1_PIT(CCM_CCGR_ON); // Enable clock signal to PIT
|
||||
PIT_MCR = 1; // Enable PIT
|
||||
timer->TCTRL = 0; // Disable timer and interrupt
|
||||
timer->LDVAL = 100000; // Timer initial load value
|
||||
// Interrupt is attached but not enabled yet
|
||||
attachInterruptVector(IRQ_PIT, &_PM_timerISR);
|
||||
NVIC_ENABLE_IRQ(IRQ_PIT);
|
||||
}
|
||||
|
||||
// Set timer period, initialize count value to zero, enable timer.
|
||||
inline void _PM_timerStart(void *tptr, uint32_t period) {
|
||||
IMXRT_PIT_CHANNEL_t *timer = (IMXRT_PIT_CHANNEL_t *)tptr;
|
||||
timer->TCTRL = 0; // Disable timer and interrupt
|
||||
timer->LDVAL = period; // Set load value
|
||||
// timer->CVAL = period; // And current value (just in case?)
|
||||
timer->TFLG = 1; // Clear timer interrupt
|
||||
timer->TCTRL = 3; // Enable timer and interrupt
|
||||
}
|
||||
|
||||
// Return current count value (timer enabled or not).
|
||||
// Timer must be previously initialized.
|
||||
inline uint32_t _PM_timerGetCount(void *tptr) {
|
||||
IMXRT_PIT_CHANNEL_t *timer = (IMXRT_PIT_CHANNEL_t *)tptr;
|
||||
return (timer->LDVAL - timer->CVAL);
|
||||
}
|
||||
|
||||
// Disable timer and return current count value.
|
||||
// Timer must be previously initialized.
|
||||
uint32_t _PM_timerStop(void *tptr) {
|
||||
IMXRT_PIT_CHANNEL_t *timer = (IMXRT_PIT_CHANNEL_t *)tptr;
|
||||
timer->TCTRL = 0; // Disable timer and interrupt
|
||||
return _PM_timerGetCount(tptr);
|
||||
}
|
||||
|
||||
#define _PM_clockHoldHigh \
|
||||
asm("nop; nop; nop; nop; nop; nop; nop;"); \
|
||||
asm("nop; nop; nop; nop; nop; nop; nop;");
|
||||
#define _PM_clockHoldLow \
|
||||
asm("nop; nop; nop; nop; nop; nop; nop; nop; nop; nop;"); \
|
||||
asm("nop; nop; nop; nop; nop; nop; nop; nop; nop; nop;");
|
||||
|
||||
#define _PM_chunkSize 1 ///< DON'T unroll loop, Teensy 4 is SO FAST
|
||||
|
||||
#elif defined(CIRCUITPY) // COMPILING FOR CIRCUITPYTHON --------------------
|
||||
|
||||
// Teensy 4 CircuitPython magic goes here.
|
||||
|
||||
#endif // END CIRCUITPYTHON ------------------------------------------------
|
||||
|
||||
#endif // END __IMXRT1062__ (Teensy 4)
|
||||
1300
src/core.c
1300
src/core.c
File diff suppressed because it is too large
Load diff
274
src/core.h
274
src/core.h
|
|
@ -1,274 +0,0 @@
|
|||
/*!
|
||||
* @file core.h
|
||||
*
|
||||
* Part of Adafruit's Protomatter library for HUB75-style RGB LED matrices.
|
||||
*
|
||||
* Adafruit invests time and resources providing this open source code,
|
||||
* please support Adafruit and open-source hardware by purchasing
|
||||
* products from Adafruit!
|
||||
*
|
||||
* Written by Phil "Paint Your Dragon" Burgess and Jeff Epler for
|
||||
* Adafruit Industries, with contributions from the open source community.
|
||||
*
|
||||
* BSD license, all text here must be included in any redistribution.
|
||||
*
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include <stdbool.h>
|
||||
#include <stdint.h>
|
||||
|
||||
/** Status type returned by some functions. */
|
||||
typedef enum {
|
||||
PROTOMATTER_OK, // Everything is hunky-dory!
|
||||
PROTOMATTER_ERR_PINS, // Clock and/or data pins on different PORTs
|
||||
PROTOMATTER_ERR_MALLOC, // Couldn't allocate memory for display
|
||||
PROTOMATTER_ERR_ARG, // Bad input to function
|
||||
} ProtomatterStatus;
|
||||
|
||||
/** Struct for matrix control lines NOT related to RGB data or clock, i.e.
