ArduinoCore-samd/cores/arduino/wiring.c
2019-04-21 01:47:47 -04:00

205 lines
7.4 KiB
C

/*
Copyright (c) 2015 Arduino LLC. All right reserved.
SAMD51 support added by Adafruit - Copyright (c) 2018 Dean Miller for Adafruit Industries
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "Arduino.h"
#ifdef __cplusplus
extern "C" {
#endif
#if defined(__SAMD51__)
uint32_t SystemCoreClock=F_CPU;
#else
/*
* System Core Clock is at 1MHz (8MHz/8) at Reset.
* It is switched to 48MHz in the Reset Handler (startup.c)
*/
uint32_t SystemCoreClock=1000000ul ;
#endif
/*
void calibrateADC()
{
volatile uint32_t valeur = 0;
for(int i = 0; i < 5; ++i)
{
ADC->SWTRIG.bit.START = 1;
while( ADC->INTFLAG.bit.RESRDY == 0 || ADC->STATUS.bit.SYNCBUSY == 1 )
{
// Waiting for a complete conversion and complete synchronization
}
valeur += ADC->RESULT.bit.RESULT;
}
valeur = valeur/5;
}*/
/*
* Arduino Zero board initialization
*
* Good to know:
* - At reset, ResetHandler did the system clock configuration. Core is running at 48MHz.
* - Watchdog is disabled by default, unless someone plays with NVM User page
* - During reset, all PORT lines are configured as inputs with input buffers, output buffers and pull disabled.
*/
void init( void )
{
// Set Systick to 1ms interval, common to all Cortex-M variants
if ( SysTick_Config( SystemCoreClock / 1000 ) )
{
// Capture error
while ( 1 ) ;
}
NVIC_SetPriority (SysTick_IRQn, (1 << __NVIC_PRIO_BITS) - 2); /* set Priority for Systick Interrupt (2nd lowest) */
// Clock PORT for Digital I/O
// PM->APBBMASK.reg |= PM_APBBMASK_PORT ;
//
// // Clock EIC for I/O interrupts
// PM->APBAMASK.reg |= PM_APBAMASK_EIC ;
#if defined(__SAMD51__)
MCLK->APBAMASK.reg |= MCLK_APBAMASK_SERCOM0 | MCLK_APBAMASK_SERCOM1 | MCLK_APBAMASK_TC0 | MCLK_APBAMASK_TC1;
MCLK->APBBMASK.reg |= MCLK_APBBMASK_SERCOM2 | MCLK_APBBMASK_SERCOM3 | MCLK_APBBMASK_TCC0 | MCLK_APBBMASK_TCC1 | MCLK_APBBMASK_TC3 | MCLK_APBBMASK_TC2;
MCLK->APBCMASK.reg |= MCLK_APBCMASK_TCC2 | MCLK_APBCMASK_TCC3 | MCLK_APBCMASK_TC4 | MCLK_APBCMASK_TC5;
MCLK->APBDMASK.reg |= MCLK_APBDMASK_DAC | MCLK_APBDMASK_SERCOM4 | MCLK_APBDMASK_SERCOM5 | MCLK_APBDMASK_ADC0 | MCLK_APBDMASK_ADC1 | MCLK_APBDMASK_TCC4
| MCLK_APBDMASK_TC6 | MCLK_APBDMASK_TC7 | MCLK_APBDMASK_SERCOM6 | MCLK_APBDMASK_SERCOM7;
#else
// Clock SERCOM for Serial
PM->APBCMASK.reg |= PM_APBCMASK_SERCOM0 | PM_APBCMASK_SERCOM1 | PM_APBCMASK_SERCOM2 | PM_APBCMASK_SERCOM3 | PM_APBCMASK_SERCOM4 | PM_APBCMASK_SERCOM5 ;
// Clock TC/TCC for Pulse and Analog
PM->APBCMASK.reg |= PM_APBCMASK_TCC0 | PM_APBCMASK_TCC1 | PM_APBCMASK_TCC2 | PM_APBCMASK_TC3 | PM_APBCMASK_TC4 | PM_APBCMASK_TC5 ;
// ATSAMR, for example, doesn't have a DAC
#ifdef PM_APBCMASK_DAC
// Clock ADC/DAC for Analog
PM->APBCMASK.reg |= PM_APBCMASK_ADC | PM_APBCMASK_DAC ;
#endif
#endif
/*
Commented out to leave pins in default tri-state. This is
aimed at avoiding power consumption in DeepSleep.