|
||||
latch, OE and address lines. RGB data and clock ("RGBC") are handled
|
||||
differently as they have specific requirements (and might use a toggle
|
||||
register if present). The data conversion functions need bitmasks for
|
||||
RGB data but do NOT need the set or clear registers, so those items are
|
||||
also declared as separate things in the core structure that follows. */
|
||||
typedef struct {
|
||||
volatile void *setReg; ///< GPIO bit set register
|
||||
volatile void *clearReg; ///< GPIO bit clear register
|
||||
uint32_t bit; ///< GPIO bitmask
|
||||
uint8_t pin; ///< Some unique ID, e.g. Arduino pin #
|
||||
} _PM_pin;
|
||||
|
||||
/** Struct with info about an RGB matrix chain and lots of state and buffer
|
||||
details for the library. Toggle-related items in this structure MUST be
|
||||
declared even if the device lacks GPIO bit-toggle registers (i.e. don't
|
||||
do an ifdef check around these). All hardware-specific details (including
|
||||
the presence or lack of toggle registers) are isolated to a single
|
||||
file -- arch.h -- which should ONLY be included by core.c, and ifdef'ing
|
||||
them would result in differing representations of this structure which
|
||||
must be shared between the library and calling code. (An alternative is
|
||||
to put any toggle-specific stuff at the end of the struct with an ifdef
|
||||
check, but that's just dirty pool and asking for trouble.) */
|
||||
typedef struct {
|
||||
void *timer; ///< Arch-specific timer/counter info
|
||||
void *setReg; ///< RGBC bit set register (cast to use)
|
||||
void *clearReg; ///< RGBC bit clear register "
|
||||
void *toggleReg; ///< RGBC bit toggle register "
|
||||
uint8_t *rgbPins; ///< Array of RGB data pins (mult of 6)
|
||||
void *rgbMask; ///< PORT bit mask for each RGB pin
|
||||
uint32_t clockMask; ///< PORT bit mask for RGB clock
|
||||
uint32_t rgbAndClockMask; ///< PORT bit mask for RGB data + clock
|
||||
volatile void *addrPortToggle; ///< See singleAddrPort below
|
||||
void *screenData; ///< Per-bitplane RGB data for matrix
|
||||
_PM_pin latch; ///< RGB data latch
|
||||
_PM_pin oe; ///< !OE (LOW out enable)
|
||||
_PM_pin *addr; ///< Array of address pins
|
||||
uint32_t bufferSize; ///< Bytes per matrix buffer
|
||||
uint32_t bitZeroPeriod; ///< Bitplane 0 timer period
|
||||
uint32_t minPeriod; ///< Plane 0 timer period for ~250Hz
|
||||
volatile uint32_t frameCount; ///< For estimating refresh rate
|
||||
uint16_t width; ///< Matrix chain width only in bits
|
||||
uint16_t chainBits; ///< Matrix chain width*tiling in bits
|
||||
uint8_t bytesPerElement; ///< Using 8, 16 or 32 bits of PORT?
|
||||
uint8_t clockPin; ///< RGB clock pin identifier
|
||||
uint8_t parallel; ///< Number of concurrent matrix outs
|
||||
uint8_t numAddressLines; ///< Number of address line pins
|
||||
uint8_t portOffset; ///< Active 8- or 16-bit pos. in PORT
|
||||
uint8_t numPlanes; ///< Display bitplanes (1 to 6)
|
||||
uint8_t numRowPairs; ///< Addressable row pairs
|
||||
int8_t tile; ///< Vertical tiling repetitions
|
||||
bool doubleBuffer; ///< 2X buffers for clean switchover
|
||||
bool singleAddrPort; ///< If 1, all addr lines on same PORT
|
||||
volatile uint8_t activeBuffer; ///< Index of currently-displayed buf
|
||||
volatile uint8_t plane; ///< Current bitplane (changes in ISR)
|
||||
volatile uint8_t row; ///< Current scanline (changes in ISR)
|
||||
volatile uint8_t prevRow; ///< Scanline from prior ISR
|
||||
volatile bool swapBuffers; ///< If 1, awaiting double-buf switch
|
||||
} Protomatter_core;
|
||||
|
||||
// Protomatter core function prototypes. Environment-specific code (like the
|
||||
// Adafruit_Protomatter class for Arduino) calls on these underlying things,
|
||||
// and has to provide a few extras of its own (interrupt handlers and such).
|
||||
// User code shouldn't need to invoke any of them directly.
|
||||
|
||||
/*!
|
||||
@brief Initialize values in Protomatter_core structure.
|
||||
@param core Pointer to Protomatter_core structure.
|
||||
@param bitWidth Total width of RGB matrix chain, in pixels.
|
||||
Usu. some multiple of 32, but maybe exceptions.
|
||||
@param bitDepth Color "depth" in bitplanes, determines range of
|
||||
shades of red, green and blue. e.g. passing 4
|
||||
bits = 16 shades ea. R,G,B = 16x16x16 = 4096
|
||||
colors.
|
||||
@param rgbCount Number of "sets" of RGB data pins, each set
|
||||
containing 6 pins (2 ea. R,G,B). Typically 1,
|
||||
indicating a single matrix (or matrix chain).
|
||||
In theory (but not yet extensively tested),
|
||||
multiple sets of pins can be driven in parallel,
|
||||
up to 5 on some devices (if the hardware design
|
||||
provides all those bits on one PORT).
|
||||
@param rgbList A uint8_t array of pins (values are platform-
|
||||
dependent), 6X the prior rgbCount value,
|
||||
corresponding to the 6 output color bits for a
|
||||
matrix (or chain). Order is upper-half red, green,
|
||||
blue, lower-half red, green blue (repeat for each
|
||||
add'l chain). All the RGB pins (plus the clock pin
|
||||
below on some architectures) MUST be on the same
|
||||
PORT register. It's recommended (but not required)
|
||||
that all RGB pins (and clock depending on arch) be
|
||||
within the same byte of a PORT (but do not need to
|
||||
be sequential or contiguous within that byte) for
|
||||
more efficient RAM utilization. For two concurrent
|
||||
chains, same principle but 16-bit word.
|
||||
@param addrCount Number of row address lines required of matrix.
|
||||
Total pixel height is then 2 x 2^addrCount, e.g.
|
||||
32-pixel-tall matrices have 4 row address lines.
|
||||
@param addrList A uint8_t array of pins (platform-dependent pin
|
||||
numbering), one per row address line.
|
||||
@param clockPin RGB clock pin (platform-dependent pin #).
|
||||
@param latchPin RGB data latch pin (platform-dependent pin #).
|
||||
@param oePin Output enable pin (platform-dependent pin #),
|
||||
active low.
|
||||
@param doubleBuffer If true, two matrix buffers are allocated,
|
||||
so changing display contents doesn't introduce
|
||||
artifacts mid-conversion. Requires ~2X RAM.
|
||||
@param tile If multiple matrices are chained and stacked
|
||||
vertically (rather than or in addition to
|
||||
horizontally), the number of vertical tiles is
|
||||
specified here. Positive values indicate a
|
||||
"progressive" arrangement (always left-to-right),
|
||||
negative for a "serpentine" arrangement (alternating
|
||||
180 degree orientation). Horizontal tiles are implied
|
||||
in the 'bitWidth' argument.
|
||||
@param timer Pointer to timer peripheral or timer-related
|
||||
struct (architecture-dependent), or NULL to
|
||||
use a default timer ID (also arch-dependent).
|
||||
@return A ProtomatterStatus status, one of:
|
||||
PROTOMATTER_OK if everything is good.
|
||||
PROTOMATTER_ERR_PINS if data and/or clock pins are split across
|
||||
different PORTs.
|
||||
PROTOMATTER_ERR_MALLOC if insufficient RAM to allocate display
|
||||
memory.
|
||||
PROTOMATTER_ERR_ARG if a bad value (core or timer pointer) was
|
||||
passed in.
|
||||
*/
|
||||
extern ProtomatterStatus _PM_init(Protomatter_core *core, uint16_t bitWidth,
|
||||
uint8_t bitDepth, uint8_t rgbCount,
|
||||
uint8_t *rgbList, uint8_t addrCount,
|
||||
uint8_t *addrList, uint8_t clockPin,
|
||||
uint8_t latchPin, uint8_t oePin,
|
||||
bool doubleBuffer, int8_t tile, void *timer);
|
||||
|
||||
/*!
|
||||
@brief Allocate display buffers and populate additional elements of a
|
||||
Protomatter matrix.
|
||||
@param core Pointer to Protomatter_core structure.
|
||||
@return A ProtomatterStatus status, one of:
|
||||
PROTOMATTER_OK if everything is good.
|
||||
PROTOMATTER_ERR_PINS if data and/or clock pins are split across
|
||||
different PORTs.
|
||||
PROTOMATTER_ERR_MALLOC if insufficient RAM to allocate display
|
||||
memory.
|
||||
PROTOMATTER_ERR_ARG if a bad value.