// Setup all pins (digital and analog) in INPUT mode (default is nothing)
for (uint32_t ul = 0 ; ul < NUM_DIGITAL_PINS ; ul++ )
{
pinMode( ul, INPUT ) ;
}
*/
// Initialize Analog Controller
// Setting clock
#if defined(__SAMD51__)
//set to 1/(1/(48000000/32) * 6) = 250000 SPS
GCLK->PCHCTRL[ADC0_GCLK_ID].reg = GCLK_PCHCTRL_GEN_GCLK1_Val | (1 << GCLK_PCHCTRL_CHEN_Pos); //use clock generator 1 (48Mhz)
GCLK->PCHCTRL[ADC1_GCLK_ID].reg = GCLK_PCHCTRL_GEN_GCLK1_Val | (1 << GCLK_PCHCTRL_CHEN_Pos); //use clock generator 1 (48Mhz)
Adc *adcs[] = {ADC0, ADC1};
for(int i=0; i<2; i++){
adcs[i]->CTRLA.bit.PRESCALER = ADC_CTRLA_PRESCALER_DIV32_Val;
adcs[i]->CTRLB.bit.RESSEL = ADC_CTRLB_RESSEL_10BIT_Val;
while( adcs[i]->SYNCBUSY.reg & ADC_SYNCBUSY_CTRLB ); //wait for sync
adcs[i]->SAMPCTRL.reg = 5; // sampling Time Length
while( adcs[i]->SYNCBUSY.reg & ADC_SYNCBUSY_SAMPCTRL ); //wait for sync
adcs[i]->INPUTCTRL.reg = ADC_INPUTCTRL_MUXNEG_GND; // No Negative input (Internal Ground)
while( adcs[i]->SYNCBUSY.reg & ADC_SYNCBUSY_INPUTCTRL ); //wait for sync
// Averaging (see datasheet table in AVGCTRL register description)
adcs[i]->AVGCTRL.reg = ADC_AVGCTRL_SAMPLENUM_1 | // 1 sample only (no oversampling nor averaging)
ADC_AVGCTRL_ADJRES(0x0ul); // Adjusting result by 0
while( adcs[i]->SYNCBUSY.reg & ADC_SYNCBUSY_AVGCTRL ); //wait for sync
}
analogReference( AR_DEFAULT ) ; // Analog Reference is AREF pin (3.3v)
GCLK->PCHCTRL[DAC_GCLK_ID].reg = GCLK_PCHCTRL_GEN_GCLK4_Val | (1 << GCLK_PCHCTRL_CHEN_Pos); //use clock generator 4 (12mhz)
while (GCLK->PCHCTRL[DAC_GCLK_ID].bit.CHEN == 0);
while ( DAC->SYNCBUSY.bit.SWRST == 1 ); // Wait for synchronization of registers between the clock domains
DAC->CTRLA.bit.SWRST = 1;
while ( DAC->SYNCBUSY.bit.SWRST == 1 ); // Wait for synchronization of registers between the clock domains
DAC->CTRLB.reg = DAC_CTRLB_REFSEL_VREFPU; // TODO: fix this once silicon bug is fixed
//set refresh rates
DAC->DACCTRL[0].bit.REFRESH = 2;
DAC->DACCTRL[1].bit.REFRESH = 2;
#else
//set to 1/(1/(48000000/32) * 6) = 250000 SPS
while(GCLK->STATUS.reg & GCLK_STATUS_SYNCBUSY);
GCLK->CLKCTRL.reg = GCLK_CLKCTRL_ID( GCM_ADC ) | // Generic Clock ADC
GCLK_CLKCTRL_GEN_GCLK0 | // Generic Clock Generator 0 is source
GCLK_CLKCTRL_CLKEN ;
while( ADC->STATUS.bit.SYNCBUSY == 1 ); // Wait for synchronization of registers between the clock domains
ADC->CTRLB.reg = ADC_CTRLB_PRESCALER_DIV32 | // Divide Clock by 32.
ADC_CTRLB_RESSEL_10BIT; // 10 bits resolution as default
ADC->SAMPCTRL.reg = 5; // Sampling Time Length
while( ADC->STATUS.bit.SYNCBUSY == 1 ); // Wait for synchronization of registers between the clock domains
ADC->INPUTCTRL.reg = ADC_INPUTCTRL_MUXNEG_GND; // No Negative input (Internal Ground)
// Averaging (see datasheet table in AVGCTRL register description)
ADC->AVGCTRL.reg = ADC_AVGCTRL_SAMPLENUM_1 | // 1 sample only (no oversampling nor averaging)
ADC_AVGCTRL_ADJRES(0x0ul); // Adjusting result by 0
analogReference( AR_DEFAULT ) ; // Analog Reference is AREF pin (3.3v)
// Initialize DAC
// Setting clock
while ( GCLK->STATUS.reg & GCLK_STATUS_SYNCBUSY );
GCLK->CLKCTRL.reg = GCLK_CLKCTRL_ID( GCM_DAC ) | // Generic Clock ADC
GCLK_CLKCTRL_GEN_GCLK0 | // Generic Clock Generator 0 is source
GCLK_CLKCTRL_CLKEN ;
// ATSAMR, for example, doesn't have a DAC
#ifdef DAC
while ( DAC->STATUS.bit.SYNCBUSY == 1 ); // Wait for synchronization of registers between the clock domains
DAC->CTRLB.reg = DAC_CTRLB_REFSEL_AVCC | // Using the 3.3V reference
DAC_CTRLB_EOEN ; // External Output Enable (Vout)
#endif
#endif //SAMD51
}
#ifdef __cplusplus
}
#endif