|
||||
*/
|
||||
extern ProtomatterStatus _PM_begin(Protomatter_core *core);
|
||||
|
||||
/*!
|
||||
@brief Disable (but do not deallocate) a Protomatter matrix. Disables
|
||||
matrix by setting OE pin HIGH and writing all-zero data to
|
||||
matrix shift registers, so it won't halt with lit LEDs.
|
||||
@param core Pointer to Protomatter_core structure.
|
||||
*/
|
||||
extern void _PM_stop(Protomatter_core *core);
|
||||
|
||||
/*!
|
||||
@brief Start or restart a matrix. Initialize counters, configure and
|
||||
start timer.
|
||||
@param core Pointer to Protomatter_core structure.
|
||||
*/
|
||||
extern void _PM_resume(Protomatter_core *core);
|
||||
|
||||
/*!
|
||||
@brief Deallocate memory associated with Protomatter_core structure
|
||||
(e.g. screen data, pin lists for data and rows). Does not
|
||||
deallocate the structure itself.
|
||||
@param core Pointer to Protomatter_core structure.
|
||||
*/
|
||||
extern void _PM_deallocate(Protomatter_core *core);
|
||||
|
||||
/*!
|
||||
@brief Matrix "row handler" that's called by the timer interrupt.
|
||||
Handles row address lines and issuing data to matrix.
|
||||
@param core Pointer to Protomatter_core structure.
|
||||
*/
|
||||
extern void _PM_row_handler(Protomatter_core *core);
|
||||
|
||||
/*!
|
||||
@brief Returns current value of frame counter and resets its value to
|
||||
zero. Two calls to this, timed one second apart (or use math with
|
||||
other intervals), can be used to get a rough frames-per-second
|
||||
value for the matrix (since this is difficult to estimate
|
||||
beforehand).
|
||||
@param core Pointer to Protomatter_core structure.
|
||||
@return Frame count since previous call to function, as a uint32_t.
|
||||
*/
|
||||
extern uint32_t _PM_getFrameCount(Protomatter_core *core);
|
||||
|
||||
/*!
|
||||
@brief Start (or restart) a timer/counter peripheral.
|
||||
@param tptr Pointer to timer/counter peripheral OR a struct
|
||||
encapsulating information about a timer/counter
|
||||
periph (architecture-dependent).
|
||||
@param period Timer 'top' / rollover value.
|
||||
*/
|
||||
extern void _PM_timerStart(void *tptr, uint32_t period);
|
||||
|
||||
/*!
|
||||
@brief Stop timer/counter peripheral.
|
||||
@param tptr Pointer to timer/counter peripheral OR a struct
|
||||
encapsulating information about a timer/counter
|
||||
periph (architecture-dependent).
|
||||
@return Counter value when timer was stopped.
|
||||
*/
|
||||
extern uint32_t _PM_timerStop(void *tptr);
|
||||
|
||||
/*!
|
||||
@brief Query a timer/counter peripheral's current count.
|
||||
@param tptr Pointer to timer/counter peripheral OR a struct
|
||||
encapsulating information about a timer/counter
|
||||
periph (architecture-dependent).
|
||||
@return Counter value.
|
||||
*/
|
||||
extern uint32_t _PM_timerGetCount(void *tptr);
|
||||
|
||||
/*!
|
||||
@brief Pauses until the next vertical blank to avoid 'tearing' animation
|
||||
(if display is double-buffered). If single-buffered, has no effect.
|
||||
@param core Pointer to Protomatter_core structure.
|
||||
*/
|
||||
extern void _PM_swapbuffer_maybe(Protomatter_core *core);
|
||||
|
||||
#if defined(ARDUINO) || defined(CIRCUITPY)
|
||||
|
||||
/*!
|
||||
@brief Converts image data from GFX16 canvas to the matrices weird
|
||||
internal format.
|
||||
@param core Pointer to Protomatter_core structure.
|
||||
@param source Pointer to source image data (see Adafruit_GFX 16-bit
|
||||
canvas type for format).
|
||||
@param width Width of canvas in pixels, as this may be different than
|
||||
the matrix pixel width due to row padding.
|
||||
*/
|
||||
extern void _PM_convert_565(Protomatter_core *core, uint16_t *source,
|
||||
uint16_t width);
|
||||
|
||||
#endif // END ARDUINO || CIRCUITPY
|
||||
|
||||
#ifdef __cplusplus
|
||||
} // extern "C"
|
||||
#endif
|
||||
Loading…
Reference in a new issue